期权定价理论综述_郑如斌
- 格式:pdf
- 大小:245.92 KB
- 文档页数:2
期权定价理论与实证研究一、期权概述期权是证券衍生品中的一种,它是一种交易权利而非义务,即期权持有者有权利但无义务在未来某个时间点按照约定价格买入或卖出某个标的资产。
期权的价格受到多种因素影响,包括标的资产价格、期权到期时间、波动率等等,期权定价理论涉及到了这些因素,它是期权交易中的重要参考依据。
二、期权定价理论1. 布莱克-斯科尔斯模型布莱克-斯科尔斯模型是最早被提出的期权定价模型之一,它基于以下假设:市场完全有效、标的资产价格服从对数正态分布、无风险利率稳定不变、不存在交易成本、期权可以随时买卖、标的资产价格不受限制。
在这些假设的基础上,布莱克-斯科尔斯模型通过偏微分方程求解得到期权的理论价格。
2. 布莱克-76模型布莱克-76模型是对布莱克-斯科尔斯模型的改进,它放弃了布莱克-斯科尔斯模型中的无交易成本假设,并将交易成本计入模型中,使得模型更贴近现实市场环境。
在布莱克-76模型中,期权的理论价格是通过对布莱克-斯科尔斯模型中的一些计算公式进行改进得到的。
3. 卡兹-琼斯模型卡兹-琼斯模型同样是一种对布莱克-斯科尔斯模型的改进。
该模型考虑了标的资产价格不服从对数正态分布的情况,而是服从自回归、移动平均过程(ARMA)。
卡兹-琼斯模型对波动率的预测更加精确,因此在实际期权定价中有着广泛的应用。
三、实证研究1. 实证研究的意义期权定价理论是理论意义上的模型,实际市场中的期权价格往往与理论模型存在一定的差距。
因此,实证研究的目的是通过对实际市场数据的统计分析来验证和修正期权定价理论,以提高期权交易和定价的准确性。
2. 实证研究的方法实证研究的方法通常包括对期权历史价格的回归分析、数据挖掘以及模拟仿真等。
其中,回归分析是最为基础的方法,它通过对期权价格与市场因素的相关性进行统计分析,来研究期权价格的相关因素。
3. 实证研究的结论实证研究表明,期权价格受到多种因素的影响,其中最为重要的因素是标的资产价格、波动率和无风险利率。
期权定价理论期权是一种独特的衍生金融产品,它使买方能够避免坏的结果,同时,又能从好的结果中获益。
金融期权创立于20世纪70年代,并在80年代得到了广泛的应用。
今天,期权已经成为所有金融工具中功能最多和最激动人心的工具。
因此,了解期权的定价对于了解几乎所有证券的定价,具有极其重要的意义。
而期权定价理论被认为是经济学中唯一一个先于实践的理论。
当布莱克(Black)和斯科尔斯(Scholes)于1971年完成其论文,并于1973年发表时,世界上第一个期权交易所——芝加哥期权交易所(CBOE)才刚刚成立一个月(1973年4月26日成立),定价模型马上被期权投资者所采用。
后来默顿对此进行了改进。
布莱克—斯科尔斯期权定价理论为金融衍生产品市场的快速发展奠定了基础。
期权定价理论并不是起源于布莱克—斯科尔斯定价模型(以下记为B—S定价模型)。
在此之前,许多学者都研究过这一问题。
最早的是法国数学家路易·巴舍利耶(Lowis Bachelier)于1900年提出的模型。
随后,卡苏夫(Kassouf,1969年)、斯普里克尔(Sprekle,1961年)、博内斯(Boness,1964年)、萨缪尔森(Samuelson,1965年)等分别提出了不同的期权定价模型。
但他们都没能完全解出具体的方程。
本讲主要讨论以股票为基础资产的欧式期权的B—S定价理论。
一、预备知识(一)连续复利我们一般比较熟悉的是以年为单位计算的利率,但在期权以与其它复杂的衍生证券定价中,连续复利得到广泛的应用。
因而,熟悉连续复利的计算是十分必要的。
假设数额为A 的资金,以年利率r 投资了n 年,如果利率按一年计一次算,则该笔投资的终值为n r A )1(+。
如果每年计m 次利息,则终值为:mnmr A )1(+。
当m 趋于无穷大时,以这种结果计息的方式就称为连续复利。
在连续复利的情况下,金额A 以利率r 投资n 年后,将达到:rn Ae 。
期权定价理论知识期权定价理论是金融市场中重要的工具,它用于确定期权的合理价格。
期权是一种金融衍生品,它赋予持有者在未来某个时间点购买或卖出标的资产的权利,但并不强制执行。
期权的价格由多种因素决定,包括标的资产价格、行权价格、期权到期时间、标的资产的波动性以及无风险利率等。
在期权定价理论中,最著名的模型是布莱克-斯科尔斯期权定价模型(Black-Scholes Option Pricing Model)。
该模型是由费希尔·布莱克和米伦·斯科尔斯于1973年提出的,并且因此获得了诺贝尔经济学奖。
该模型基于一些假设,如市场是完全有效、无风险利率是恒定的等。
根据布莱克-斯科尔斯期权定价模型,期权的价格可以通过以下公式计算:C = S * N(d1) - X * e^(-rt) * N(d2)其中,C表示看涨期权价格,S表示标的资产价格,N(d1)和N(d2)分别是标准正态分布函数,X表示行权价格,r表示无风险利率,t表示期权到期时间。
公式中的d1和d2可以通过以下公式计算:d1 = (ln(S/X) + (r + (σ^2)/2)*t) / (σ * √t)d2 = d1 - σ * √t该模型通过考虑标的资产价格、行权价格、期权到期时间、标的资产的波动性和无风险利率等因素,来确定一个看涨期权的合理价格。
类似地,可以用类似的方法计算看跌期权的价格。
虽然布莱克-斯科尔斯期权定价模型是一个重要的理论框架,但它在实际应用中存在一些限制。
例如,该模型假设市场是完全有效的,但实际市场存在各种交易成本、税收和限制等,这些因素都可能影响期权的价格。
此外,该模型假设无风险利率是恒定的,但实际上利率是变化的。
因此,在实际应用中,需要根据实际情况进行调整和修正。
总之,期权定价理论是金融市场中重要的理论工具,它为期权的定价和交易提供了基础。
布莱克-斯科尔斯期权定价模型是其中最著名的模型之一,它通过考虑标的资产价格、行权价格、期权到期时间、标的资产的波动性和无风险利率等因素来确定期权的合理价格。
2023-11-04CATALOGUE目录•期权定价模型概述•经典期权定价模型•期权定价的随机过程基础•期权定价理论的扩展与应用•期权定价的风险与回报分析•期权定价理论的发展趋势与挑战01期权定价模型概述期权定义期权是一种合约,赋予其持有人在一定时期内以指定价格买卖标的资产的权利。
期权特性期权具有非线性收益特性,买方收益曲线为非线性,卖方收益曲线为线性。
期权定义与特性期权所涉及的资产,可以是股票、商品、外汇等。
标的资产期权的到期时间,一般为未来某一具体日期。
到期日期权的行权价格,即买卖标的资产的价格。
行权价期权的行权方式,包括美式和欧式两种。
行权方式期权定价模型的基本概念期权定价模型的种类与分类期权的持有者只能在到期日行权。
欧式期权美式期权看涨期权看跌期权期权的持有者可以在到期日及之前任何时间行权。
赋予持有者在未来某一时期以指定价格购买标的资产的权利。
赋予持有者在未来某一时期以指定价格出售标的资产的权利。
02经典期权定价模型Black-Scholes模型通过构造一个包含股票和债券的组合,推导出欧式期权价格所满足的微分方程。
利用已知的债券价格和股票价格,通过求解微分方程得到期权价格。
假设股票价格服从几何布朗运动,且无风险利率和波动率均为常数。
二叉树模型基于离散时间框架,模拟股票价格的变化过程。
假设股票价格只能向上或向下移动,且移动的幅度和概率均已知。
通过反向推导的方式,计算出期权的预期收益,并利用无风险利率折现得到期权的现值。
期权定价的数值方法有限差分法通过求解偏微分方程的数值近似解,得到期权价格。
网格法通过在期权收益函数中构造网格,计算网格点对应的期权价值,并利用无风险利率折现得到期权的现值。
蒙特卡洛模拟法通过模拟股票价格的随机过程,计算出期权的预期收益,并利用无风险利率折现得到期权的现值。
03期权定价的随机过程基础随机过程一组随机变量,每个变量对应一个时间点。
随机过程的分类根据性质不同,随机过程可分为平稳和非平稳、确定性和随机性等。
期权定价方法综述一、本文概述期权定价方法综述是一篇全面探讨期权定价理论和实践的学术论文。
期权作为一种重要的金融衍生品,其定价问题一直是金融界和学术界关注的焦点。
本文旨在综述期权定价的主要方法,包括经典的Black-Scholes模型、二叉树模型、蒙特卡洛模拟等,并分析这些方法的优缺点和适用范围。
本文还将介绍近年来新兴的期权定价方法,如基于机器学习的定价模型,以期为读者提供一个全面而深入的期权定价知识体系。
在文章结构上,本文将首先简要介绍期权的基本概念和分类,为后续分析奠定基础。
接着,将重点阐述各种期权定价方法的理论原理、计算过程和应用实例。
将对各种方法进行综合比较和评价,提出未来的研究方向和展望。
通过本文的阅读,读者可以深入了解期权定价的基本理论和实践,掌握各种定价方法的特点和应用技巧,为未来的金融投资和研究提供有力支持。
二、期权定价理论的发展历史期权定价理论的发展历史可追溯到20世纪初,但其真正的突破和广泛应用是在20世纪后半叶。
这一领域的研究起始于法国数学家巴舍利耶(Bachelier)在1900年的一篇论文,他首次尝试使用随机过程来描述股票价格行为,并提出了一个简单的期权定价模型。
然而,这一理论在当时并未得到广泛的接受和应用。
真正使期权定价理论获得突破性进展的是费雪·布莱克(Fischer Black)和迈伦·舒尔斯(Myron Scholes)在1973年的工作。
他们发表了一篇名为《期权定价与公司负债》的论文,提出了著名的布莱克-舒尔斯期权定价模型(Black-Scholes Option Pricing Model)。
该模型基于无套利原则,通过构建一个包含股票和无风险资产的组合来消除风险,从而得出了期权的公平价格。
这一模型在理论上严谨,实践上易于操作,迅速成为期权定价的标准工具。
布莱克-舒尔斯模型的一个重要假设是股票价格遵循几何布朗运动,即股票价格的对数收益率服从正态分布。
金融数学方法课程论文——————关于期权定价的理论综述XX:苏晓雅学号:5专业:金融学摘要:近20年来,金融衍生证券获得迅猛发展,期权问题引起国内外数学家、金融学家的广泛重视,要对风险进行有效的管理,就必须对金融衍生证券进行正确的估价,如何确定金融衍生证券的公平价格是他们合理存在与健康发展的关键。
而期权定价理论的产生和完善对于推动期权市场的发展起到了巨大的作用。
本文对有关期权基本知识和定价理论进行了综述,以期对期权定价问题有更清晰明了的认识。
关键词:期权定价;Black-Scholes模型;随机波动率;随机分红;美式期权一、引言现代金融衍生证券诞生于70年代,衍生证券随着金融衍生证券市场的蓬勃发展,给现代金融学提出了极其复杂的数学问题,包括金融变量的数学描述、各种金融变量之间的关系分析、市场风险的计算与控制等等。
研究衍生证券要解决的主要问题就是如何确定衍生证券的价格即衍生证券的定价(Valuation);其次是如何构造投资策略,以达到尽可能地化解因出卖衍生证券而带来的风险(购买衍生证券实质上等于购买保险),即如何构造套期保值策略(Hedging)。
在所有的衍生证券中,期权的研究最为广泛。
这是因为:(l)与其他衍生证券相比期权易于定价;(2)许多衍生证券可表为若干期权合约的组合形式;(3)各种衍生证券的定价原理是一样的,有可能通过期权定价方法找到一般衍生证券的定价理论。
期权作为衍生证券的一种有着重要的作用,它是70年代中期首先在美国出现的一种金融创新工具,30多年来它作为一种防X风险和投机的有效手段而得到迅猛发展。
近20年来,期权理论的发展日新月异,期权应用研究也紧随其后,从金融期权研究得出的基本原理和方法被广泛应用于宏观、微观的经济和管理问题的分析和决策,如文献远远不止于证券投资领域,其中在财务方面的应用最为集中,以及在投资决策等中的应用,耶鲁大学的著名教授斯蒂芬。
罗斯曾说过:“期权定价理论不仅在金融领域,而且是在整个经济学中最成功的理论”。
期权定价方法综述期权定价方法综述1. 引言期权作为金融市场中的一种金融工具,具有许多特殊的特点,例如灵活性、杠杆效应以及风险管理等,因此在金融衍生品市场中具有广泛的应用。
准确地估计和定价期权是金融从业者和投资者非常关注的问题,因此期权定价方法成为研究的热点之一。
本文将对期权定价方法进行综述,介绍期权定价方法的起源和发展,并概述常用的期权定价模型。
2. 期权定价方法的起源和发展期权定价方法的起源可追溯到20世纪初,著名的期权定价模型之一即为布莱克-斯科尔斯(Black-Scholes)模型。
Black-Scholes模型是由费雪·布莱克(Fischer Black)、默顿·米勒(Myron Scholes)和罗伯特·蒂伦(Robert Merton)三位学者于1973年提出的,该模型是金融领域里的一项重大创新,极大地推动了金融衍生品市场的发展。
布莱克-斯科尔斯模型假设了市场的一些特定条件,如无套利机会、无风险利率恒定、标的资产遵循几何布朗运动等,以推导出期权的理论价格。
随着期权市场的快速发展,各种期权定价模型相继涌现。
除了布莱克-斯科尔斯模型外,还有考虑了市场波动性的扩散模型,例如伊藤-伦达尔模型和扩散波动模型等。
此外,还有基于树模型的期权定价方法,如二叉树模型、三叉树模型、均匀网格模型等,这些方法主要解决了无套利机会的离散时间和离散股价的情况。
近年来,随着计算机技术的快速发展,蒙特卡罗模拟方法也得到广泛应用,该方法基于随机过程模拟期权的价格演化。
3. 常用的期权定价模型3.1 布莱克-斯科尔斯模型布莱克-斯科尔斯模型是最早也是最经典的期权定价模型之一。
该模型基于伊藤引理和风险中性定价原理,通过解析求解偏微分方程,推导出欧式期权的定价公式。
布莱克-斯科尔斯模型假设市场不存在无套利机会,并且标的资产的价格服从几何布朗运动。
该模型广泛应用于欧式期权的定价。
3.2 伊藤-伦达尔模型伊藤-伦达尔模型是一种扩散模型,相比于布莱克-斯科尔斯模型,考虑了市场波动性的随机性。
期权定价理论杨长汉11952年现代资产组合理论的提出以后,现代证券投资组合理论才开始真正形成,自此以后,该理论体系的发展成为经济金融领域最活跃的分支之一。
按照历史的逻辑来讲,资本资产定价模型、因素模型、套利定价理论以及有效市场假说理论等理论相继诞生,并且每种理论都是在检验和批判先前理论的过程中诞生和涌现的,同时不断推动着现代西方证券投资组合理论体系的发展,直到期权定价理论诞生以后,现代西方证券投资理论才形成了一套系统的理论体系。
b5E2RGbCAP期权定价问题一直是西方证券投资理论界研究的焦点问题。
早期的期权定价理论主要有巴舍利耶(1900>提出的股价服从布朗运动的欧式看涨期权定价模型,斯普伦克尔(1962>提出的假定标的资产价格成对数正态分布情形下的看涨期权定价模型以及萨缪尔森(1965>提出的考虑期权和股票预期收益率因风险特性的差异而不一致性的期权定价模型,直到1973年,布莱克和斯科尔斯根据股价符合几何布朗运动的假定,成功的推导出无现金股利的欧式期权定价公式,这才真正得到了期权定价的一般公式。
布莱克和斯科尔斯(1973>的1文章出处:《中国企业年金投资运营研究》杨长汉著杨长汉,笔名杨老金。
师从著名金融证券学者贺强教授,中央财经大学MBA教育中心教师、金融学博士。
中央财经大学证券期货研究所研究员、中央财经大学银行业研究中心研究员。
这一出色工作也使现代证券投资组合理论体系真正形成。
p1EanqFDPw一、早期的期权定价理论(一> 巴舍利耶(Louis Bachelier>的期权定价理论2DXDiTa9E3d法国数学家巴舍利耶于1900年发表在《巴黎高等师范学院科学年鉴》上的博士论文《投机理论》中提到了他的期权定价理论,他也是最早提出期权定价理论的学者。
巴舍利耶假设股票的价格服从布朗运动,其单位的时间方差为,并且不存在漂移项,因此他的欧式看涨期权定价公式为:RTCrpUDGiT其中,表示欧式看涨期权的价格,表示执行价格,为到期日,表示现在的日期,表示标的资产的价格,是标准正态分布函数,是标准正态分布的密度函数。
期权定价理论及其应用期权定价理论是金融学中的重要理论之一,用于计算期权合约的价格。
期权是一种金融工具,允许持有人以约定价格在约定时间内买入或卖出标的资产。
根据定价理论,期权的价格取决于一系列因素,包括标的资产价格、行权价格、到期时间、波动率以及利率等。
根据期权定价理论,有两种主要的方法用于计算期权的价格:风险中性定价模型和基于形态的定价模型。
风险中性定价模型是期权定价理论中最常用的方法之一。
根据这个模型,期权的价格可以通过将期权组合的价值与无风险利率相等来计算。
这表示期权的价格必须与类似的无风险投资产生的收益相匹配。
这一模型的一个关键假设是,市场是完全有效的,不存在无风险套利的机会。
基于形态的定价模型是基于期权的形态结构和特征来计算期权价格的方法。
这种方法通常通过建立期权的价格公式来实现,该公式基于标的资产价格的概率分布。
这种方法的一个优点是它不需要对市场进行强假设。
期权定价理论的应用非常广泛,它对金融市场和投资者都具有重要意义。
首先,期权定价理论为投资者提供了了解期权价格背后的基本因素的方法。
投资者可以使用这些因素来评估他们的投资策略是否合理,并为期权交易做出决策。
其次,期权定价理论为金融机构提供了制定期权交易策略的基础。
他们可以使用定价模型来评估期权合约的价格,并确定是否存在投资机会。
此外,金融机构也可以利用期权定价理论来对冲风险,降低对市场波动性的敏感性。
最后,期权定价理论还对学术界的研究和理论发展起到了推动作用。
通过对期权定价理论的研究,学者们可以深入了解金融市场的运作机制,并提出新的交易模型和策略。
总而言之,期权定价理论是金融学中的重要理论之一,它为投资者和金融机构提供了计算期权价格的方法。
通过应用期权定价理论,投资者和金融机构可以更好地理解期权交易的潜在风险和收益,从而做出更明智的投资决策。
期权定价理论在金融市场中起着至关重要的作用。
它不仅为投资者和金融机构提供了计算期权价格的方法,而且对于投资者的风险管理和投资组合管理也具有重要意义。
期权定价理论与方法综述期权定价理论是现代金融学基础之一。
在对金融衍生品研究中,期权定价的模型与方法是最重要、应用最广泛、难度最大的一种。
1973年,被誉为“华尔街第二次革命”B-S-M期权定价模型正式提出,随之成为现代期权定价研究的基石。
这与现代期权在1973年的上市一起,标志着金融衍生品发展的关键转折。
现代期权定价的理论和方法在国外经过三十多年的发展已经日趋成熟。
随着沪深300股指期权的积极推进,国内金融市场或将迎来期权这一全新金融工具。
因此,国内期权定价的研究会更具发展前景和现实意义。
期权最重要的用途之一是管理风险,要对风险进行有效的管理,就必须对期权进行正确的估价。
期权定价理论和方法的产生和完善对于推动期权市场的发展起到了巨大的作用。
期权定价研究得出的基本原理和方法被广泛应用于宏观、微观的经济和管理问题的分析和决策,其中在财务方面的应用最为集中,以及在投资决策等方面都有广泛的应用。
本文主要是对期权定价的综述,内容包括两个方面:1期权定价理论模型1.1B-S-M模型之前的期权定价理论1.2B-S-M模型1.3B-S-M模型之后的期权定价理论2期权定价数值方法2.1树形方法2.2蒙特卡洛模拟2.3有限差分方法2.4新兴方法:神经网络2.5非完全市场下的期权定价方法1.期权定价理论模型的发展1.1.B-S-M模型之前的期权定价理论历史上的期权交易可以追溯到古希腊时期,并于17世纪荷兰“郁金香投机泡沫”和18世纪美国农产品交易中相继出现。
期权定价的理论模型的历史却比较短。
期权定价理论的研究始于1900年,由法国数学家巴舍利耶(L.Bachelier)在博士论文《投机理论》中提出。
他首次引入了对布朗运动的数学描述,并认为股票价格变化过程就是一个无漂移的标准算术布朗运动。
这一发现沉寂了五十年后才被金融界所接受,被称为“随机游走”或“酒鬼乱步”。
巴舍利耶在此基础上,通过高斯概率密度函数将布朗运动和热传导方程联系起来,得出到期日看涨期权的期望值公式:V S N K N n=-+g g其中S是股票价格,K是期权执行价格,σ是股票价格遵循的布朗运动的方差,T是期权期限,()N⋅与()n⋅是标准正态分布的分布函数和密度函数。
《期权定价方法综述》篇一一、引言期权定价是金融领域中一个重要的研究课题,它涉及到金融工程、投资策略和风险管理等多个方面。
随着金融市场的不断发展和复杂化,期权定价方法也在不断地演进和改进。
本文将对现有的期权定价方法进行综述,分析各种方法的优缺点及适用范围。
二、经典期权定价模型1. 黑-舒尔斯(Black-Scholes)模型黑-舒尔斯模型是最为广泛应用的期权定价模型之一。
该模型基于无套利原则,假设标的资产价格服从几何布朗运动,并考虑了标的资产价格、执行价格、无风险利率、到期时间以及波动率等因素。
黑-舒尔斯模型为欧式期权提供了明确的定价公式,但在实际运用中仍需根据具体情况对模型参数进行校准和调整。
优点:模型简单明了,为期权定价提供了明确的公式;考虑了多种影响期权价格的因素。
缺点:假设条件较为严格,如标的资产价格服从几何布朗运动等;对模型参数的校准和调整较为复杂。
2. 二叉树模型二叉树模型是一种离散时间的期权定价方法。
该方法通过构建一个二叉树状的价格路径图来模拟标的资产价格的可能变化,并根据这些路径计算期权的预期收益。
优点:模型较为灵活,可以灵活地调整参数以适应不同的市场环境;容易理解和实现。
缺点:对于复杂的期权和长期期权,二叉树模型的计算量较大;对短期期权的定价可能不够准确。
三、现代期权定价方法1. 局部波动率模型局部波动率模型考虑了标的资产的局部波动性,即在不同时间点上标的资产价格的波动率可能不同。
该模型通过引入局部波动率参数来描述这种波动性的变化。
优点:能够更好地反映标的资产的波动性变化;对隐含波动率的估计更为准确。
缺点:模型参数的估计较为复杂;对于非标准期权的定价仍需进一步研究。
2. 随机森林等机器学习方法在期权定价中的应用随着机器学习技术的发展,随机森林等算法也被应用于期权定价领域。
这些方法通过训练大量的历史数据来预测未来标的资产价格的变化,从而为期权定价提供依据。
优点:能够充分利用历史数据提供的信息;对非线性关系的描述更为准确。
期权定价理论文献综述[摘要]本文在首先介绍了期权基本概念的基础上着重介绍了期权定价理论的产生和发展的历史进程;然后对期权定价方法及其实证研究进行了较详细的分类综述,突出综述了在整个期权定价理论中有着重要贡献的Black—Scholes定价模型以及在此基础上出现的树图模型、蒙特卡罗模拟方法、有限差分方法等在期权定价理论体系中比较重要的思想.最后分析比较了各种定价方法之间的差别以及适用范围和各自的缺陷等,并对期权定价理论的未来研究做出展望。
[关键字]综述;期权定价;Black-Scholes模型;二叉树模型;蒙特卡罗法1期权的分类及意义1。
1期权的定义期权(option)是一份合约,持有合约的一方(seller)有权(但没有义务)向另一方在合约中事先指定的时刻(或此时刻前)以合约中指定的价格购买或者出售某种指定数量的特殊物品。
为了获得这种权利,期权的购买者(holder or buyer)必须支付一定数量的权利金(也称保证金或保险金),因此权利金就成为期权这个金融衍生品的价格。
1.2 期权的分类期权交易的类型很多,大致有如下几种:(1)按交易方式可分为看涨期权、看跌期权和双重期权;(2)按期权的执行时间不同可分为美式期权和欧式期权;(3)按期权交割的内容标准可分为股票期权、货币期权、利率期权与指数期权;此外近年来还发展了许多特殊的期权交易形式,如回溯期权、循环期权、价差期权、最大/最小期权、平均价期权、“权中权”期权等。
1。
3 期权的功能作为套期保值的工具。
当投资者持有某种金融资产,为了防范资产价格波动可能带来的风险,可以预先买卖该资产的期权来对冲风险。
当投资者预期基础资产的市场价格将下跌时,为防止持有这种资产可能发生的损失,可以买入看跌期权予以对冲,其所付成本仅为购买期权的权利金.通过购买看涨期权和看跌期权,一方面可以达到基础资产保值的目的;另一方面也可以获得基础资产价格升降而带来的盈利机会。
作为投机的工具。
期权定价理论期权是一种独特的衍生金融产品,它使买方能够避免坏的结果,同时,又能从好的结果中获益。
金融期权创立于20世纪70年代,并在80年代得到了广泛的应用。
今天,期权已经成为所有金融工具中功能最多和最激动人心的工具。
因此,了解期权的定价对于了解几乎所有证券的定价,具有极其重要的意义。
而期权定价理论被认为是经济学中唯一一个先于实践的理论。
当布莱克(Black )和斯科尔斯(Scholes )于1971年完成其论文,并于1973年发表时,世界上第一个期权交易所——芝加哥期权交易所(CBOE )才刚刚成立一个月(1973年4月26日成立),定价模型马上被期权投资者所采用。
后来默顿对此进行了改进。
布莱克—斯科尔斯期权定价理论为金融衍生产品市场的快速发展奠定了基础。
期权定价理论并不是起源于布莱克—斯科尔斯定价模型(以下记为B —S 定价模型)。
在此之前,许多学者都研究过这一问题。
最早的是法国数学家路易·巴舍利耶(Lowis Bachelier )于1900年提出的模型。
随后,卡苏夫(Kassouf ,1969年)、斯普里克尔(Sprekle ,1961年)、博内斯(Boness ,1964年)、萨缪尔森(Samuelson ,1965年)等分别提出了不同的期权定价模型。
但他们都没能完全解出具体的方程。
本讲主要讨论以股票为基础资产的欧式期权的B —S 定价理论。
一、预备知识(一)连续复利我们一般比较熟悉的是以年为单位计算的利率,但在期权以及其它复杂的衍生证券定价中,连续复利得到广泛的应用。
因而,熟悉连续复利的计算是十分必要的。
假设数额为A 的资金,以年利率r 投资了n 年,如果利率按一年计一次算,则该笔投资的终值为n r A )1(+。
如果每年计m 次利息,则终值为:mnmr A )1(+。
当m 趋于无穷大时,以这种结果计息的方式就称为连续复利。
在连续复利的情况下,金额A 以利率r 投资n 年后,将达到:rnAe 。