联合分布与边缘分布的关系
- 格式:ppt
- 大小:607.50 KB
- 文档页数:32
《概率论与数理统计》复习题及答案《概率论与数理统计》复习题一、填空题1.未知p(ab)?p(a),则a与b的关系就是单一制。
2.未知a,b互相矛盾,则a与b的关系就是互相矛盾。
3.a,b为随机事件,则p(ab)?0.3。
p(a)?0.4,p(b)?0.3,p(a?b)?0.6,4.已知p(a)?0.4,p(b)?0.4,p(a?b)?0.5,则p(a?b)?0.7。
25.a,b为随机事件,p(a)?0.3,p(b)?0.4,p(ab)?0.5,则p(ba)?____。
36.已知p(ba)?0.3,p(a?b)?0.2,则p(a)?2/7。
7.将一枚硬币重复投掷3次,则正、反面都至少发生一次的概率为0.75。
8.设立某教研室共计教师11人,其中男教师7人,贝内旺拉拜教研室中要自由选择3名叫优秀教师,则3名优秀教师中至少存有1名女教师的概率为___26____。
339.设一批产品中有10件正品和2件次品,任意抽取2次,每次抽1件,抽出1___。
611110.3人单一制截获一密码,他们能够单独所译的概率为,,,则此密码被所译的5343概率为______。
5后不送回,则第2次取出的就是次品的概率为___11.每次试验成功的概率为p,进行重复独立试验,则第8次试验才取得第3235cp(1?p)7次顺利的概率为______。
12.已知3次独立重复试验中事件a至少成功一次的概率为1事件a顺利的概率p?______。
319,则一次试验中27c35813.随机变量x能取?1,0,1,取这些值的概率为,c,c,则常数c?__。
24815k14.随机变量x原产律为p(x?k)?,k?1,2,3,4,5,则p(x?3x?5)?_0.4_。
15x??2,?0?x?15.f(x)??0.4?2?x?0,是x的分布函数,则x分布律为__??pi?1x?0?0??__。
0.40.6??2?0,x?0??16.随机变量x的分布函数为f(x)??sinx,0?x??,则2?1,x2?p(x??3)?__3__。
二维随机变量的边缘分布与联合分布关系探讨摘要本文首先理解二维随机变量的联合分布的概念、性质及其两种基本表达形式:离散型二维随机变量联合概率分布和连续型二维随机变量联合概率密度。
掌握已知两个随机变量的联合分布时分别求它们的边缘分布的方法。
在文献研究的基础上,运用随机事元和随机事元集合,建立了二维随机变量分布和边缘分布的形式化可拓模型。
利用可拓变换和传导变换,结合形式化的可拓推理知识,对二维随机变量在可拓变换下的传导分布模型进行了研究。
将随机事元、随机事元集合、可拓变换、可拓推理知识等引入到二维随机变量分布的研究中,使分析更加形式化,逻辑性更强。
运用随机事元和随机事元集合建立了二维随机变量分布的可拓模型。
本文对这种特例作了深入研究,分析了具有这种性质的二维密度f(x,y)的结构特点与本质,有助于我们更好地了解正态分布的特殊性质。
关键词:二维随机变量;边缘分布;联合分布AbstractIn this paper,we first understand the concept and properties of the joint distribution of two-dimensional random variables and their two basic expressions: joint probability distribution of discrete two-dimensional random variables and joint probability density of continuous two-dimensional random variables. The method of finding the edge distribution of the joint distribution of two known random variables is mastered. On the basis of literature research, a formal extension model of two-dimensional random variable distribution and edge distribution is established by using random event element and random element set. By using extension transformation and conduction transformation combined with formalized knowledge of extension reasoning,the conduction and distribution models of two-dimensional random variables under extension transformation are studied. The random event element,random event set,extension transformation and extension reasoning knowledge are introduced into the study of two-dimensional random variable distribution,making the analysis more formalized and logical. The extension model of the distribution of two dimensional random variables is established by using the random event element and the set of random element. This special case is studied in depth. The structure and nature of the two-dimensional density f (x,y) with this property is analyzed,which helps us to better understand the special properties of normal distribution.Key words:two-dimensional random variables; edge distribution; joint distribution目录摘要 (I)Abstract (II)1 随机变量独立性及其判定 (1)1.1 随机变量独立性定义 (1)1.1.1随机变量及随机变量独立性的定义 (1)1.1.2随机变量独立性的两个简单定理 (2)1.2 离散型随机变量独立性的判定 (4)1.2.1离散型随机变量判别法一 (4)1.2.2离散型随机变量判别法二 (8)1.3 连续型随机变量独立性的判定 (12)1.3.1连续型随机变量判别法一 (12)1.3.2连续型随机变量判别法二 (13)2 边缘分布与联合分布关系探讨 (16)2.1 二维随机变量的分布函数 (16)2.2 二维离散型随机变量 (17)2.3 二维连续型随机变量 (18)2.4 随机变量的独立性 (18)2.5条件分布 (19)2.6 二维随机变量函数的分布 (20)结论 (21)致谢 (21)参考文献 (22)0 引言概率论是研究随机现象数量规律的数学分支,而随机现象是相对于决定性现象而言的。
上海第二工业大学《概率论与数理统计》复习题一、填空题1. 已知()()P A B P A =,则A B 与的关系是 独立 。
2.已知,A B 互相对立,则A B 与的关系是 互相对立 。
3.B A ,为随机事件,4.0)(=A P ,3.0)(=B P ,()0.6P A B =,则()P AB = 0.3 。
4. 已知()0.4P A =,()0.4P B =,5.0)(=B A P ,则()P A B ⋃= 0.7 。
5.B A ,为随机事件,3.0)(=A P ,4.0)(=B P ,()0.5P A B =,则()P B A =__23__。
6.将一枚硬币重复抛掷3次,则正、反面都至少出现一次的概率为 0.75 。
7. 设某教研室共有教师11人,其中男教师7人,现该教研室中要任选3名为优秀教师,则3名优秀教师中至少有1名女教师的概率为___2633____。
8. 设一批产品中有10件正品和2件次品,任意抽取2次,每次抽1件,抽出后不放回,则第2次抽出的是次品的概率为___61___。
9. 3人独立破译一密码,他们能单独译出的概率为41,31,51,则此密码被译出的概率为___35___。
10.随机变量X 能取1,0,1-,取这些值的概率为35,,248c c c ,则常数c =_815_。
11.随机变量X 分布律为5,4,3,2,1,15)(===k kk X P ,则(35)P X X ><=_0.4_。
12.02,()0.420,10x F x x x <-⎧⎪=-≤<⎨⎪≥⎩是X 的分布函数,则X 分布律为__200.40.6i X p -⎛⎫⎪⎝⎭__。
13.随机变量X 的分布函数为⎪⎪⎩⎪⎪⎨⎧>≤≤<=2,120,sin 0,0)(ππx x x x x F ,则()3P X π<=__。
14. 随机变量)1,04.1(~N X ,975.0)3(=≤X P ,=-≤)92.0(X P __0.025 。
联合分布和边缘分布的关系
联合分布和边缘分布是概率统计学中两个重要的概念,它们之间有密
切的关系。
联合分布指的是两个或多个随机变量同时取某些值的概率分布。
例如,假设有两个随机变量X和Y,联合分布P(x,y)指的是当X取值为x,Y取
值为y时的概率。
边缘分布是指在联合分布中取某个随机变量的分布。
例如,给定联合
分布P(x,y),对于变量X,我们可以将Y积分掉得到X的边缘分布
P(x)=∫P(x,y)dy。
联合分布和边缘分布的关系可以用以下公式表示:
P(x,y)=P(x)P(y|x)。
其中,P(x)表示X的边缘分布,P(y|x)表示在给定X的条件下,Y的
条件概率分布。
从上述公式可以看出,联合分布可以通过边缘分布和条件分布得到,
边缘分布可以通过联合分布积分得到。
这说明了联合分布和边缘分布之间
的密切关系。