x射线能谱仪(eds)测试相关说明
- 格式:doc
- 大小:18.50 KB
- 文档页数:1
eds测试原理EDS测试原理EDS(Energy-dispersive X-ray Spectroscopy)是一种常用的材料分析技术,通过测量材料中的X射线能谱来确定其中元素的成分和相对含量。
EDS测试原理基于X射线的特性和元素的能级结构,结合能谱分析技术,能够提供关于材料元素组成的详细信息。
EDS测试的原理可以分为四个主要步骤:激发、发射、分散和检测。
首先是激发步骤。
EDS测试通常使用扫描电子显微镜(SEM)作为激发源,通过瞬间加热或电离样品表面,激发样品中的元素。
当样品受到激发时,元素中的电子会跃迁到高能级,形成空位。
这些空位会被周围的电子填充,并释放出能量。
这些能量以X射线的形式散射出去。
接下来是发射步骤。
当样品中的元素被激发后,它们会发射出特定能量的X射线。
这些X射线的能量与元素的原子结构和能级有关,因此可以被用来识别元素。
然后是分散步骤。
发射的X射线经过样品后,会和样品中的原子相互作用,发生能量损失和散射。
这导致发射的X射线的能量发生变化,称为能谱。
能谱中的每个能量峰对应着一个特定的元素。
最后是检测步骤。
EDS测试使用能谱分析仪器来测量发射的X射线能谱。
这些仪器将能谱转换为电信号,并通过数学算法进行处理,以确定材料中的元素种类和相对含量。
EDS测试原理的关键在于能谱分析。
能谱分析仪器能够将发射的X 射线能谱转换为元素峰的强度和位置信息。
通过比对已知元素的能谱数据库,可以确定样品中存在的元素。
同时,通过能谱峰的强度,还可以估计元素的相对含量。
EDS测试在材料科学、地质学、生物学等领域得到广泛应用。
它可以用来确定材料的组成、分析样品的微区化学成分、研究材料的晶体结构等。
EDS测试的优点是非破坏性、快速和准确。
然而,由于样品表面的几何形状和表面粗糙度等因素,可能会影响测试结果的准确性,因此在进行EDS测试时需要注意样品的准备和处理。
总结一下,EDS测试原理基于X射线的能谱分析,通过测量材料中发射的X射线能谱,可以确定样品中元素的成分和相对含量。
EDS操作指南EDS是利用特征X射线能量不同来展谱的能量色散谱仪,简称能谱仪(Energy Dispersive Spectrometer,简称EDS)。
EDS本身不能独立工作,而是作为附件安装在SEM上。
它由探测器、前置放大器、脉冲信号处理单元、模数转换器、多道分析器、小型计算机及显示记录系统组成,实际上是一套复杂的电子仪器。
EDS具体操作过程1.确认能谱能否工作Si(Li)探测器必须在低温环境下才能正常工作,所以在做EDS之前,需要检查能谱的杜瓦瓶中是否还有液氮 。
如果杜瓦瓶中没有液氮,则须补充。
在刚加入液氮的1-2小时内,由于探测器还未完全冷却,EDS不能工作。
这时打开EDS的控制电脑,会发现机箱上的HV Bias 灯为红色。
等待至探测器完全冷却,灯变绿色,此时EDS可以正常工作。
2.样品制备及装入EDS的制样及装入与SEM相同,但对于样品的制备有较高的要求。
(1)样品要尽量平。
(2)样品须导电。
(3)非导电样品,需要喷镀金膜的,要确保金或铂在谱图上的峰位,不会影响样品本身所含元素的峰位。
3.在SEM中观察图象3.1在SEM中设定条件在做EDS时,扫描条件的设定主要包括加速电压、发射电流、探针电流和工作距离的设定。
(1)加速电压通常设定在15kV-20kV之间。
(2)发射电流通常设定在7uA-20uA之间。
(3)探针电流设置为“High”模式。
(4)工作距离设定为15mm.3.2在SEM中根据“SEM操作指南”把图象调清晰。
4.谱图观察4.1简明操作过程4.2操作界面介绍134 57892 6上图是能谱仪的控制软件图,图中1-9是常用的控制区域,功能分别如下:1.屏幕观察方式(1、4、16幅图像、图像和谱线、8幅图像和1条谱线等方式)2.启动或释放外部扫描控制3.扫描模式(光斑模式、缩小光栅及全屏模式)4.时间常数(Amp time),调整时间常数使死时间在 20% - 40% 之间。
5.加速电压和放大倍数,根据SEM 控制软件中所选的加速电压和放大倍数设定6.图象收集键7.自动峰识别 并清除现有的峰标识8.谱线收集键;清除谱线键;谱线观察键:展开、收缩、升高降低; 谱线复位键;定量分析键,得到无标样定量分析结果。
eds能谱的原理
EDS能谱是一种常用的材料分析技术,其原理基于X射线能谱学。
当电子束撞击样品时,会激发出样品中的电子,这些电子会在样品中跃迁到高能级和低能级之间,从而产生特征X射线。
这些特征X射线的能量与样品中原子的种类和数量有关,因此可以通过测量X射线的能量分布来分析样品的成分。
EDS能谱的具体原理如下:
1. 电子束撞击样品:电子束通过电子显微镜或扫描电子显微镜聚焦后,照射到样品表面,激发出样品中的电子。
2. 产生特征X射线:激发出的电子在样品中跃迁到高能级和低能级之间,从而产生特征X射线。
3. X射线检测:X射线经过样品后会被探测器检测到,探测器会将X射线转换成电信号。
4. 能量分析:电信号经过放大和处理后,被送到电子能谱仪中进行能量分析。
能量分析是通过将电子束在电子能谱仪中加速,使其撞击到闪烁体上,产生闪烁光,闪烁光的强度与X射线的能量成正比。
5. 成分分析:通过对X射线能量分布的分析,可以确定样品中的元素种类和含量。
总之,EDS能谱是一种基于X射线能谱学原理的材料分析技术,通过测量样品中的X射线能量分布,可以确定样品
中的元素种类和含量。
X射线荧光光谱仪(EDX-LE能量色散)操作规程X射线荧光光谱仪(EDX-LE)操作规程1.接通电源,启动筛选分析条件:双击桌面上的PCEDX Navi 软件,启动软件。
2.初始化仪器,单击初始化。
3.打开X射线管电源,单击[Xray ON]。
3.1.显示面板的X-RAYS ON灯和X射线显示灯点亮。
3.2.仪器稳定大约需要花费15分钟。
3.3.显示[管理分析]页面后,完成启动。
4.仪器校正4.1.按开盖按钮,将校正样品放置测试窗。
关上样品室盖。
4.2.进行能量检查:放入A750标准样品,单击能量检查下的[测试]按钮,进行能量检查,读取能量数值(单位:cps/uA)4.3.进行管理分析:放入7元素标准样品,单击管理分析下的[测试]按钮,进行管理分析,读取7元素标样数值(单位:ppm)。
4.4.取出校正样品:取出校正样品后,单击[正常分析],完成分析准备。
5.测试5.1.放置样品,关上样品室盖:按开盖按钮,将样品放置在测试窗上。
确认画面上显示样品图像。
5.2.输入样品信息:选择分析条件后输入样品名称、注释、操作者等信息。
5.3.开始分析:单击[开始],开始分析。
分析结束后,发出结束音,显示分析结果。
5.4.进行预测试:预测试的目的是仪器自动选定分析条件。
大约需15s。
5.5.测试并显示测试结果:测试并出结果,依照材料不同,大约需3~15分钟。
6.关机6.1.退出仪器,关闭X射线管:从[维护]菜单选择[关闭X-ray];单击[OK]。
6.2.退出程序:筛选分析结束。
选[关机],退出程序。
6.3.切断各电源:按照图中的号码顺序切断电源。
关闭X射线后,需要冷却X射线管。
等待5~10分后,关闭仪器的电源。
eds能谱+深度EDS(Energy Dispersive Spectroscopy)能谱是材料科学和物理学领域常用的一种分析技术,主要用于元素鉴定和化学分析。
这种技术主要依赖于电子束与样品相互作用,从而产生特征X射线,通过分析这些X射线的能量,可以确定样品中存在的元素种类。
一、EDS能谱的基本原理EDS能谱仪通常被安装在SEM(扫描电子显微镜)或TEM(透射电子显微镜)中,它利用的是电子束与样品相互作用产生的特征X射线。
当高能电子束打到样品上时,会与样品中的原子发生相互作用,产生一系列的物理效应,其中一个重要的效应就是X射线发射。
每种元素都有其特定的能级结构,因此当电子束激发原子时,会发射出具有特定能量的X 射线。
对这些X射线的能量进行分析,就可以确定样品中元素的种类和含量。
二、EDS能谱的应用1. 元素鉴定:EDS能谱可以用来鉴定样品中存在的元素种类。
由于每种元素都有其特定的能级结构,因此当电子束激发原子时,会发射出具有特定能量的X射线。
对这些X射线的能量进行分析,就可以确定样品中元素的种类。
2. 化学分析:通过EDS能谱可以确定样品中元素的相对含量。
这主要是通过测量每种元素的特征X射线的强度来实现的。
通过比较不同元素的强度,可以得出它们在样品中的相对含量。
3. 相分析:EDS能谱也可以用来进行相分析。
由于不同相的晶体结构不同,因此它们在受到电子束激发时产生的特征X射线的能量也会有所不同。
通过分析这些X射线的能量,可以确定样品中存在的相的种类和比例。
4. 表面分析:EDS能谱还可以用来进行表面分析。
例如,通过分析样品表面的元素分布和含量,可以了解表面的化学性质和反应活性等。
5. 材料科学:在材料科学领域,EDS能谱被广泛应用于研究材料的微观结构和化学组成。
例如,通过对合金或复合材料的成分进行分析,可以了解材料的力学性能和热稳定性等。
6. 生物学:在生物学领域,EDS能谱可以用来对生物样品进行分析,例如鉴定细胞中的元素组成和含量,了解生物组织的化学性质和功能等。
EDS原理及应用EDS(能谱分析仪)是一种用于材料成分分析的仪器,其原理是通过测量材料中的元素的能谱图来确定其成分。
EDS广泛应用于材料科学、地球化学、生物学、环境科学等领域。
EDS的原理基于X射线荧光光谱分析的概念。
当高能电子或光子进入原子时,会激发原子的内层电子,使其跃迁到较高的能级。
当电子回到原来的能级时,会放出一定能量的X射线。
每个元素的电子跃迁都有一定的能量差,因此每个元素都会发射出特定能量的X射线。
EDS通过测量X射线的能量和强度,可以确定材料中存在的元素及其相对含量。
EDS由三部分组成:激发源、能谱分析器和信号处理器。
激发源通常是一束高能的电子或光子,进入材料后激发元素的内层电子。
能谱分析器是一个能够测量X射线能量的装置,通常使用硅或锂草酸钠晶体。
信号处理器则将能谱转化为数字信号,并进行分析和识别。
EDS具有许多应用。
首先,EDS在材料科学中被广泛用于分析样品的成分。
可用于确定金属合金中的成分,检测矿石中的金属元素,鉴定陶瓷或玻璃中的杂质等。
其次,EDS在地球化学领域中用于分析岩石、矿物和土壤的成分。
它可以确定岩石中的元素含量,识别不同矿物的化学组成,并揭示地球化学过程。
此外,EDS还在生物学中用于研究细胞和组织的元素分布和组成。
它可以帮助确定细胞中的微量元素,如钙、铁、锌等。
另外,EDS还在环境科学中应用广泛,用于分析土壤、水和大气中的污染物。
它可以检测重金属、有机物和其他有害物质的存在。
EDS具有许多优点,使其在分析领域中得到广泛应用。
首先,它是非破坏性的分析技术,样品不需要进行任何前处理,不会损坏样品。
其次,EDS适用于不同种类的样品,包括固体、液体和气体。
再次,EDS具有非常高的灵敏度,可以检测到小到几落区域的微量元素。
此外,EDS可以提供元素的定量信息,可以确定每个元素的相对含量。
最后,EDS具有高分辨率,可以分辨出非常接近的能级差异。
总之,EDS是一种常用于材料成分分析的仪器,通过测量材料中元素的能谱图来确定其成分。
扫描电子显微镜/X射线能谱仪(SEM/EDS)美信检测扫描电子显微镜/X射线能谱仪(SEM/EDS)是依据电子与物质的相互作用。
当一束高能的入射电子轰击物质表面时,被激发的区域将产生二次电子、俄歇电子、特征x射线和连续谱X射线、背散射电子、透射电子,以及在可见、紫外、红外光区域产生的电磁辐射。
原则上讲,利用电子和物质的相互作用,可以获取被测样品本身的各种物理、化学性质的信息,如形貌、组成、晶体结构、电子结构和内部电场或磁场等等。
SEM/EDS 正是根据上述不同信息产生的机理,对二次电子、背散射电子的采集,可得到有关物质微观形貌的信息,对x射线的采集,可得到物质化学成分的信息。
电子束激发样品表面示意图应用范围:1.材料组织形貌观察,如断口显微形貌观察,镀层表面形貌观察,微米级镀层厚度测量,粉体颗粒表面观察,材料晶粒、晶界观察等。
2.微区化学成分分析,利用电子束与物质作用时产生的特征X射线,来提供样品化学组成方面的信息,可定性、半定量检测大部分元素(Be4-PU94),可进行表面污染物的分析,焊点、镀层界面组织成分分析。
根据测试目的的不同可分为点测、线扫描、面扫描;3.显微组织及超微尺寸材料分析,如钢铁材料中诸如马氏体、回火索氏体、下贝氏体等显微组织的观察分析,纳米材料的分析4.在失效分析中主要用于定位失效点,初步判断材料成分和异物分析。
主要特点:1.样品制备简单,测试周期短;2.景深大,有很强的立体感,适于观察像断口那样的粗糙表面;3.可进行材料表面组织的定性、半定量分析;4.既保证高电压下的高分辨率,也可提供低电压下高质量的图像;技术参数:分辨率:高压模式:3nm,低压模式:4nm放大倍数:5~100万倍检测元素:Be4-PU94最大样品直径:200mm图象模式:二次电子、背散射应用图片:日立3400N+IXRF。