1.4素数、合数与分解素因数(2)shao
- 格式:ppt
- 大小:335.00 KB
- 文档页数:13
1.4素数、合数与分解素因素(2)【教学目标】知识与技能:1、理解素因数、分解素因数的意义。
2、掌握分解素因数的几种方法,熟练掌握用短除法分解素因数。
过程与方法:1、经历概念形成的过程,培养学生思考能力和分析能力。
2、通过例题的讲解,使学生了解分解素因数的方法。
3、以争做小老师的形式,调动学生学习积极性。
情感态度与价值观:培养学生思辨能力,提升学习兴趣。
【教学重点与难点】教学重点:掌握分解素因素的几种方法。
教学难点:熟练运用短除法分解素因数。
【教学用具】电脑、实物投影仪、课本、课堂练习本、课堂笔记本、计算器。
【教学设计】素因数的概念分解因数的概念短除法步骤分解因数的几种方法习题巩固总结归纳【教学过程】一、复习引入师:上节课我们学习了素数和合数,那么6是素数还是合数?生:合数。
师:它可以写成哪几个素数相乘的形式?生:2×3师:6这个数比较简单,如果合数稍微大一点,比如28、60要怎么写呢?来看看老师再黑板上的演示。
二、分解素因数的几种方法1、“树枝分解法”(强调不一定对称)28 607 4 6 102 2 23 2 528可分解为2×2×7的素数相乘形式60可分为2×2×3×5的素数相乘形式师:老师是通过这种方法找到28和60的素因数的,大家看看这一个个的分叉是不是很像树枝呢?所以我们就把这个方法俗称为“树枝分解法”。
从老师的演示中,谁能总结一下什么是素因素,什么叫做分解素因数吗?归纳:1)每个合数都可以写成几个素数相乘的形式,其中每个素数都是这个合数的因数,叫做这个合数的素因数。
2)把一个合数用素因数相乘的形式表示出来,叫做分解素因数。
2、“短除法”师:其实分解素因数还有一种比较常用的方法,叫作“短除法”。
看看老师是怎么使用短除法来分解48这个数的。
教师板演时提醒学生每一步的格式,说清楚每一步的步骤。
师:看了老师分解素因数的步骤,谁能来当小老师,边说出步骤边用短除法分解素因数24和72。
1.4(2)素数、合数与分解素因数复习反馈相乘的形式,其中每个都是这个合数的,叫做这个合数的。
相乘的形式表示出来,叫做分解素因数。
3.分解素因数:38= ;16=35= ;88=课内练习1.最小的素数,最小的合数。
2. 既不是素数也不是合数。
24⨯⨯⨯⨯=中,4和6是24的;2和3是24的;=63224224的素因数有个,它们是;4.将下列数分解素因数:(用两种方法:短除法、用口算)(1)36;(2)63;(3)144.5.把15写成下列形式:(1)素数与素数的乘积;(2)素数与合数的和;(3)合数与合数的和6.面积为72平方厘米,形状不同且长和宽都是整厘米数的长方形有多少种?7.用12个小正方形,排成一个长方形,有几种不同的排法?本周自我改进目标:______________________________________课后作业:一、填空题3. 写出18的素因数有 .4. 一个数分解素因数后,它的素因数各不相同,而且正好是10以内的所有素数,,则这个数是 .5.最小的素数是_____最小的合数_____.6.在1,2,6,9,18,23这7个数中,既是奇数又是合数的是_____,既是偶数又是素数的是_____,既不是素数也不是合数的是_____.二、选择题7.下列分解素因数正确的是……………………………………………()(A)42=2×21 (B)48=1×2×2×2×2×3(C)24=4×6 (D)62=2×318.A=2×2×3×5,B=2×2×3×7,A与B相同的素因数是………()(A)2 (B)2和3(C)2,3,5,7 (D)2,2和3三、简答题“短除法”分解素因数:72、51、84、42、81、4010.把165和330分解素因数,并写出它们相同的素因数。
素数、合数与分解素因数引言在数学中,素数和合数是基本的概念。
素数是只能被1和自身整除的正整数,而合数则是除了1和自身外还能被其他正整数整除的正整数。
分解素因数是将一个正整数表示为若干个素数的乘积的过程。
本文将详细介绍素数、合数以及分解素因数的相关概念、性质及应用。
素数定义素数(Prime Number),也称质数,是指大于1且只能被1和自身整除的正整数。
性质•2是最小的素数。
•素数只有两个因子:1和它本身。
•质因子只有两个:1和它本身。
判断方法判断一个数字是否为素数有多种方法,其中常见且简单的方法是试除法。
试除法即从2开始,依次用2、3、4…逐个去除待判断数字n,如果n能被其中任何一个小于n的数字整除,则n不是素数;如果n不能被任何一个小于n的数字整除,则n 为素数。
应用•加密算法:许多加密算法(如RSA)依赖于大质量随机素数的产生。
•素性检验:在计算机科学中,常用于判断一个数字是否为素数。
合数定义合数(Composite Number)是指除了1和自身外还能被其他正整数整除的正整数。
性质•0和1既不是素数也不是合数。
•合数可以分解为若干个素数的乘积。
判断方法判断一个数字是否为合数有多种方法,其中一种简单且常用的方法是试除法。
试除法即从2开始,依次用2、3、4…逐个去除待判断数字n,如果n能被其中任何一个小于n的数字整除,则n为合数;如果n不能被任何一个小于n的数字整除,则n为素数。
应用•数论研究:在许多数论问题中,需要对合数进行分析和研究。
•加密算法:一些加密算法(如RSA)要求选择两个大质量随机合数作为公钥和私钥。
分解素因数定义分解素因数是将一个正整数表示为若干个素数的乘积的过程。
例如,将12分解为2*2*3。
方法分解素因子有多种方法,其中最常用且简单的方法是试除法。
1.找到一个能整除待分解的数n的最小素数p。
2.将n除以p得到商q和余数r。
3.如果r为0,则p是n的一个素因数,将p记录下来,并继续将q分解为素因数。
第13讲 素数、合数与分解素因数知识点01 素数、合数与分解素因1、素数和合数素数:一个正整数,如果只有1和它本身两个因数,这样的数叫做素数,也叫做质数; 合数:一个正整数,如果除了1和它本身以外还有别的因数,这样的数叫做合数。
注:1既不是素数,也不是合数。
这样,正整数又可以分为1、素数和合数三类。
2、判断一个正整数是不是素数的方法① 查素数表100以内的素数表② 试除法:即从小到大用每一个素数2,3,5,7,……,依次去试除所给的正整数,如果它能比被它小的某个素数整除,它就是合数,如果除得的商比除数小,但仍不能整除,它就是素数3、素因数和分解素因数的概念以及分解素因数的方法素因数: 每个合数都可以写成几个素数相乘的形式,其中每一个素数都是这个合数的素因数。
分解素因数:把一个合数用素因数相乘的形式表示出来,叫做分解素因数。
注:(1)素因数相对于合数而言,不能单独存在,比如:不能说2是素因数,单独说时它只是一个素数(2)分解素因数时一定要分解到全部的因数都是素数为止,一个数分解素因数的形式是唯一的 (3)书写时一般写成“合数=素因数相乘”的形式2 3 5 7 11 13 17 19 23 29 313741434753 59 61 67 71 7379838997分解素因数的方法:① 树枝分解法:利用树形图逐步把合数分解成素因数相乘的形式,以24为例,如右图所示:注: 逐步分解法一般运用在能直接看出是哪两个因数相乘的数上 ② 短除法步骤:(1)用一个能整除这个合数的素数(通常从最小的开始)去除(2)得到的商如果是合数,再按上面的方法继续除下去,直到得到的商是素数为止; (3)然后把各个除数和最后的商写成连乘的形式。
注:(1)判断是不是分解素因数的关键是看每个因数是否为素数,且要符合正确的书写格式(2)分解的结果一般将素因数按从小到大的顺序排列起来写(3)在求一个数有哪些素因数时必须说出它的每一个素因数:例如:36=2×2×3×3的素因数有4个:2,2,3,3,不能说2个:2和3× ×× 2 2 424× 6 2 3。
上海教育版初中数学六年级上册全册学案-第一章1.1 整数和整除的含义在研究数的整除之前,我们需要先了解自然数、整数和整除的定义。
自然数是指大于等于1的正整数,整数包括正整数、负整数和0,整除是指整数a除以整数b,除得的商是整数而余数为零。
2.掌握整除的两种表述方法:整除可以用两种方式表述:被除数能被除数整除或除数能整除被除数。
二.友情提示:1.零既不是正整数,也不是负整数;2.零是最小的自然数;3.没有最大的整数;4.整除约定在正整数范围内考虑;5.整除的条件:除数、被除数都是整数;被除数除以除数,商是整数而且余数为零。
三.例题讲解:例1:下列哪一个算式的除数能整除被除数?4÷8;42÷7;11÷3;0.25÷0.05=5解:因为4÷8=0.5(商不是整数)42÷7=611÷3=3……2(余数不为)0.25÷0.05=5(被除数、除数是小数,不是整数)所以,除数能整除被除数的算式是42÷7.例2:从下列数中选择适当的数填入相应的圈内:1,-2.25%,27,0.3,-100,2,56,3自然数:1,27,56正整数:27,56负整数:-2,-100整数:1,-2,27,-100,56四.本课练:1.在15,-27,3.8.11,-42,67%中,为自然数的是15和11,正整数的是15和11,负整数的是-27和-42,整数的是15,-27,3.8,11,-42,67%。
2.最小的自然数是1,最小的正整数是1,最大的负整数是-1.3.三个比2小的整数是-1,0,1;比2小的自然数有1.4.能整除12的数有1、2、3、4、6、12.5.选择:能整除18的数有(B)4个。
6.在下列各组数中,哪个数能整除另一个数?24和8(24能整除8);72和9(72能整除9);16和96(16不能整除96);17和5(17不能整除5);123和69(123不能整除69);100和25(100能整除25)。
素数合数与分解素因数素数和合数是数论中的重要概念,它们在数学中有着广泛的应用和研究。
本文将从素数和合数的定义开始,介绍它们的性质和特点,并探讨分解素因数的方法。
我们来定义素数和合数。
素数是指大于1的整数,除了1和它本身之外,没有其他因数。
合数是指大于1的整数,除了1和它本身之外,还有其他因数。
素数和合数是互补的概念。
素数具有以下特点:首先,素数只有两个因数,即1和它本身。
其次,素数不能被其他整数整除,也就是说,不能被合数整除。
例如,2、3、5、7等都是素数。
素数的个数是无穷的,我们无法列举出所有的素数。
合数具有以下特点:首先,合数有多个因数,不仅有1和它本身,还有其他因数。
例如,4、6、8、9等都是合数。
其次,合数可以分解成多个素数的乘积。
这就是我们接下来要介绍的分解素因数的方法。
分解素因数是将一个合数分解成多个素数的乘积的过程。
我们可以使用试除法来进行分解。
首先,我们从最小的素数2开始,将合数不断除以素数,直到无法整除为止。
这样,我们得到了合数的素因数。
例如,将12分解成素因数的过程如下:首先,12可以被2整除,得到2和6;然后,6可以被2整除,得到2和3;最后,2和2、3就是12的素因数。
可以看出,12=2×2×3。
分解素因数的方法在数学和密码学中有着重要的应用。
在数学中,我们可以通过分解素因数来求解最大公约数和最小公倍数,解决一些数论问题。
在密码学中,分解素因数是破解RSA加密算法的关键步骤之一。
在实际应用中,分解素因数有时是一项非常困难的任务。
由于素数的个数是无穷的,所以分解素因数需要耗费大量的计算资源和时间。
为了加强密码的安全性,人们通常使用非常大的素数进行加密,以增加被破解的难度。
总结起来,素数和合数是数论中的重要概念,它们在数学和密码学中有着广泛的应用。
素数具有两个因数和不能被其他整数整除的特点,而合数具有多个因数和可以分解成素数乘积的特点。
分解素因数是将合数分解成多个素数乘积的过程,它在数学和密码学中有着重要的应用。
第二讲素数、合数与分解素因数【素数、合数与分解素因数(一)】一.基本知识:1.理解素数、合数的意义:素数——一个正整数||,假如只有 1 和它自己两个因数||,这样的数叫做素数||。
合数——一个正整数||,假如除了 1 和它自己之外还有其他要素||,这样的数叫合数||。
素数2.正整数合数13.会用求因数的方法或用整除的特点来判断一个正整数能否为素数||。
4.熟记 20 之内的所有素数||。
100 之内的素数: 2||,3||,5||,7||,11||,13||,17||,19||,23||,29||, 31||, 37||, 43||, 47||, 53||,59||, 61||, 67||, 71||, 79||, 83||, 89||, 97二.易错点:1.“ 1”既不是素数也不是合数||。
2.学会划分奇数和素数、偶数和合数的意义||。
三.例题解说:例 1:判断 18||, 29||, 51 和 91 是素数仍是合数 ||。
解法一: 18 的因数有: 1||, 2||, 3||, 6||, 9||,18 29 的因数有: 1||, 1945 的因数有: 1||, 3||, 5||, 9||, 15||,4591 的因数有: 1||, 7||, 13||, 91第1页/共7页经过检查每个数的因数的个数||,能够知道: 18||, 45||, 91 是合数 ||, 29 是素数 ||。
解法二: 18 能被 3 整除 ||,所以除了 1 和 18 之外 ||, 18 还有因数3||,所以 18 是合数 ||。
相同 ||, 45 能被 5 整除 ||,91 能被 7 整除 ||,所以 45、91 也是合数 ||。
例 2:小于 30 的既是素数 ||,又是偶数的数是哪几个?解:小于30 的素数有: 2||, 3||, 5||, 7||, 11||, 13||, 17||,19||, 23||, 29而此中又是偶数的数只有2||。
沪教版数学六年级上册1.4《素数、合数与分解素因数》教学设计一. 教材分析《素数、合数与分解素因数》是沪教版数学六年级上册第1.4节的内容。
本节课主要让学生理解素数和合数的定义,学会用分解素因数的方法来求一个数的因数,从而更深入地理解数的构成和性质。
教材内容由浅入深,从生活实例引入素数和合数的概念,再通过分解素因数的方法,让学生自主探究数的奥秘。
二. 学情分析六年级的学生已经具备了一定的数学基础,对整数有一定的认识。
但是,对于素数和合数的概念,以及如何分解素因数,可能还比较陌生。
因此,在教学过程中,需要引导学生从生活实际出发,激发他们的学习兴趣,让学生在探究中发现规律,掌握方法。
三. 教学目标1.理解素数和合数的定义,能正确判断一个数是素数还是合数。
2.学会用分解素因数的方法来求一个数的因数。
3.培养学生的逻辑思维能力和探究能力。
四. 教学重难点1.教学重点:理解素数和合数的定义,掌握分解素因数的方法。
2.教学难点:如何引导学生发现并总结素数和合数的性质,以及分解素因数的方法。
五. 教学方法1.情境教学法:通过生活实例,引导学生从实际问题中发现数学问题,激发学习兴趣。
2.探究教学法:让学生在操作实践中,发现数的性质和规律,培养学生的探究能力。
3.小组合作学习:引导学生相互讨论、交流,共同解决问题,提高学生的合作能力。
六. 教学准备1.教学课件:制作相关的教学课件,以便于引导学生直观地理解素数和合数的概念。
2.学习素材:准备一些数,以便于学生进行分解素因数的实践操作。
3.教学黑板:准备一块黑板,用于板书 key points 和解题过程。
七. 教学过程1.导入(5分钟)通过一个生活实例,如“龟兔赛跑”的故事,引导学生思考:为什么兔子输了?进而引出素数和合数的概念。
2.呈现(10分钟)呈现一些数,让学生判断它们是素数还是合数。
同时,引导学生思考:如何快速判断一个数是素数还是合数?3.操练(10分钟)让学生分组讨论,每组选择一个数,尝试用分解素因数的方法来求它的因数。
1.4素数、合数与分解素因数①一个正整数,如果只有和两个因数,这样的数叫做素数,也叫做_____;如果___________________________,这样的数叫做合数。
②___________既不是素数也不是合数。
③按照能否被2整除,正整数可以分为:_____________________。
④按照因数的个数来分,正整数可以分为:_______________________。
课内练习1.在正整数中,1是()(A)最小的奇数(B)最小的素数(C)最小的素数(D)最小的合数2.在正整数中,4是()(A)最小的奇数(B)最小的素数(C)最小的素数(D)最小的合数3.正整数按照所含因数的个数分类,可以分为。
4.最小的素数是,它是素数中唯一的数。
5.20以内的素数有。
6.18的因数有,其中素数有。
7.1,2,5,10这四个数中是的倍数,是的因数;素数有,合数有;奇数有,偶数有。
8.在1至30的正整数中,素数有个,合数有个。
9.两个素数的和是20,这两个素数为。
10.在正整数中,最小的素数与最小的合数,它们的和是。
11.100以内的素数共有个。
12.举例说明,一个素数减去另一个素数,它们的差是:(1)合数;(2)素数;(3)既不是素数也不是合数。
13.你能写出100以内的素数吗?课后作业:一、填空题1、最小的素数是________,最小的合数是_________;2、既是奇数又是合数的最小的正整数是__________,最小的奇数素数是;3、既是偶数又是素数的数________;最小的偶素数是,最小的偶合数是。
4、下列各数中:1、2、4、6、27、43、57、65、67、70、87、97素数______________________________________;合数______________________________________。
5、在正整数1到20中,奇数有_____个,偶数有_____个,素数有_____个,合数有______个。
1.4(2)素数、合数与分解素因数复习反馈1.每个合数都可以写成几个相乘的形式,其中每个都是这个合数的,叫做这个合数的。
2.把一个合数用相乘的形式表示出来,叫做分解素因数。
3.分解素因数:38= ;16=35= ;88=课内练习1.最小的素数,最小的合数。
2. 既不是素数也不是合数。
3.在等式3⨯==中,4和6是24的;2和3是24的;⨯⨯2226424⨯24的素因数有个,它们是;4.将下列数分解素因数:(用两种方法:短除法、用口算)(1)36;(2)63;(3)144.5.把15写成下列形式:(1)素数与素数的乘积;(2)素数与合数的和;(3)合数与合数的和6.面积为72平方厘米,形状不同且长和宽都是整厘米数的长方形有多少种?7.用12个小正方形,排成一个长方形,有几种不同的排法?本周自我改进目标:______________________________________课后作业:一、填空题3. 写出18的素因数有 .4. 一个数分解素因数后,它的素因数各不相同,而且正好是10以内的所有素数,,则这个数是 .5.最小的素数是_____最小的合数_____.6.在1,2,6,9,18,23这7个数中,既是奇数又是合数的是_____,既是偶数又是素数的是_____,既不是素数也不是合数的是_____.二、选择题7.下列分解素因数正确的是……………………………………………()(A)42=2×21 (B)48=1×2×2×2×2×3(C)24=4×6 (D)62=2×318.A=2×2×3×5,B=2×2×3×7,A与B相同的素因数是………()(A)2 (B)2和3(C)2,3,5,7 (D)2,2和3三、简答题9.用“短除法”分解素因数:72、51、84、42、81、4010.把165和330分解素因数,并写出它们相同的素因数。