PT谐振的分析与抑制措施
- 格式:doc
- 大小:31.00 KB
- 文档页数:7
消除PT谐振的措施及PT消谐分析摘要:电磁式电压互感器的铁磁谐振是非有效接地系统中常见的一种现象,电磁式电压互感器引起铁磁谐振后,其介质击穿或爆炸都会导致母线故障。
本文针对铁磁谐振对中性点非有效接地系统带来的影响,对电磁式电压互感器铁磁原理及现有的消谐措施进行分析,在各种情况下选择合适的消谐方式。
关键词:不接地系统;电压互感器;铁磁谐振;消谐措施1 引言在电力系统非有效接地系统中,由于技术和成本原因,广泛采用电磁式电压互感器(下面简称TV),电磁式电压互感器在单相接地、操作等外部因素激发的条件下,易发生铁磁谐振,使得TV受到谐振过电压和过电流的冲击。
谐振过电压一旦发生,往往会造成电气设备的损坏或继电保护装置的误动,导致发生停电事故。
为了尽可能地避免谐振过电压的发生,在设计时应进行必要的参数计算,采取适当的防止谐振的措施,在操作设备时应有合理的调度安排,尽量避免形成谐振回路。
本文从变电站实际发生的一系列谐振过电压现象,对电磁式电压互感器引起的铁磁谐振及消除方法进行讨论。
2 铁磁谐振的危害及主要消谐措施由铁磁谐振产生的原理可看出,当谐振产生时,中性点电压升高,产生零序谐振过电压,过高的电压可能导致设备结缘损坏、设备击穿甚至爆炸及保护装置误动等。
随着供电网络的发展,特别是城区、开发区和大型工厂内部等电缆线路的日益增多,系统单相接地电容电流不断增加。
当发生单相金属性接地故障时,流过故障点的短路电流为所有线路对地电容电流之和,造成故障点的电弧不易熄灭,导致过电压,很可能破坏设备结缘,发展成相间短路,造成停电或损坏设备的事故。
同时,系统震荡时,会产生高次谐波和分次谐波,由于铁芯的磁特性的非线性,电感值会随这外部电压的变化而改变,由于频率低,铁芯磁通密度很高,TV 线圈会产生很大的励磁电流而烧坏TV。
消除铁磁谐振的措施归纳起来主要有三方面:改变系统参数,使其不具备谐振条件,不易引起参数谐振;消耗谐振过程中产生的能量,消除谐振的发生;合理分配有功负荷,一般在轻载或空载条件下易发生谐振[1]。
129科技资讯 S CI EN CE & T EC HNO LO GY I NF OR MA TI ON 工 业 技 术湖南湘潭钢铁公司动力厂35kV系统在近几年运行中,发生了三起PT爆炸事故,对系统的安全运行构成极大威胁。
对此,我们进行了现场调研,结合35kV系统故障录波图,初步分析认定这三起事故均为系统单相接地导致PT 饱并引起谐振。
动力厂发生事故的35kV系统,都是中性点不接地系统,装有一次接线为Y0的电磁式电压互感器(PT)由于PT一次线圈的X 端接地,且铁芯易饱和,易于产生两种不利状况:一是电网间歇性接地或接地消失时,电网对地电压产生低频自由分量,使X端接地的Y 0接线电压互感器深度饱和,一次线圈通过涌流,使PT 熔丝熔断甚至烧坏PT 。
二是在一定外界激发条件下,产生铁磁谐振,谐振使得电网三相对地电压波动,影响电网正常运行,严重时,使得绝缘设备损坏,造成电网事故。
经过对各地区电网运行进行情况进行分析,发现P T 铁磁谐振是电力系统中发生较为频繁且造成较多事故的一种内过电压。
谐振过程可持续很长时间,幅值有高有低,且频率各有不同如分频、基频、高频等,有些过电压并不高,但是由于频率低,且谐振电流很大,对电网的安全运行有很大的危害。
1 PT谐振产生的原因分析铁磁谐振产生的条件有:ωL>1/ωC;激发因素。
其中主要包括电网电压冲击、励磁涌流、合闸相角、系统间歇性接地、电网频率波动等。
系统产生铁磁谐振的原理如图1所示。
(1)首先对于中性点不接地系统,在某种情况下出现单相接地,故障点对地流过电容电流,不接地的两相相电压升高至线电压。
在间歇性接地时,一旦接地故障点消失,非接地相在接地故障期间已充的线电压电荷只能通过PT高压线圈并经其接地点流入大地,在这电压突变瞬间,PT高压线圈的非接地两相的励磁电流突然增大,使P T 达到饱和,由于间歇性接地,非接地两相的励磁电流不断激增,极易激发相间串联谐振。
PT谐振及处理1、PT谐振PT谐振对于yo/yo电磁式PT,在正常情况下线路发生单相接地不会出现铁磁谐振过电压,但在下列条件下,就可能引发铁磁谐振。
(1)对于中性点不接地系统,当系统发生单相接地时,故障点流过电容电流,未接地的两相相电压升高3倍。
但是,一旦接地故障点消除,非接地相在接地故障期间已充的线电压电荷只能通过PT高压线圈经其自身的接地点流入大地,在这一瞬间电压突变过程中,PT高压线圈的非接地两相的励磁电流就要突然增大,甚至饱和,由此构成相间串联谐振。
(2)系统发生铁磁谐振。
近年来,由于配电线路用户PT、电子控制电焊机、调速电机等数量的增加,使得10kV配电系统的电气参数发生了很大的变化,导致谐振的频繁出现。
在系统谐振时,PT将产生过电压使电流激增,此时除了造成一次侧熔断器熔断外,还将导致PT烧毁。
个别情况下,还会引起避雷器、变压器、断路器的套管发生闪络或爆炸。
(3)线路检修,事先不向调度部门申请办理停电手续,随意带负荷拉开分支线路隔离刀闸或带负荷拉开配电变压器的高压跌落开关,造成刀闸间弧光短路而引发谐振。
(4)当配电变压器内部发生单相接地故障时,故障电流将通过抗电能力强的绝缘油对地放电,也会产生不稳定的电弧激发电网谐振。
(5)运行人员送电操作程序不对,未拉开PT高压侧刀闸就直接带PT向空母线送电,引起PT铁磁谐振。
2.谐振的处理(1)当出现空母线谐振时,不宜拉开PT的隔离刀闸,应考虑增大母线电容和并联电感,即合上一条空载线路或者空载的变压器来破坏谐振条件,可使三相电压恢复平衡。
(2)在PT高压线圈中性点的接地线中串接一只约5kΩ阻尼电阻(在一次侧中性点串接阻尼电阻会影响二次侧反映单相接地故障的灵敏度,且在相电压有同期装置的回路中一般不宜采用)。
相当于在零序阻抗上并联一个电阻,可以有效地抑制单相接地故障引起的谐振。
(3)PT发生谐振时的电压是相电压的3倍,则在开口三角处将会产生100~200V电压,因此在PT开口三角处可并联一只220V/200W消谐灯泡(或选用220V/800W/60Ω标准电阻。
1.前言35kV和10kV系统,是采用中性点不接地系统的运行方式。
这种运行方式的最大优点是系统发生单相接地故障时,系统还可以运行2个小时,在这期间系统接地故障随时都可能自动消除,系统恢复正常运行,这样就避免了频繁发生的单相接地故障时的操作,减少了操作次数,提高了供电的可靠性和连续性。
这种运行方式也有一个弊端,就是容易发生铁磁谐振。
当系统有操作或故障(或扰动)时系统对地电压有低频自由分量出现,使PT对地电压升高,PT一次线圈中出现涌流,涌流可能使铁芯深度饱和,其电感值随铁芯的饱和而减小,这时,有可能出现两种情况:一是PT的一次电流继续增大,烧断PT一次侧的熔断器或烧坏PT;另一种情况是当电感降至ωLXQ=1/ωC(ωo=ω)时,就会导致铁磁谐振。
谐振使得电网三相对地电压不稳定,常使两相电压升高,另一相对地电压降低,这种现象与系统出现单相非金属性接地故障的现象完全一致,不仅使运行人员难以区分,而且容易损坏弱绝缘设备而造成事故。
这些问题长期威胁着我局的安全生产,我们一直在寻求、探索解决这个问题的方法。
2.解决PT谐振常采取的措施为消除和抑制铁磁谐振,通常可以采取以下措施:a、选用励磁特性较好的电压互感器或电容式电压互感器;b、在电压互感器的开口三角形绕组开口端加装非线性阻尼电阻R,可消除各种谐波的谐振现象。
35kV及以下系统中R值一般在10~100Ω范围内;c、在10kV及以下的母线上加装一组对地电容器可避免谐振;d、采取临时倒闸措施,如投入消弧线圈,变压器中性点临时接地,或投入事先规定的某些线路或设备;e、在电压互感器的开口三角形绕组开口端加装线性小阻尼电阻、灯泡等,线性阻尼电阻一般小于1Ω;f、在电压互感器的开口三角形绕组并联多功能微机消谐器;g、PT中性点临时拉开;h、在PT一次侧的中性点与地之间串接RXQ型、LXQ型消谐器;3.解决PT谐振的措施与效果3.1 我局解决PT谐振最先采用的措施是在PT开口三角形绕组开口端加装灯泡。
PT谐振的分析与抑制措施作者:赵嘉来源:《科技资讯》2014年第04期摘要:对湘钢动力厂35 kV系统的PT爆炸事故进行了分析,指出事故的原因是系统单相接地导致PT饱和并引起谐振,分析发生谐振现象的多种原因,阐述了常用消谐方法及其优缺点。
关键词:PT谐振谐振原因参数消谐二次消谐一次消谐中图分类号:TM132 文献标识码:A 文章编号:1672-3791(2014)02(a)-0129-02湖南湘潭钢铁公司动力厂35 kV系统在近几年运行中,发生了三起PT爆炸事故,对系统的安全运行构成极大威胁。
对此,我们进行了现场调研,结合35 kV系统故障录波图,初步分析认定这三起事故均为系统单相接地导致PT饱并引起谐振。
动力厂发生事故的35 kV系统,都是中性点不接地系统,装有一次接线为Y0的电磁式电压互感器(PT)由于PT一次线圈的X端接地,且铁芯易饱和,易于产生两种不利状况:一是电网间歇性接地或接地消失时,电网对地电压产生低频自由分量,使X端接地的Y0接线电压互感器深度饱和,一次线圈通过涌流,使PT熔丝熔断甚至烧坏PT。
二是在一定外界激发条件下,产生铁磁谐振,谐振使得电网三相对地电压波动,影响电网正常运行,严重时,使得绝缘设备损坏,造成电网事故。
经过对各地区电网运行进行情况进行分析,发现PT铁磁谐振是电力系统中发生较为频繁且造成较多事故的一种内过电压。
谐振过程可持续很长时间,幅值有高有低,且频率各有不同如分频、基频、高频等,有些过电压并不高,但是由于频率低,且谐振电流很大,对电网的安全运行有很大的危害。
1 PT谐振产生的原因分析铁磁谐振产生的条件有:ωL>1/ωC;激发因素。
其中主要包括电网电压冲击、励磁涌流、合闸相角、系统间歇性接地、电网频率波动等。
系统产生铁磁谐振的原理如图1所示。
(1)首先对于中性点不接地系统,在某种情况下出现单相接地,故障点对地流过电容电流,不接地的两相相电压升高至线电压。
在间歇性接地时,一旦接地故障点消失,非接地相在接地故障期间已充的线电压电荷只能通过PT高压线圈并经其接地点流入大地,在这电压突变瞬间,PT高压线圈的非接地两相的励磁电流突然增大,使PT达到饱和,由于间歇性接地,非接地两相的励磁电流不断激增,极易激发相间串联谐振。
谐振引起PT事故分析与解决对策1、事故现象在某10kV系统线路中,当投入运行时,第一段母线送电后PT二次侧电压值很不平衡,而且开口三角处出现高电压。
停电对母线及PT进行全面检查,没发现问题。
当再次投入运行时,三相电压仍然很不平衡,而且使该组PT中的两相很快烧损。
怀疑是PT有问题。
于是换上不同厂家生产的经过全面试验合格的互感器进行几次投试,但二次仍然出现电压值有时正常,时而不正常,而且每次投入的电压数值也不相同,并伴有接地信号。
连续5次投入测试的结果如下;2、原因分析经反复测试和分析后认为,这种奇怪现象实际上就是供电系统中偶然发生的铁磁谐振。
当供电线路各相对地电容形成的容抗与线路上所接入的PT各相的综合感抗数值相近或相等时,就会发生铁磁谐振现象。
因为在10kV母线段试送电时并没有投入其他供电回路,母线本身只有几十米长,所以每相对地的电容Co 值很小,即各相的容抗Xc较大。
单相PT的各相的感抗X l也较大,两者数值接近。
出现各相电压不平衡,而且每次投入时电压数值又不断变化的原因是,由于各相母线对地的位置相对不同,故各相对地电容的大小有差异,另外,每次投入PT时,各相的接触电阻及同期性都随手车推入的速度、力量大小的变化而变化,所以引起的各相谐振程度就不一样。
由于各相电压在铁磁谐振时的严重不平衡,使PT组二次侧开口三角处感应出很高的电压。
电力系统中发生不同频率的谐振与系统中导线对地分布电容的容抗Xco和PT并联运行的综合电感的感抗Xm两者的比值Xco/Xm有直接关系。
(1)当Xco/Xm的比值较小时,发生的谐振是分频谐振。
电容和电感在学镇时能量交换所需时间较长,谐振频率较慢。
如50Hz的1/2、1/3、1/4等,故称为分频谐振。
表现为:①过电压倍数较低,一般不超过2.5倍的相电压。
②三相电压表的指示值同时升高,而且有周期性的摆动。
线电压表指示数正常。
(2)当Xco/Xm的比值较大时,发生的谐振是高频谐振。
实例探讨PT谐振的处理方案摘要:本文主要针对变电站10kVPT谐振现象作出了理论解析,同时对于故障的处理也提出了解决办法。
而且运用实例深入探讨了其发生的原理。
同时提出了几种消谐方案,对各种方案作出了比较,并从中总结各方案的优缺点。
关键词:PT谐振;谐振故障;故障处理;零序电压互感器引言:发生谐振现象的原因有多种,防止和消除谐振的措施主要有两大类:1.改变谐振参数,破坏谐振产生条件;2.接入阻尼电阻,增大回路的阻尼效应。
在电压互感器中性点回路中加装阻尼电阻或使用零序互感器,并且使用容量大、线性度高的电压互感器。
这种方法实际上是提高电压互感器的伏安特性曲线的线性区域,降低因诱发因素而使电压互感器饱和的几率,从而达到消除谐振现象的目的。
某110kV变电站曾多次发生10kVPT谐振现象,引起PT烧坏,其中最后一次最为严重,现场情况为:10kVII段PTP02三相高压保险炸裂,在PT保险底座上有明显放电烧痕,B相PT炸裂,A、C两相PT外观无明显裂纹,但有烧烤痕迹,3个PT保险绝缘护罩、至母线套管护罩均已熔化,整个小车内部挂满烟灰,PT柜防爆板顶开。
查阅信号记录为:频率27.2Hz,开口电压120V;频率49.4Hz,开口电压180V。
关于谐振过电压产生的原因,有参数谐振和铁磁谐振两种情况,从该变电站多次的谐振调查情况来看,应该还是属于铁磁谐振,并且发生分频和基频谐振的情况较多。
铁磁谐振产生的条件有:L>1/C;激发因素。
主要包括电网电压冲击、涌流、合闸相角、系统接地、电网频率波动等。
系统产生铁磁谐振的原理如图1所示。
图2中,UL(I)为电压互感器的励磁特性曲线,uc(I)为零序电容电流曲线,半圆性曲线(al、a2、a3、a4)为二者在实际运行中的合成曲线。
Uel为系统运行电压,UL1为正常运行时电压互感器工作的励磁特性曲线点,当系统发生电压冲击、涌流、合闸相角、系统接地、电网频率波动等情况时有可能会使电压互感器铁磁饱和,由线性工作区变为非线性区,即工作点由a1变到a3,但a3点是个不稳定状态,很容易跃到a5点,这就使电压互感器发生所说的谐振,对应的电流Ie3有可能达到Iel的上百倍,使电压互感器内部产生过热而烧坏或爆炸。
电力系统中的谐振现象分析与抑制一、引言电力系统是现代社会中不可或缺的基础设施,它为各种用电设备提供稳定可靠的电能。
然而,在电力系统中常常会出现谐振现象,给系统运行带来了很多不利影响。
因此,对电力系统中的谐振现象进行分析与抑制具有重要的理论和实际意义。
二、谐振现象的产生机理谐振是指在外界作用力作用下,系统或器件在某一特定频率下出现的共振现象。
在电力系统中,谐振现象主要产生于电力设备与电力网络之间的相互作用过程中。
当电力设备的特定谐振频率与电力网络的特征频率相匹配时,谐振现象就会发生。
三、谐振现象的危害1. 降低系统的稳定性:谐振现象会导致电力系统的电压、电流的不稳定性,进而影响电力设备的正常工作。
2. 增大系统的损耗:谐振现象会引起电流的过大、频率的变化等问题,从而导致系统中的设备过载、电能损耗增加。
3. 破坏设备的安全性:谐振现象会引起设备内部的过电压现象,可能导致设备的烧毁、损坏。
四、谐振现象的分析方法1. 频率扫描方法:利用频率扫描仪和示波器等仪器,对电力系统的频率响应进行测试和分析,以确定谐振频率。
2. 波形分析方法:通过捕捉系统电压、电流的波形信息,进行波形分析,从中找出谐振的特征。
3. 参数计算方法:根据系统中的电感、电容等参数,利用计算公式计算出谐振频率和谐振峰值等。
五、谐振现象的抑制措施1. 调整电力设备参数:通过改变电力设备的电感、电容等参数,使其与电力网络的频率特性不再匹配,从而抑制谐振现象。
2. 增加阻尼:通过增加电力系统中的阻尼元件,如电阻、补偿电容等,来消耗能量,减小谐振幅值,达到抑制谐振现象的效果。
3. 采用滤波器:在电力系统中加入适当的滤波器,可以滤除谐振频率的分量,减小谐振现象的影响。
4. 加强系统的模型分析:通过建立合理的系统模型,利用计算机仿真软件进行仿真分析,可以预测和优化系统中的谐振现象。
六、实例分析以一个变电站为例,对其电力系统中的谐振现象进行分析。
首先采用频率扫描方法,测试得到系统的频率响应曲线。
PT谐振的分析与抑制措施
摘要:对湘钢动力厂35 kV系统的PT爆炸事故进行了分析,指出事故的原因是系统单相接地导致PT饱和并引起谐振,分析发生谐振现象的多种原因,阐述了常用消谐方法及其优缺点。
关键词:PT谐振谐振原因参数消谐二次消谐一次消谐
湖南湘潭钢铁公司动力厂35 kV系统在近几年运行中,发生了三起PT爆炸事故,对系统的安全运行构成极大威胁。
对此,我们进行了现场调研,结合35 kV系统故障录波图,初步分析认定这三起事故均为系统单相接地导致PT饱并引起谐振。
动力厂发生事故的35 kV系统,都是中性点不接地系统,装有一次接线为Y0的电磁式电压互感器(PT)由于PT一次线圈的X端接地,且铁芯易饱和,易于产生两种不利状况:一是电网间歇性接地或接地消失时,电网对地电压产生低频自由分量,使X端接地的Y0接线电压互感器深度饱和,一次线圈通过涌流,使PT熔丝熔断甚至烧坏PT。
二是在一定外界激发条件下,产生铁磁谐振,谐振使得电网三相对地电压波动,影响电网正常运行,严重时,使得绝缘设备损坏,造成电网事故。
经过对各地区电网运行进行情况进行分析,发现PT铁磁谐振是电力系统中发生较为频繁且造成较多事故的一种内过电压。
谐振过程可持续很长时间,幅值有高有低,且频率各有不同如分频、基频、高频等,有些过电压并不高,但是由于频率低,且谐振电流很大,对电网的安
全运行有很大的危害。
1 PT谐振产生的原因分析
铁磁谐振产生的条件有:ωL>1/ωC;激发因素。
其中主要包括电网电压冲击、励磁涌流、合闸相角、系统间歇性接地、电网频率波动等。
系统产生铁磁谐振的原理如图1所示。
(1)首先对于中性点不接地系统,在某种情况下出现单相接地,故障点对地流过电容电流,不接地的两相相电压升高至线电压。
在间歇性接地时,一旦接地故障点消失,非接地相在接地故障期间已充的线电压电荷只能通过PT高压线圈并经其接地点流入大地,在这电压突变瞬间,PT高压线圈的非接地两相的励磁电流突然增大,使PT达到饱和,由于间歇性接地,非接地两相的励磁电流不断激增,极易激发相间串联谐振。
(2)合闸过程极易引起铁磁谐振,合闸过程中因合闸瞬间的相位角不同极易产生操作过电压引发谐振,断路器在合闸操作过程中出现过电压(如A相),则有可能使此相电压互感器铁心出现饱和,导致线圈参数变化(感抗变小),从而使三相的总阻抗出现不平衡,使电压互感器的中性点对地电压发生偏移,导致谐振。
或因合闸过程中,因断路器三相触头不同期,可能发生三相接通不同时,这样就相当于在触头间串联上不等的电容,从而引发谐振。
(3)系统发生铁磁谐振。
近些年来,由于配电线路调速电机、电子控制电焊机等设备的大量使用,使得供配电系统的电气参数发生了很大的变化,使得在一定激发条件下,谐振极易出现。
在电力系统谐振过程中,PT电流激增,此时除了造成一次侧熔断器熔断外,还有可能导致PT烧毁。
极个别情况下,还会引起PT闪络或爆炸,直接影响到电网的正常运行。
2 PT谐振消除办法分析
防止和消除谐振的主要措施有两种方式:第一种是通过改变谐振参数,破坏谐振产生条件,从而避开谐振区域;第二种是接入阻尼电阻,增大回路的阻尼效应。
现在现场常用第二种方法,即增大回路的阻尼作用,有两种方式:其一是在二次侧开口三角形两端接消谐器;其二是在一次侧中性点对地接消谐器的方法。
2.1 改变谐振参数消谐
(1)当出现空母排谐振时,此时应考虑增大母排电容或并联电感,而不宜急于摇出PT小车,方法是投入一条空载线路(增加母排电容)或者空载的变压器(并联电感)来改变改变谐振参数,从而破坏谐振产生条件,可使三相电压恢复平衡。
(2)变电站值班人员在恢复送电时,宜在确认PT的小车实际位置后,如在分离位置,才对空母线送电,再将PT小车摇到位;如PT小车在合位,则将PT小车摇出后,再送电。
应严格按操作规程进行操作。
(3)检修人员应尽量将断路器和PT小车三相同期性调整好。
技术部门应采用伏安特性较高、饱和迟钝的PT或电容式PT,以改善技术性能,避开谐振区域,减少激发谐振过电压的几率。
2.2 PT二次消谐
(1)PT发生谐振时的电压一般为相电压的3倍,在开口三角处将会产生100~200 V电压,因此,可在PT开口三角处并联220 V/600 W/80电阻,消谐电阻功率不得大于PT极限容量的2.4倍,保证消谐电阻的安装绝缘,防止PT二次侧多点接地(或选用220 V/200 W灯泡),此种方案实施简单,投资少,易于实现和改造。
(2)也可在PT零序回路中装设二次微机消谐装置。
二次微电脑消谐装置能够很好的记录谐振动作情况,并根据不同频率的波形经开口回路进行抑制,它有很多优越的性能。
但在个别情况下,当发生电压波形和幅值与单相接地时完全相同基频谐振时,使微机消谐装置无法正确判断是单相接地还是基频谐振从而无法正确投入动作,这是一般二次微电脑消谐器的缺点。
3 3PT一次消谐
根据查阅的资料和上级有关技术人员的建议,从以下三个方面进行考虑。
3.1 加装消弧线圈
消除谐振的最好的办法就是在10 kV或35 kV系统中加装消弧线圈,使线路处于感性状态,这将从根本上解决谐振问题。
由于加装消弧线圈费用较高,且一般在电缆线路中使用,系统运行规程中规定在10 kV系统中容性零序电流>10 A时或35 kV系统中容性零序电流>30 A时,就应加装消弧线圈。
3.2 经压敏电阻接地
电压互感器高压侧绕组中性点通过电阻接地,如图2所示。
显然,Ro值越高,消谐效果就越好。
当一次侧的中性点电阻Ro足够大时,可有效限制PT绕组一次激磁涌流,从而避免电压互感器铁芯饱和,能有效地抑制和消除谐振。
若Ro→∞,即中性点接近绝缘,谐振就不会发生。
但由于互感器中性点绝缘一般仅为2 kV,长时间运行电压不宜超过l kV。
另外,还要考虑接地保护的灵敏度和绝缘保护的正确性,Ro值不宜选得过大。
热敏电阻(PTC)提供了一个理想的解决方案。
在PT中性点接R=50K的热敏电阻(PTC)接地。
系统正常运行时,中性
点电压可忽略不计(基本为零)。
一旦当发生铁磁谐振,PTC电阻迅速吸收谐振能量,导致温度、电阻迅速增加,从而使流过中性点的电流变小,PT的饱和度下降,破坏了谐振产生的条件从而迅速消除了PT谐振,使系统恢复正常运行。
在中性点接PTC消谐方式经济、简单且实用。
3.3 加装单相PT
在电压互感器中性点接地回路中加装单相PT,使得电压互感器的等值感抗明显增加,并可同时使用容量大且不易饱和的电压互感器。
此方法实际上是扩大电压互感器的伏安特性曲线的线性区域,降低各种使电压互感器饱和的几率。
具体方案见图3。
此类方案简单,投资较少。
4 结语
总之,任何消谐方法都是以破坏谐振产生的条件,来抑制谐振的产生和发展最终达到消谐的目的。
针对湘钢动力厂35 kV PT事故提出改进意见,由于原采用PT二次微机消谐装置,在线路单相接地时构成相间串联谐振时,消谐装置启动,短时短接开口三角绕组,由于短接电流较大,容易发生短接触头粘接等现象,造成开口三角短路,除了造成一次侧熔断器熔断外,还可能导致PT烧毁,甚至相间短路。
故建议可将原装置短接触头容量加大或在PT开口三角处并联220 V/600 W/80电阻(或选用220 V/200 W灯泡),此方案实施改造简单,投资少,易于实
现。
不论是加装二次消谐电阻,还是加装微电脑消谐器,都是在谐振发生后进行抑制和消除,且不能限制一次涌流。
而一次消谐则是破坏谐振产生的条件,抑制谐振发生,它具有限制一次涌流和消除PT饱和谐振双重功效。
因此,要解决变电站谐振的问题,在经济容许的条件下,还是应该重点考虑一次消谐的办法。
参考文献
[1]要焕年,槽梅月.电力系统谐振接地[M].中国电力出版社,2000.
[2] 黄静.电力网及电力系统[M].北京:中国电力出版社,1999.
[3] 王广延.电力系统元件保护原理[M].北京:水利电力出版社,1986.
[4] 黄俊,王兆安.电力电子变流技术[M].北京:机械工业出版社,2005.
[5] 郭光荣.电力系统继电保护[M].北京:高等教育出版社,2006.
[6] 李加升.PTC热敏电阻及其应用分析[J].益阳职业技术学院学报,2006.。