范德华力与氢键(定1)
- 格式:ppt
- 大小:3.80 MB
- 文档页数:31
分子间的力范德华力和氢键分子间的力:范德华力和氢键分子间的力是指分子之间相互作用的力,其中范德华力和氢键是两种常见的分子间力。
本文将对这两种力进行介绍和解析。
一、范德华力范德华力(van der Waals force)是一种相互吸引的力,起因于分子内部电荷分布的不均匀性。
它可以分为三种类型:弱的分散力(London力)、较强的取向力和最强的诱导力。
1. 分散力(London力)分散力是最弱的一种范德华力,主要存在于非极性分子之间。
分子内由于电子云的运动造成瞬时偶极矩的形成,进而引发相邻分子的极化作用,使它们之间发生吸引。
这种吸引力是瞬时性的,范德华力是由于瞬时偶极矩之间相互作用而形成的。
2. 取向力取向力是存在于极性分子之间的范德华力,是由于分子内的极性键引起的。
它是根据分子极性键的方向而产生的相互作用,类似于磁铁的N极和S极之间的吸引力。
3. 诱导力诱导力是范德华力中最强的一种类型,是由于一种分子的极化而诱发另一种分子的极化。
当一个非极性分子接近一个由极性键组成的分子时,它会被诱导成有临时极性,这样会引发两种分子之间的相互吸引。
总结:范德华力是一种微弱但广泛存在的分子间作用力,它对物质的性质和相互作用具有重要影响。
二、氢键氢键(hydrogen bond)是分子间的一种特殊强力相互作用,主要存在于带有氢原子的分子中。
氢键可以发生在分子中的氢与另一个带有电负性原子(如氮、氧和氟)之间的相互作用。
氢键的形成是通过氢原子与接受者原子形成一个氢和一个共价键,同时将电子密度极大地转移到接受者原子上。
氢键通常是可逆的,并且在分子之间形成临时的化学键,类似于范德华力的诱导力。
氢键的强度通常比较大,可以影响物质的性质和化学反应。
三、范德华力与氢键的区别范德华力和氢键虽然都属于分子间作用力,但是它们有一些明显的区别。
1. 强度不同:范德华力相对较弱,而氢键相对较强。
2. 形成条件不同:范德华力主要由于分子内电荷的不均匀性形成,而氢键则是通过氢原子和电负性原子之间的相互作用形成。
高中化学选择性必修二分子间作用力和氢键知识点笔记一.分子间作用力1.定义:分子间存在着将分子聚集在一起的作用力,称分子间作用力。
分子间作用力也叫范德华力.2.实质:一种电性的吸引力.3.影响因素:分子间作用力随着分子极性.相对分子质量的增大而增大.分子间作用力的大小对物质的熔点.沸点和溶解度都有影响.一般来说.对于组成和结构相似的物质来说,相对分子质量越大,分子间作用力越强,物质的熔沸点也越高.4.只存在于由共价键形成的多数化合物,绝大多数非金属单质分子和分子之间.化学键是分子中原子和原子之间的一种强烈的作用力,它是决定物质化学性质的主要因素。
但对处于一定聚集状态的物质而言,单凭化学键,还不足以说明它的整体性质,分子和分子之间还存在较弱的作用力。
物质熔化或汽化要克服分子间的作用力,气体凝结成液体和固体也是靠这种作用力。
除此以外,分子间的作用力还是影响物质的汽化热、熔化热、溶解黏度等物理性质的主要因素。
分子间的作用力包括分子间作用力(俗称范德华力)和氢键(一种特殊的分子间作用力)。
分子间作用力约为十几至几十千焦,比化学键小得多。
分子间作用力包括三个部分:取向力、诱导力和色散力。
其中色散力随分子间的距离增大而急剧减小,一般说来,组成和结构相似的物质,分子量越大,分子间距越大,分子间作用力减小,物质熔化或汽化所克服的分子间作用力减小,所以物质的溶沸点升高。
化学键与分子间作用力比较二.氢键-特殊的分子间作用力1.概念:氢键是指与非金属性很强的元素(主要指N、O、F)相结合的氢原子与另一个分子中非金属性极强的原子间所产生的引力而形成的.必须是含氢化合物,否则就谈不上氢键。
2.实质:氢键不是化学键,属于分子间作用力的范畴.但比普通分子间作用力要强得多.3.存在:水.冰.氨.无机酸.醇等物质能形成氢键.4.分类:分子内氢键和分子间氢键5.影响:分子间氢键的形成除使物质的熔沸点升高外,对物质的溶解度.硬度等也都有影响.6.表示法:用"X—H…Y"表示,且三原子要在一条直线上.X、Y与H构成分子。
经 验 交 流一、范德华力对物质物理性质的影响范德华力对物质物理性质的影响是多方面的。
液态物质范德华力越大,气化热就越大,沸点就越高;固态物质范德华力越大,熔化热就越大,熔点就越高。
一般来说,结构相似的同系列物质相对分子质量越大,分子变形性也越大,范德华力强,物质的熔点,沸点也就越高。
例如,稀有气体,卤素单质等,其沸点和熔点就是随着相对分子质量的增大而升高的。
相对分子质量相等或近似而体积大的分子,电子位移可能性大,有较大的变形性,此类物质有较高的沸点,熔点。
范德华力对液体的互溶度以及固态,气态非点解质在液体中的溶解度也有一定影响。
溶质或溶剂(指同系物)的极化率越大,分子变形性和范德华力越大,溶解度也越大。
另外,范德华力对分子型物质的硬度也有一定的影响。
分子极性小的聚乙烯,聚异丁烯等物质,范德华力较小,因而硬度不大;含有极性基因的有机玻璃等物质,范德华力较大,具有一定的硬度。
二、氢键对物质物理性质的影响氢键通常是物质在液态时形成的,但形成后有时也能继续存在于某些固态甚至气态物质之中。
例如:在气态,液态和固态的HF中都有氢键存在。
能够形成氢键的物质是很多的,如水,水合物,无机酸和某些有机化合物。
氢键的存在,影响到物质的某些性质。
如:1.熔点,沸点分子间含有氢键的物质溶化或气化时,除了要克服范德华力外,还必须提高温度,额外地供应一份能量来破坏分子间的氢键,所以这些物质的熔,沸点比同系列氢化物的熔点,沸点高。
分子内形成氢键,其熔点,沸点常降低。
例如,有分子内氢键的邻硝基苯酚熔点(45℃)比分子间氢键的间硝基苯酚的熔点(95℃)和对位硝基苯酚的熔点(114℃)都低。
2.溶解度在极性溶剂中,如果溶质分子与溶剂分子之间可以形成氢键,则溶质的溶解度增大。
HCl和NH3在水中的溶解度比较大,就是这个缘故。
3.黏度分子间有氢键的液体,一般黏度较大。
例如甘油,磷酸,浓硫酸等多羟基化合物,由于分子间可形成众多的氢键,这些物质通常为黏稠状液体。
共价键离子键金属键范德华力氢键比较共价键、离子键、金属键、范德华力和氢键是几种不同类型的化学键,它们在化学结构和性质上各有特点。
下面分别对这些化学键进行比较分析。
共价键是通过原子间的电子共用来形成的化学键,通常是两个非金属原子之间的键。
共价键的形成依赖于原子间的电子互相吸引和核间的排斥力。
共价键的强度比范德华力和氢键强,但比离子键和金属键弱。
共价键通常是不导电的,熔点和沸点也较低。
离子键是通过正离子和负离子之间的静电相互作用形成的化学键。
离子键通常是金属和非金属之间的键。
离子键的强度比共价键和范德华力强,但比金属键弱。
离子键通常是固体,熔点和沸点较高。
金属键是通过金属原子间的电子互相共享形成的化学键。
金属键具有良好的导电性和热导性,通常形成看起来像“海”一样的电子云。
金属键的强度比离子键强,但比共价键和范德华力弱。
金属键通常是金属的固态,具有良好的延展性、抗拉伸性和韧性。
范德华力是通过分子间的无定形电荷分布而形成的分子间力,并且强度较弱。
范德华力通常对低沸点和易挥发的物质间的相互作用具有显著的作用。
范德华力比共价键、离子键和金属键弱,不具有电离特性和导电性。
氢键是通过氢原子与带有电负性的原子(如氧、氮、氟)之间的电荷相互作用形成的分子间力,通常是在分子中形成氢键。
氢键比范德华力强,但比共价键、离子键和金属键弱。
氢键通常影响分子的物理和化学性质,如溶解度、热稳定性和分子构象。
总的来说,共价键、离子键、金属键、范德华力和氢键各自具有不同的物理和化学性质,因此在化学反应和化学结构中拥有重要的作用。
在特定的化学反应环境下,了解这些化学键的性质和行为是非常重要的。
离子键原子相互得失电子,形成离子键的过程带相反电荷离子之间的互相作用叫做离子键(Ionic Bond),成键的本质是阴阳离子间的静电作用。
两个原子间的电负性相差极大时,一般是金属与非金属。
例如氯和钠以离子键结合成氯化钠。
电负性大的氯会从电负性小的钠抢走一个电子,以符合八隅体。
之后氯会以-1价的方式存在,而钠则以+1价的方式存在,两者再以库仑静电力因正负相吸而结合在一起,因此也有人说离子键是金属与非金属结合用的键结方式。
而离子键可以延伸,所以并无分子结构。
离子键亦有强弱之分。
其强弱影响该离子化合物的熔点、沸点和溶解性等性质。
离子键越强,其熔点越高。
离子半径越小或所带电荷越多,阴、阳离子间的作用就越强。
例如钠离子的微粒半径比钾离子的微粒半径小,则氯化钠NaCl 中的离子键较氯化钾KCl中的离子键强,所以氯化钠的熔点比氯化钾的高。
定义:离子键是由正负离子之间通过静电作用而形成的,正负离子为球形或者近似球形,电荷球形对称分布,那么离子键就可以在各个方向上发生静电作用,因此是没有方向性的。
离子键概念:带相反电荷离子之间的相互作用称为离子键。
成键微粒:阴离子、阳离子。
成键本质:静电作用。
静电作用包括阴、阳离子间的静电吸引作用和电子与电子之间、原子核与原子核之间的静电排斥作用。
(一吸,两斥)成键原因:①原子相互得失电子形成稳定的阴、阳离子。
②离子间吸引与排斥处于平衡状态。
③体系的总能量降低。
存在范围:离子键存在于大多数强碱、盐及金属氧化物中。
一个离子可以同时与多个带相反电荷的离子互相吸引成键,虽然在离子晶体中,一个离子只能与几个带相反电荷的离子直接作用(如NaCl中Na+可以与6个Cl-直接作用),但是这是由于空间因素造成的。
在距离较远的地方,同样有比较弱的作用存在,因此是没有饱和性的。
化学键的概念是在总结长期实践经验的基础上建立和发展起来的,用来概括观察到的大量化学事实,特别是用来说明原子为何以一定的比例结合成具有确定几何形状的、相对稳定和相对独立的、性质与其组成原子完全不同的分子。