第三节 中性点直接接地的三相系统
- 格式:ppt
- 大小:261.50 KB
- 文档页数:6
1 中性点直接接地中性点直接接地方式,即是将中性点直接接入大地。
该系统运行中若发生一相接地时,就形成单相短路,其接地电流很大,使断路器跳闸切除故障。
这种大电流接地系统,不装设绝缘监察装置。
中性点直接接地系统产生的内过电压最低,而过电压是电网绝缘配合的基础,电网选用的绝缘水平高低,反映的是风险率不同,绝缘配合归根到底是个经济问题。
中性点直接接地系统产生的接地电流大,故对通讯系统的干扰影响也大。
当电力线路与通讯线路平行走向时,由于耦合产生感应电压,对通讯造成干扰。
中性点直接接地系统在运行中若发生单相接地故障时,其接地点还会产生较大的跨步电压与接触电压。
此时,若工作人员误登杆或误碰带电导体,容易发生触电伤害事故。
对此只有加强安全教育和正确配置继电保护及严格的安全措施,事故也是可以避免的。
其办法是:①尽量使电杆接地电阻降至最小;②对电杆的拉线或附装在电杆上的接地引下线的裸露部分加护套;③倒闸操作人员应严格执行电业安全工作规程。
2 中性点不接地中性点不接地方式,即是中性点对地绝缘,结构简单,运行方便,不需任何附加设备,投资省。
适用于农村10kV架空线路为主的辐射形或树状形的供电网络。
该接地方式在运行中,若发生单相接地故障,其流过故障点电流仅为电网对地的电容电流,其值很小称为小电流接地系统,需装设绝缘监察装置,以便及时发现单相接地故障,迅速处理,以免故障发展为两相短路,而造成停电事故。
中性点不接地系统发生单相接地故障时,其接地电流很小,若是瞬时故障,一般能自动熄弧,非故障相电压升高不大,不会破坏系统的对称性,故可带故障连续供电2h,从而获得排除故障时间,相对地提高了供电的可靠性。
中性点不接地方式因其中性点是绝缘的,电网对地电容中储存的能量没有释放通路。
在发生弧光接地时,电弧的反复熄灭与重燃,也是向电容反复充电过程。
由于对地电容中的能量不能释放,造成电压升高,从而产生弧光接地过电压或谐振过电压,其值可达很高的倍数,对设备绝缘造成威胁。
1. 什么是TT 、IN 、IT 系统?答:TT 方式是指将电气设备的金属外壳直接接地的保护系统,称为保护接地系统,也称TT 系统。
TN 方式是将电气设备的金属外壳及工作零线相接的保护系统,称作接零保护系统,用TN 表示。
IT 方式是电源侧没有工作接地,或经过高阻抗接地。
负载侧电气设备进行接地保护的保护系统。
2. 我国电网的标准频率是多少?答:为50Hz,又叫工频。
3. 电力负荷的分级?重大损者。
二级负荷:二级负荷为中断供电将在政治、经济上造成较大损失者,三级负荷:三级负荷为一般的电力负荷。
4. 什么是电弧?答:电弧是电气设备运行中产生的一种物理现象,其特点是光亮很强温度很高。
5. 什么是变电所?答:是担负着从电力系统接受电能,经过变压(升压或降压),然后再配电的任务的供电枢纽。
6. 什么是相电压、相电流?线电压、线电流?答:在三相四线电路中相线及中线的电压为相电压;任意两相线间的电压为线电压;线电压是相电压的√3倍。
流过各相负载的电流为相电流;流过相线中的电流为线电流。
答:主要作用是变换电压,以利于功率的传输。
在同一段线路上,传送相同的功率, 电压经升压变压器升压后,线路传输的电流减小,可以减少线路损耗,提高送电经济性,达到远距离送电的目的,而降压则能满足各级使用电压的用户需要。
8. 变压器各主要参数是什么?答:(1 )额定电压;(2 )额定电流;(3 )额定容量;(4 )空载电流;(5 )空载损耗;(6 )短路损耗;(7 )阻抗电压;(8 )绕组连接图、相量图及连接组标号。
9. 什么叫短路电流的热效应?答:在电路发生短路时,极大的短路电流将使导体温度迅速升高,称之为短路电流的热效应。
10. 什么叫涡流?涡流的产生有哪些害处?答:当交流电流通过导线时,在导线周围会产生交变的磁场。
交变磁场中的整块导体的内部会产生感应电流,由于这种感应电流在整块导体内部自成闭合回路,很像水的旋涡,所以称作涡流。
涡流不但会白白损耗电能,使用电设备效率降低,而且会造成用电器(如变压器铁芯)发热,严重时将影响设备正常运行。
电力系统中性点运行方式我国电力系统中常见的中性点运行方式有中性点非有效接地和中性点有效接地两大类。
中性点非有效接地包括:不接地、经消弧线圈接地和经高阻接地,又称为小接地电流系统。
而中性点有效接地包括直接接地和经低阻抗接地,又称为大接地电流系统。
一、中性点不接地的三相系统1、中性点不接地系统的正常运行正常运行时,电力系统三相导线之间和各相导线对地之间,沿导线的全长存在着分布电容,这些分布电容在工作电压的作用下,会产生附加的容性电流。
各相导线间的电容及其所引起的电容电流较小,并且对所分析问题的结论没有影响,故可以不予考虑。
2、单相接地故障当中性点不接地的三相系统中,由于绝缘损坏等原因发生单相接地故障时,情况将会发生显著变化。
假设W相在k点发生完全接地的情况,W相对地电压为零,中性点对地电压上升为相电压,而且与接地相的电源电压反相。
(完全接地,又称为金属性接地,即认为接地处的电阻近似等于零)三相系统的三个线电压仍保持对称而且大小不变。
非故障相电压升高为线电压,非故障相的对地电容电流也就相应的增大到√3倍。
W相对地电容被短接,于是对地电容电流为零。
此时三相对地电容电流的向量和不再为零,大地中有容性电流流过,并通过接地点形成回路。
可见,单相接地故障时流过大地的电容电流,等于正常运行时每相对地电容电流的三倍。
接地电流Ic的大小与系统的电压、频率和对地电容的大小有关,而对地电容又与线路的结构(电缆或架空线)、布置方式和长度有关。
实用计算中可按计算为:对架空线路:I c=UL/350对电缆线路:I c=UL/10式中I c——接地电流,A;U——系统的线电压,Kv;L——与电压同为U,并具有电联系的所有线路的总长度,km。
当系统发生不完全接地,即通过一定的过渡电阻接地时,接地相的对地电压大于零而小于相电压,中性点的对地电压大于零而小于相电压,非接地相对地电压大于相电压而小于线电压,线电压仍保持不变,此时的接地电流要比金属性接地时小一些。
第三节 中性点直接接地电网的接地保护我国110kV 及以上的电网采用中性点直接接地方式,这种电网发生接地故障时,通过短路点、大地和接地中性点构成短路回路,故障电流很大,故称为大电流接地电网。
由于系统正常运行情况下没有零序电流;而大电流接地电网中发生接地短路时将出现很大的零序电流,因此利用零序电流来构成大电流接地电网的接地保护,就具有显著的优点。
一.中性点直接接地电网接地短路时零序分量的特点图2—26(a )所示网络发生接地短路时的零序等效网络如图2—26(b )所示。
零序电流的方向仍然采用母线流向线路为正;零序电压的方向取线路高于大地的电压为正,如图2—26(b )中的“↑”所示。
图2-26 接地短路时的零序等效网(a )系统接线 (b )零序网络 (c )零序电压分布图 (d )向量图(设0080=d ϕ)由零序等效网络可见,零序分量具有如下特点:(1)故障点的零序电压最高,距离故障点越远处的零序电压越低,中性点处为0。
零序电压的分布如图2—26(c )所示。
(2)网络中的零序电流是由于故障点出现零序电压而产生的。
因此故障线路上的实际零序电流方向是由线路流向母线的,与保护规定的正方向相反。
实际零序电流落后零序电压的相位由零序阻抗角0d ϕ决定。
按照规定的正方向画出零序电流和电压的向量图如图2-26(d )所示,0I '和0I '' 超前0d U 的角度为:00180d ϕ-。
(3)故障线路两端零序功率的方向实际上都是由线路流向母线的。
(4)任一保护安装处的零序电压只与流过的零序电流和被保护线路背后的阻抗有关,而与被保护线路的零序阻抗及故障点的位置无关。
以保护1所在的A 母线上的零序电压为例,0.100)(B A Z I U '-= ,0.1B Z 为变压器1B 的零序阻抗。
(5)零序分量受系统运行方式的影响小。
当电力系统运行方式变化时,如果送电线路和中性点接地的变压器数目不变,则零序阻抗和零序等效网络就是不变的;但此时系统的正序阻抗和负序阻抗要随着运行方式而变化。