离心式泵与风机的理论性能曲线
- 格式:pdf
- 大小:224.79 KB
- 文档页数:2
教学实验泵与风机离心式风机性能实验实验报告班级:学号:姓名:能源与动力工程学院2017年11月离心式风机性能实验台实验指导书一、实验目的1.熟悉风机性能测定装置的结构与基本原理。
2.掌握利用实验装置测定风机特性的实验方法。
3.通过实验得出被测风机的气动性能(P-Q,P st-Q,ηin-Q,ηstin-Q ,N-Q曲线)4.通过计算将测得的风机特性换算成无因次参数特性曲线。
5.将试验结果换算成指定条件下的风机参数。
二、实验装置根据国家关于GB1236《通风机空气动力性能实验方法》标准,设计并制造了本试验装置。
本试验装置采用进气试验方法,风量采用锥形进口集流器方法测量。
装置主要分三部分(见图1)图1 实验装置示意图1.进口集流器2.节流网3.整流栅4.风管5.被测风机6.电动机7.测力矩力臂8.测压管9.测压管试验风管主要由测试管路,节流网、整流栅等组成。
空气流过风管时,利用集流器和风管测出空气流量和进入风机的静压Pest1,整流栅主要是使流入风机的气流均匀。
节流网起流量调节作用。
在此节流网位置上加铜丝网或均匀地加一些小纸片可以改变进入风机的流量。
测功率电机6,用它来测定输入风机的力矩,同时测出电机转速,就可得出输入风机的轴功率。
三、实验步骤1.将压力计(倾斜管压力计)通过联通管与试验风管的测压力孔相连接,在连接前检查测压管路有无漏气现象,应保证无漏气。
2.电动机启动前,在测力矩力臂上配加砝码,使力臂保持水平。
3.装上被测风机,卸下叶轮后,启动测功电机,再加砝码ΔG´使测力矩力臂保持水平,记下空载力矩(一般有指导教师事先做好)。
4.装上叶轮,接好进风口与试验风管,转动联轴节,检查叶轮是否与进风口有刮碰磨擦现象。
5.启动电机,运行10分钟后,在测力臂上加配砝码使力臂保持水平,待工况稳定后记下集流器压力ΔPn,静压Pest1,平衡重量G(全部砝码重量)和转速n。
6.在节流网前加铜丝网或小圆纸片,使流量逐渐减小直到零,来改变风机的工况,一般取十个测量工况(包括全开和全闭工况),每一工况稳定后记下读数。
流体力学泵与风机方程式(Z+p/γ)=C 从物理学:Z项是单位重量液体质点相对于基准面的位置势能,p/γ项是单位重量液体质点的压力势能,Z+p/γ项是单位重量液体的总势能,(Z+p/γ)=C表明在静止液体中,各液体质点单位重量的总势能均相等。
从水力学:Z为该点的位置相对于基准面的高度,称位置水头,p/γ是该点在压强作用下沿测压管所能上升的高度,称压强水头,Z+p/γ称测压管水头,它表示测压管液面相对于基准面的高度,(Z+p/γ)=C表示同一容器的静止液体中,所有各点的测压管液头均相等。
——————————————等压面:①在连通的同种静止液体中,水平面必然是等压面②静止液体的自由液面是水平面,该自由液面上各点压强均为大气压钱,所以自由液面是等压面③两种不同液体的分界面是水平面,故该面也是等压面——————————————绝对压强=相对压强+真空压强——————————————压强的量度单位:①用单位面积上所受的压力来表示,单位N/m2,或Pa②用液柱的高度来表示,mH2O、mmHg、mmH2O,h=p/γ③用大气压的倍数来表示,单位为工程大气压和标准大气压,1atm=101.325kPa。
——————————————流线:同一时刻流场中一系列流体质点的流动方向线,即在流场中画出的一条曲线,在某一瞬时,该曲线上的任意一点的流速矢量总是在该点与曲线相切。
迹线:某一流体质点在连续时间内的运动轨迹。
——————————————能量方程式的意义(物理意义):z表示单位重量流体的位置势能,简称位能,简称位能,p/γ表示单位重量流体的压力势能,简称压能,av2/2g表示单位重量流体的平均势能,简称动能,hw表示克服阻力所引起的单位能量损失,简称能量损失,z+p/γ表示单位势能,z+p/γ+av2/2g表示单位总机械能。
(几何意义)方程式中各项的单位都是米,具有长度量纲[L]表示某种高度,可以用几何线段来表示,流体力学上称为水头,z称为位置水头,p/γ称为压强水头,av2/2g 称为流速水头,hw称为水头损失,z+p/γ称为测压管水头(Hp),z+p/γ+av2/2g称为总水头(H)——————————————沿程水头损失:在管路中单位水流的沿程能量损失。
离心泵的曲线
离心泵的曲线是用来描述离心泵性能的一种图形表示。
它展示了离心泵在不同工况下的流量、扬程和效率之间的关系。
通常,离心泵的曲线包括以下几个主要参数:
1. 流量-Q:表示单位时间内通过泵的液体体积。
通常以立方米每小时(m³/h)或升每秒(L/s)来表示。
2. 扬程-H:表示泵能够提供的压力。
通常以米(m)为单位。
3. 效率-η:表示泵转化输入功率为输出功率的能力。
通常以百分比形式表示。
离心泵的曲线通常由以下几条线组成:
1. H-Q曲线(等速曲线):在恒定转速下,流量与扬程之间的关系曲线。
当流量增大时,扬程会逐渐降低。
2. η-Q曲线(效率曲线):在恒定转速下,效率与流量之间的关系曲线。
通常在设计流量附近效率较高,而在低流量和高流量处效率较低。
3. NPSHr曲线(净正吸入头曲线):表示给定流量下泵要求的最低净正吸入头。
当净正吸入头低于该值时,泵可能会产生气穴或性能下降。
4. NPSHa曲线(净正吸入头可利用余量曲线):表示给定流量下实际系统提供的净正吸入头与NPSHr之间的差值。
当可利用余量大于零时,系统运行正常。
不同型号和尺寸的离心泵有不同的曲线特征,根据具体工程要求选择合适的泵型和工作点是非常重要的。
2.5离心式泵与风机的理论性能曲线
本节研究泵或风机所具备的技术性能的表达方式。
泵与风机的扬程、流量、功率、效率和转速等性能是互相影响的,当一个参数变化时,其他的都随之变化,这种函数关系用曲线表示,就是泵与风机的性能曲线。
通常用以下三种形式来表示这些性能之间的关系:
(1)泵或风机所提供的流量和扬程之间的关系,用)
(Q H 1f =来表示:(2)泵或风机所提供的流量和所需外加轴功率之间的关系,用)
(Q N 2f =来表示;(3)泵或风机所提供的流量与设备本身效率之间的关系,用)(T T Q H 1f =及)(T T Q N 2f =来表示。
理论性能曲线是从欧拉方程出发,研究无损失流动这一理想条件下及的关系。
如叶轮出口前盘与后盘之间的轮宽为b 2,则叶轮在工作时所排出的理论流量应为:
2
22r T v b D Q επ=(2-15)
式中符号同前。
将式(2-15)变换后代入(2-13)可得:
对于大小一定的泵或风机来说,转速不变时,上式中u 2,g ,ε,D 2及B 2均为定值,故上式可改写为:
(2-16)式中g
u 2
2=A ,222b επD 1g u B ∙=均为常数,而cot β2代表叶型种类,也是常量。
此时说明在固定转速下,不论叶型如何,泵或风机理论上的流量与扬程关系是线形的。
同时还可以看出,当Q T =0时,H T =g
u 22=A 。
图2-8为3种不同叶型的泵和风机理论上的流量-扬程曲线。
显然由所代表的曲线斜率是不同的,因而3种叶型具有各自的曲线倾向。
下面研究理论上的流量与外加功率的关系。
在无损失流动条件下,理论上的有效功率就是轴功率,可按式(1-4)计算,即:
当输送某种流体时=常数。
用式(2-16)代人此式可得:
(2-17)
可见对于不同的值具有不同形状的曲线。
但当Q T =0时,3种叶型的理论轴功率都等于零,3条曲线同相交于原点(见图2-9)。
图2-83种不同叶型的泵图2-93种不同叶型的泵和风机理论上的流量-扬程曲线和风机理论上的流量-功率曲线对于具有径向叶型的叶轮来说=90°,,功率曲线为一条直线。
当叶轮为前向叶型时,β2>90°,cotβ2<0,式中括号内第二项为正,功率曲线是一条向上凹的二次曲线。
后向叶型的叶轮中,β2<90°,cotβ2>0,括号内第二项为负,功率曲线为一条向下凹的曲线。
根据以上分析,可以定性地(只能是定性地)说明不同叶型的曲线倾向。
这对以后研究泵或风机的实际性能曲线是很有意义的。
因为从图2-8中的Qt-Ht曲线和图2-9中的Q T-JVt曲线可以看出,前向叶型的风机所需的轴功率随流量的增加而增长得很快。
因此,这种风机在运行中增加流量时,原动机超载的可能性要比径向叶型风机大得多,而后向叶型的风机几乎不会发生原动机超载的现象。
在理想条件下,各项损失为零,因此效率恒为100%。
应当指出,这一节内容都是在无能量损失的条件下分析的,因此所得出的Q T-H T曲线和Q T-N T曲线都属于泵或风机的理论性能曲线。
只有在计人各项损失的情况下,才能得出它们的实际性能曲线。