数据结构实验报告-图的遍历
- 格式:doc
- 大小:61.00 KB
- 文档页数:4
1图的遍历问题在实践中常常遇到这样的问题:给定n个点,从任一点出发对所有的点访问一次并且只访问一次。
如果用图中的顶点表示这些点,图中的边表示可能的连接,那么这个问题就可以表示成图的遍历问题,即从某个顶点出发,沿着某条搜索路径对图中每个顶点各做一次且仅做一次访问。
图的遍历操作和树的遍历操作功能相似,是图的一种基本操作,图的许多其它操作都是建立在遍历操作的基础上。
由于图结构本身的复杂性,所以图的遍历操作也比较复杂,主要表现在以下几个方面:(1) 在图结构中,没有一个确定的首结点,图中任意一个顶点都可以作为第一个被访问的结点。
(2) 在非连通图中,从一个顶点出发,只能够访问它所在的连通分量上的所有顶点,因此,还需要考虑如何选取下一个出发点以访问图中其余的连通分量。
(3) 在图结构中,如果有回路存在,那么一个顶点被访问后,有可能沿回路又回到该顶点。
⑷在图结构中,一个顶点可以和其它多个顶点相连,当这样的顶点访问过后,存在如何选取下一个要访问的顶点的问题。
基于以上分析,图的遍历方法目前有深度优先搜索(DFS)和广度优先搜索(BFS)两种算法。
下面将介绍两种算法的实现思路,分析算法效率并编程实现。
1.1深度优先搜索算法深度优先搜索算法是树的先根遍历的推广,它的实现思想是:从图G的某个顶点V o出发,访问V o,然后选择一个与V o相邻且没被访问过的顶点V i访问,再从V i出发选择一个与V i相邻且未被访问的顶点V j进行访问,依次继续。
如果当前被访问过的顶点的所有邻接顶点都已被访问,贝U退回已被访问的顶点序列中最后一个拥有未被访问的相邻顶点的顶点W,从W出发按同样的方法向前遍历,直到图中所有顶点都被访问。
其递归算法如下:Boolean visited[MAX_VERTEX_NUM]; // 访问标志数组Status (*VisitFunc)(int v); //VisitFunc是访问函数,对图的每个顶点调用该函数void DFSTraverse (Graph G Status(*Visit)(i nt v)){VisitF unc = Visit;for(v=0; vvG.vex num; ++v)visited[v] = FALSE; //访问标志数组初始化for(v=0; v<G .vex num; ++v)if(!visited[v])DFS(G v); //对尚未访问的顶点调用DFS}void DFS(Graph G int v){ //从第v个顶点出发递归地深度优先遍历图Gvisited[v]=TRUE; VisitFunc(v); // 访问第v 个顶点for(w=FirstAdjVex(G ,v); w>=0;w=NextAdjVex(G ,v,w))//FirstAdjVex返回v的第一个邻接顶点,若顶点在G中没有邻接顶点,则返回空(0)。
一 、实验目的和要求(1)掌握树的相关概念,包括树、节点的度、树的度、分支节点、叶子节点、孩子节点、双亲节 点、树的深度、森林等定义。
(2)掌握树的表示,包括树形表示法、文氏图表示法、凹入表示法和括号表示法等。
(3)掌握二叉树的概念,包括二叉树、满二叉树和完全二叉树的定义。
(4)掌握二叉树的性质。
(5)重点掌握二叉树的存储结构,包括二叉树顺序存储结构和链式存储结构。
(6)重点掌握二叉树的基本运算和各种遍历算法的实现。
(7)掌握线索二叉树的概念和相关算法的实现。
(8)掌握哈夫曼树的定义、哈夫曼树的构造过程和哈夫曼编码的产生方法。
(9)掌握并查集的相关概念和算法。
(10)灵活运用二叉树这种数据结构解决一些综合应用问题。
二、实验内容注:二叉树b 为如图7-123所示的一棵二叉树图7-123+实验7.1 编写一个程序algo7-1.cpp,实现二叉树的各种运算,并在此基础上设计一个程序exp7-1.cpp 完成如下功能:(1)输出二叉树b ;(2)输出H 节点的左、右孩子节点值; (3)输出二叉树b 的深度; (4)输出二叉树b 的宽度; (5)输出二叉树b 的节点个数;(6)输出二叉树b 的叶子节点个数。
实验7.2设计一个程序exp7-2.cpp,实现二叉树的先序遍历、中序遍历和后序遍历和非递归算法, 以及层次变量里的算法。
并对图7-123所示的二叉树b 给出求解结果。
b+ACF GIKL+NM+E+HdJD₄B臣1607-1.CPPif(b?-HULL)re3P4+;Qu[rear]-p-b;Qu[rear].1no=1;while(reart=front){Front++;b=Qu[front]-P;lnum-Qu[front].1no;if(b->Ichildt=NULL)rpar+t;Qu[rear]-p=b->1child;Qu[rear].Ino-lnun+1;if(D->rch11d?=NULL)1/根结点指针入队//根结点的层次编号为1 1/队列不为空1/队头出队1/左孩子入队1/右孩子入队redr+t;qu[rear]-p=b->rchild;Qu[rear].1no-lnun*1;}}nax-0;lnun-1;i-1;uhile(i<=rear){n=0;whdle(i<=rear ge Qu[1].1no==1num)n+t;it+;Inun-Qu[i].1n0;if(n>max)nax=n;}return max;田1607-1.CPPreturn max;}elsereturn o;口×int Modes(BTNode *D) //求二叉树D的结点个数int nun1,nun2;if(b==NULL)returng,else if(b->ichild==NULL&D->rchild==NULL)return 1;else{num1-Hodes(b->Ichild);num2=Nodes(b->rchild);return(num1+nun2+1);LeafNodes(BINode *D) //求二叉树p的叶子结点个数int num1,num2;1f(D==NULL)return 0;else if(b->1chi1d==NULLc& b->rch11d==NULL)return 1;else{num1-LeafModes(b->lchild);num2=LeafNodes(b->rchild);return(nun1+nun2);int程序执行结果如下:xCProrn FlslirosfViu l SudiollyPrjecslro7 LJebuglFoj7 ex<1)输出二叉树:A<B<D,E<H<J,K<L,M<,N>>>>),C<F,G<,I>>)<2)'H’结点:左孩子为J石孩子为K(3)二叉树b的深度:7<4)二叉树b的宽度:4(5)二叉树b的结点个数:14(6)二叉树b的叶子结点个数:6<?>释放二叉树bPress any key to continue实验7 . 2程序exp7-2.cpp设计如下:坠eTPT-2.EPP#include<stdio.h》winclude<malloc.h>deFn Masie 00typde chr ElemTyetypede sruct nde{ElemType data;stuc node *lclldstruct node rchild;》BTHode;extern vod reaeBNodeBTNode extrn void DispBTHode(BTNodeuoid ProrderBTNode *b)if(b?-NULL)- 回1 / 数据元素1 / 指向左孩子1 / 指向右孩子*eb car *str)xb1 / 先序遍历的递归算法1 / 访问根结点/ / 递归访问左子树1 7 递归访问右子树/ / 根结点入栈//栈不为空时循环/ / 退栈并访问该结点/ / 右孩子入栈{》v oidprintf(*c“,b->data); Preorder(b->lchild); Pre0rder(b->rchild);Preorder1(BTNode *b)BTNode xSt[Maxsize],*p;int top=-1;if(b!-HULL)top++;St[top]-b;uhle (op>-)p-St[top];top--;printf("%c“,p->data);if(p->rchild?-HULL)A约e程p7-2.CPPprintF(”后序逅历序列:\n");printf(" 递归算法=");Postorder(b);printf("\n");printf(“非递归算法:“);Postorder1(b);printf("\n");序执行结果如下:xCAPrograFleicsoftVisal SudlyrjecsProj 2Debuzlroj72ex"二叉树b:A(B(D,ECH<J,K(L,M<,N)>))),C(F,GC.I>))层次遍历序列:A B C D E F G H I J K L M N先序遍历序列:递归算法:A B D E H J K L M N C F G I非归算法:A B D E H J K L M N C F G I中序遍历序列:递归算法: D B J H L K M N E A F C G I非递归算法:D B J H L K M N E A F C G I后序遍历序列:递归算法: D J L N M K H E B F I G C A非递归算法:D J L N H K H E B F I G C APress any key to continue臼p7-3.CPP15Pp a t h[p a t h l e n]-b->d a t a;//将当前结点放入路径中p a t h l e n t+;/7路任长度培1Al1Path1(b->ichild,patn,pathlen);1/递归扫描左子树Al1Path1(b->rchild,path,pathlen); //递归扫描右子树pathlen-- ; //恢复环境uoid Longpath(BTNode *b,Elemtype path[1,int pathlen,Elemtype longpath[],int elongpatnien) int i;1f(b==NULL){if(pathlen>longpatnlen) //若当前路径更长,将路径保存在1ongpatn中for(i-pathlen-1;i>-8;i--)longpath[i]=path[1];longpathlen-pathlen;elsepath[pathlen]=b->data; pathlen4; //将当前结点放入路径中//路径长度增1iongPath(b->lchild,path₇pathlen,langpath,longpathien);//递归扫描左子树LongPath(b->rchiid,path,pathien,longpath,longpathien);//递归扫描石子树pathlen--; /7饮其环境oid DispLeaf(BTNode xb)- 口凶uoid DispLeaf(BTNode xb)iE(D!=NULL){ if(b->1child--HULL B& b->rchild--HULL)printf("3c“,b->data);elsepispLeaf(b->ichild);DispLeaf(b->rchild);oid nain()8TNodexb;ElenType patn[Maxsize],longpath[Maxsize];int i.longpathien-U;CreateBTNode(b,"A(B(D,E(H(J,K(L,H(,N))))),C(F,G(,I)))");printf("\n二灾树b:");DispBTNode(b);printf("\n\n*);printf(”b的叶子结点:");DispLeaf(b);printf("\n\n");printf("A11Path:");A11Path(b);printf("m");printf("AiiPath1:n");AliPath1(b.path.);printf("");LongPath(b,path,8,longpath,longpathlen);printf(”第一条量长路径长度=d\n”,longpathlen);printf(”"第一茶最长路径:");for(i=longpathlen;i>=0;i--)printf("c",longpatn[1]);printf("\n\n");。
苏州科技学院数据结构(C语言版)实验报告专业班级测绘1011学号10201151姓名XX实习地点C1 机房指导教师史守正目录封面 (1)目录 (2)实验一线性表 (3)一、程序设计的基本思想,原理和算法描述 (3)二、源程序及注释(打包上传) (3)三、运行输出结果 (4)四、调试和运行程序过程中产生的问题及采取的措施 (6)五、对算法的程序的讨论、分析,改进设想,其它经验教训 (6)实验二栈和队列 (7)一、程序设计的基本思想,原理和算法描述 (8)二、源程序及注释(打包上传) (8)三、运行输出结果 (8)四、调试和运行程序过程中产生的问题及采取的措施 (10)五、对算法的程序的讨论、分析,改进设想,其它经验教训 (10)实验三树和二叉树 (11)一、程序设计的基本思想,原理和算法描述 (11)二、源程序及注释(打包上传) (12)三、运行输出结果 (12)四、调试和运行程序过程中产生的问题及采取的措施 (12)五、对算法的程序的讨论、分析,改进设想,其它经验教训 (12)实验四图 (13)一、程序设计的基本思想,原理和算法描述 (13)二、源程序及注释(打包上传) (14)三、运行输出结果 (14)四、调试和运行程序过程中产生的问题及采取的措施 (15)五、对算法的程序的讨论、分析,改进设想,其它经验教训 (16)实验五查找 (17)一、程序设计的基本思想,原理和算法描述 (17)二、源程序及注释(打包上传) (18)三、运行输出结果 (18)四、调试和运行程序过程中产生的问题及采取的措施 (19)五、对算法的程序的讨论、分析,改进设想,其它经验教训 (19)实验六排序 (20)一、程序设计的基本思想,原理和算法描述 (20)二、源程序及注释(打包上传) (21)三、运行输出结果 (21)四、调试和运行程序过程中产生的问题及采取的措施 (24)五、对算法的程序的讨论、分析,改进设想,其它经验教训 (24)实验一线性表一、程序设计的基本思想,原理和算法描述:程序的主要分为自定义函数、主函数。
《数据结构》实验报告模板(附实例)---实验一线性表的基本操作实现实验一线性表的基本操作实现及其应用一、实验目的1、熟练掌握线性表的基本操作在两种存储结构上的实现,其中以熟悉各种链表的操作为重点。
2、巩固高级语言程序设计方法与技术,会用线性链表解决简单的实际问题。
二、实验内容√ 1、单链表的表示与操作实现 ( * )2、约瑟夫环问题3、Dr.Kong的艺术品三、实验要求1、按照数据结构实验任务书,提前做好实验预习与准备工作。
2、加“*”题目必做,其他题目任选;多选者并且保质保量完成适当加分。
3、严格按照数据结构实验报告模板和规范,及时完成实验报告。
四、实验步骤(说明:依据实验内容分别说明实验程序中用到的数据类型的定义、主程序的流程以及每个操作(成员函数)的伪码算法、函数实现、程序编码、调试与分析、总结、附流程图与主要代码)㈠、数据结构与核心算法的设计描述(程序中每个模块或函数应加注释,说明函数功能、入口及出口参数)1、单链表的结点类型定义/* 定义DataType为int类型 */typedef int DataType;/* 单链表的结点类型 */typedef struct LNode{ DataType data;struct LNode *next;}LNode,*LinkedList;2、初始化单链表LinkedList LinkedListInit( ){ // 每个模块或函数应加注释,说明函数功能、入口及出口参数 }3、清空单链表void LinkedListClear(LinkedList L){// 每个模块或函数应加注释,说明函数功能、入口及出口参数}4、检查单链表是否为空int LinkedListEmpty(LinkedList L){ …. }5、遍历单链表void LinkedListTraverse(LinkedList L){….}6、求单链表的长度int LinkedListLength(LinkedList L){ …. }7、从单链表表中查找元素LinkedList LinkedListGet(LinkedList L,int i){ //L是带头结点的链表的头指针,返回第 i 个元素 }8、从单链表表中查找与给定元素值相同的元素在链表中的位置LinkedList LinkedListLocate(LinkedList L, DataType x){ …… }9、向单链表中插入元素void LinkedListInsert(LinkedList L,int i,DataType x) { // L 为带头结点的单链表的头指针,本算法// 在链表中第i 个结点之前插入新的元素 x}10、从单链表中删除元素void LinkedListDel(LinkedList L,DataType x){ // 删除以 L 为头指针的单链表中第 i 个结点 }11、用尾插法建立单链表LinkedList LinkedListCreat( ){ …… }㈡、函数调用及主函数设计(可用函数的调用关系图说明)㈢程序调试及运行结果分析㈣实验总结五、主要算法流程图及程序清单1、主要算法流程图:2、程序清单(程序过长,可附主要部分)说明:以后每次实验报告均按此格式书写。
实验5:二叉树的建立及遍历(第十三周星期三7、8节)一、实验目的1.学会实现二叉树结点结构和对二叉树的基本操作。
2.掌握对二叉树每种操作的具体实现,学会利用递归方法编写对二叉树这种递归数据结构进行处理的算法。
二、实验要求1.认真阅读和掌握和本实验相关的教材内容。
2.编写完整程序完成下面的实验内容并上机运行。
3.整理并上交实验报告。
三、实验内容1.编写程序任意输入二叉树的结点个数和结点值,构造一棵二叉树,采用三种递归遍历算法(前序、中序、后序)对这棵二叉树进行遍历并计算出二叉树的高度。
2 .编写程序生成下面所示的二叉树,并采用中序遍历的非递归算法对此二叉树进行遍历。
四、思考与提高1.如何计算二叉链表存储的二叉树中度数为1的结点数?2.已知有—棵以二叉链表存储的二叉树,root指向根结点,p指向二叉树中任一结点,如何求从根结点到p所指结点之间的路径?/*----------------------------------------* 05-1_递归遍历二叉树.cpp -- 递归遍历二叉树的相关操作* 对递归遍历二叉树的每个基本操作都用单独的函数来实现* 水上飘2009年写----------------------------------------*/// ds05.cpp : Defines the entry point for the console application.//#include "stdafx.h"#include <iostream>typedef char ElemType;using namespace std;typedef struct BiTNode {ElemType data;//左右孩子指针BiTNode *lchild, *rchild;}BiTNode, *BiTree;//动态输入字符按先序创建二叉树void CreateBiTree(BiTree &T) {char ch;ch = cin.get();if(ch == ' ') {T = NULL;}else {if(ch == '\n') {cout << "输入未结束前不要输入回车,""要结束分支请输入空格!" << endl;}else {//生成根结点T = (BiTNode * )malloc(sizeof(BiTNode));if(!T)cout << "内存分配失败!" << endl;T->data = ch;//构造左子树CreateBiTree(T->lchild);//构造右子树CreateBiTree(T->rchild);}}}//输出e的值ElemType PrintElement(ElemType e) { cout << e << " ";return e;}//先序遍历void PreOrderTraverse(BiTree T) { if (T != NULL) {//打印结点的值PrintElement(T->data);//遍历左孩子PreOrderTraverse(T->lchild);//遍历右孩子PreOrderTraverse(T->rchild);}}//中序遍历void InOrderTraverse(BiTree T) {if (T != NULL) {//遍历左孩子InOrderTraverse(T->lchild);//打印结点的值PrintElement(T->data);//遍历右孩子InOrderTraverse(T->rchild);}}//后序遍历void PostOrderTraverse(BiTree T) { if (T != NULL) {//遍历左孩子PostOrderTraverse(T->lchild);//遍历右孩子PostOrderTraverse(T->rchild);//打印结点的值PrintElement(T->data);}}//按任一种遍历次序输出二叉树中的所有结点void TraverseBiTree(BiTree T, int mark) {if(mark == 1) {//先序遍历PreOrderTraverse(T);cout << endl;}else if(mark == 2) {//中序遍历InOrderTraverse(T);cout << endl;}else if(mark == 3) {//后序遍历PostOrderTraverse(T);cout << endl;}else cout << "选择遍历结束!" << endl;}//输入值并执行选择遍历函数void ChoiceMark(BiTree T) {int mark = 1;cout << "请输入,先序遍历为1,中序为2,后序为3,跳过此操作为0:";cin >> mark;if(mark > 0 && mark < 4) {TraverseBiTree(T, mark);ChoiceMark(T);}else cout << "此操作已跳过!" << endl;}//求二叉树的深度int BiTreeDepth(BiTNode *T) {if (T == NULL) {//对于空树,返回0并结束递归return 0;}else {//计算左子树的深度int dep1 = BiTreeDepth(T->lchild);//计算右子树的深度int dep2 = BiTreeDepth(T->rchild);//返回树的深度if(dep1 > dep2)return dep1 + 1;elsereturn dep2 + 1;}}int _tmain(int argc, _TCHAR* argv[]){BiTNode *bt;bt = NULL; //将树根指针置空cout << "输入规则:" << endl<< "要生成新结点,输入一个字符,""不要生成新结点的左孩子,输入一个空格,""左右孩子都不要,输入两个空格,""要结束,输入多个空格(越多越好),再回车!"<< endl << "按先序输入:";CreateBiTree(bt);cout << "树的深度为:" << BiTreeDepth(bt) << endl;ChoiceMark(bt);return 0;}/*----------------------------------------* 05-2_构造二叉树.cpp -- 构造二叉树的相关操作* 对构造二叉树的每个基本操作都用单独的函数来实现* 水上飘2009年写----------------------------------------*/// ds05-2.cpp : Defines the entry point for the console application.//#include "stdafx.h"#include <iostream>#define STACK_INIT_SIZE 100 //栈的存储空间初始分配量#define STACKINCREMENT 10 //存储空间分配增量typedef char ElemType; //元素类型using namespace std;typedef struct BiTNode {ElemType data; //结点值BiTNode *lchild, *rchild; //左右孩子指针}BiTNode, *BiTree;typedef struct {BiTree *base; //在栈构造之前和销毁之后,base的值为空BiTree *top; //栈顶指针int stacksize; //当前已分配的存储空间,以元素为单位}SqStack;//构造一个空栈void InitStack(SqStack &s) {s.base = (BiTree *)malloc(STACK_INIT_SIZE * sizeof(BiTree));if(!s.base)cout << "存储分配失败!" << endl;s.top = s.base;s.stacksize = STACK_INIT_SIZE;}//插入元素e为新的栈顶元素void Push(SqStack &s, BiTree e) {//栈满,追加存储空间if ((s.top - s.base) >= s.stacksize) {s.base = (BiTree *)malloc((STACK_INIT_SIZE+STACKINCREMENT) * sizeof(BiTree));if(!s.base)cout << "存储分配失败!" << endl;s.top = s.base + s.stacksize;s.stacksize += STACK_INIT_SIZE;}*s.top++ = e;}//若栈不空,则删除s的栈顶元素,并返回其值BiTree Pop(SqStack &s) {if(s.top == s.base)cout << "栈为空,无法删除栈顶元素!" << endl;s.top--;return *s.top;}//按先序输入字符创建二叉树void CreateBiTree(BiTree &T) {char ch;//接受输入的字符ch = cin.get();if(ch == ' ') {//分支结束T = NULL;} //if' 'endelse if(ch == '\n') {cout << "输入未结束前不要输入回车,""要结束分支请输入空格!(接着输入)" << endl;} //if'\n'endelse {//生成根结点T = (BiTNode * )malloc(sizeof(BiTree));if(!T)cout << "内存分配失败!" << endl;T->data = ch;//构造左子树CreateBiTree(T->lchild);//构造右子树CreateBiTree(T->rchild);} //Create end}//输出e的值,并返回ElemType PrintElement(ElemType e) {cout << e << " ";return e;}//中序遍历二叉树的非递归函数void InOrderTraverse(BiTree p, SqStack &S) {cout << "中序遍历结果:";while(S.top != S.base || p != NULL) {if(p != NULL) {Push(S,p);p = p->lchild;} //if NULL endelse {BiTree bi = Pop(S);if(!PrintElement(bi->data))cout << "输出其值未成功!" << endl;p = bi->rchild;} //else end} //while endcout << endl;}int _tmain(int argc, _TCHAR* argv[]){BiTNode *bt;SqStack S;InitStack(S);bt = NULL; //将树根指针置空cout << "老师要求的二叉树序列(‘空’表示空格):""12空空346空空空5空空,再回车!"<< endl << "请按先序输入一个二叉树序列(可另输入,但要为先序),""无左右孩子则分别输入空格。
数据结构实验指导书一、实验目的数据结构是计算机科学中的重要基础课程,通过实验,旨在帮助学生更好地理解和掌握数据结构的基本概念、原理和算法,提高学生的编程能力和问题解决能力。
具体而言,实验的目的包括:1、加深对常见数据结构(如数组、链表、栈、队列、树、图等)的理解,掌握其特点和操作方法。
2、培养学生运用数据结构解决实际问题的能力,提高算法设计和程序实现的能力。
3、增强学生的逻辑思维能力和调试程序的能力,培养学生的创新意识和团队合作精神。
二、实验环境1、操作系统:Windows 或 Linux 操作系统。
2、编程语言:C、C++、Java 等编程语言中的一种。
3、开发工具:如 Visual Studio、Eclipse、Code::Blocks 等集成开发环境(IDE)。
三、实验要求1、实验前,学生应认真预习实验内容,熟悉相关的数据结构和算法,编写好实验程序的代码框架。
2、实验过程中,学生应独立思考,认真调试程序,及时记录实验过程中出现的问题及解决方法。
3、实验完成后,学生应撰写实验报告,包括实验目的、实验内容、实验步骤、实验结果、问题分析与解决等。
四、实验内容(一)线性表1、顺序表的实现与操作实现顺序表的创建、插入、删除、查找等基本操作。
分析顺序表在不同操作下的时间复杂度。
2、链表的实现与操作实现单链表、双向链表的创建、插入、删除、查找等基本操作。
比较单链表和双向链表在操作上的优缺点。
(二)栈和队列1、栈的实现与应用实现顺序栈和链式栈。
利用栈解决表达式求值、括号匹配等问题。
2、队列的实现与应用实现顺序队列和链式队列。
利用队列解决排队问题、广度优先搜索等问题。
(三)树1、二叉树的实现与遍历实现二叉树的创建、插入、删除操作。
实现二叉树的前序、中序、后序遍历算法,并分析其时间复杂度。
2、二叉搜索树的实现与操作实现二叉搜索树的创建、插入、删除、查找操作。
分析二叉搜索树的性能。
(四)图1、图的存储结构实现邻接矩阵和邻接表两种图的存储结构。
算法与及数据结构实验报告算法与数据结构实验报告一、实验目的本次算法与数据结构实验的主要目的是通过实际操作和编程实现,深入理解和掌握常见算法和数据结构的基本原理、特性和应用,提高我们解决实际问题的能力和编程技巧。
二、实验环境本次实验使用的编程语言为 Python,开发环境为 PyCharm。
同时,为了进行算法性能的分析和比较,使用了 Python 的 time 模块来计算程序的运行时间。
三、实验内容1、线性表的实现与操作顺序表的实现:使用数组来实现顺序表,并实现了插入、删除、查找等基本操作。
链表的实现:通过创建节点类来实现链表,包括单向链表和双向链表,并完成了相应的操作。
2、栈和队列的应用栈的实现与应用:用数组或链表实现栈结构,解决了表达式求值、括号匹配等问题。
队列的实现与应用:实现了顺序队列和循环队列,用于模拟排队系统等场景。
3、树结构的探索二叉树的创建与遍历:实现了二叉树的先序、中序和后序遍历算法,并对其时间复杂度进行了分析。
二叉搜索树的操作:构建二叉搜索树,实现了插入、删除、查找等操作。
4、图的表示与遍历邻接矩阵和邻接表表示图:分别用邻接矩阵和邻接表来存储图的结构,并对两种表示方法的优缺点进行了比较。
图的深度优先遍历和广度优先遍历:实现了两种遍历算法,并应用于解决路径查找等问题。
5、排序算法的比较插入排序、冒泡排序、选择排序:实现了这三种简单排序算法,并对不同规模的数据进行排序,比较它们的性能。
快速排序、归并排序:深入理解并实现了这两种高效的排序算法,通过实验分析其在不同情况下的表现。
6、查找算法的实践顺序查找、二分查找:实现了这两种基本的查找算法,并比较它们在有序和无序数据中的查找效率。
四、实验步骤及结果分析1、线性表的实现与操作顺序表:在实现顺序表的插入操作时,如果插入位置在表的末尾或中间,需要移动后续元素以腾出空间。
删除操作同理,需要移动被删除元素后面的元素。
在查找操作中,通过遍历数组即可完成。
数据结构课设——有向图的深度、⼴度优先遍历及拓扑排序任务:给定⼀个有向图,实现图的深度优先, ⼴度优先遍历算法,拓扑有序序列,并输出相关结果。
功能要求:输⼊图的基本信息,并建⽴图存储结构(有相应提⽰),输出遍历序列,然后进⾏拓扑排序,并测试该图是否为有向⽆环图,并输出拓扑序列。
按照惯例,先上代码,注释超详细:#include<stdio.h>#include<stdlib.h>#include<malloc.h>#pragma warning(disable:4996)#define Max 20//定义数组元素最⼤个数(顶点最⼤个数)typedef struct node//边表结点{int adjvex;//该边所指向结点对应的下标struct node* next;//该边所指向下⼀个结点的指针}eNode;typedef struct headnode//顶点表结点{int in;//顶点⼊度char vertex;//顶点数据eNode* firstedge;//指向第⼀条边的指针,边表头指针}hNode;typedef struct//邻接表(图){hNode adjlist[Max];//以数组的形式存储int n, e;//顶点数,边数}linkG;//以邻接表的存储结构创建图linkG* creat(linkG* g){int i, k;eNode* s;//边表结点int n1, e1;char ch;g = (linkG*)malloc(sizeof(linkG));//申请结点空间printf("请输⼊顶点数和边数:");scanf("%d%d", &n1, &e1);g->n = n1;g->e = e1;printf("顶点数:%d 边数:%d\n", g->n, g->e);printf("请输⼊顶点信息(字母):");getchar();//因为接下来要输⼊字符串,所以getchar⽤于承接上⼀条命令的结束符for (i = 0; i < n1; i++){scanf("%c", &ch);g->adjlist[i].vertex = ch;//获得该顶点数据g->adjlist[i].firstedge = NULL;//第⼀条边设为空}printf("\n打印顶点下标及顶点数据:\n");for (i = 0; i < g->n; i++)//循环打印顶点下标及顶点数据{printf("顶点下标:%d 顶点数据:%c\n", i, g->adjlist[i].vertex);}getchar();int i1, j1;//相连接的两个顶点序号for (k = 0; k < e1; k++)//建⽴边表{printf("请输⼊对<i,j>(空格分隔):");scanf("%d%d", &i1, &j1);s = (eNode*)malloc(sizeof(eNode));//申请边结点空间s->adjvex = j1;//边所指向结点的位置,下标为j1s->next = g->adjlist[i1].firstedge;//将当前s的指针指向当前顶点上指向的结点g->adjlist[i1].firstedge = s;//将当前顶点的指针指向s}return g;//返回指针g}int visited[Max];//标记是否访问void DFS(linkG* g, int i)//深度优先遍历{eNode* p;printf("%c ", g->adjlist[i].vertex);visited[i] = 1;//将已访问过的顶点visited值改为1p = g->adjlist[i].firstedge;//p指向顶点i的第⼀条边while (p)//p不为NULL时(边存在){if (visited[p->adjvex] != 1)//如果没有被访问DFS(g, p->adjvex);//递归}p = p->next;//p指向下⼀个结点}}void DFSTravel(linkG* g)//遍历⾮连通图{int i;printf("深度优先遍历;\n");//printf("%d\n",g->n);for (i = 0; i < g->n; i++)//初始化为0{visited[i] = 0;}for (i = 0; i < g->n; i++)//对每个顶点做循环{if (!visited[i])//如果没有被访问{DFS(g, i);//调⽤DFS函数}}}void BFS(linkG* g, int i)//⼴度优先遍历{int j;eNode* p;int q[Max], front = 0, rear = 0;//建⽴顺序队列⽤来存储,并初始化printf("%c ", g->adjlist[i].vertex);visited[i] = 1;//将已经访问过的改成1rear = (rear + 1) % Max;//普通顺序队列的话,这⾥是rear++q[rear] = i;//当前顶点(下标)队尾进队while (front != rear)//队列⾮空{front = (front + 1) % Max;//循环队列,顶点出队j = q[front];p = g->adjlist[j].firstedge;//p指向出队顶点j的第⼀条边while (p != NULL){if (visited[p->adjvex] == 0)//如果未被访问{printf("%c ", g->adjlist[p->adjvex].vertex);visited[p->adjvex] = 1;//将该顶点标记数组值改为1rear = (rear + 1) % Max;//循环队列q[rear] = p->adjvex;//该顶点进队}p = p->next;//指向下⼀个结点}}}void BFSTravel(linkG* g)//遍历⾮连通图{int i;printf("⼴度优先遍历:\n");for (i = 0; i < g->n; i++)//初始化为0{visited[i] = 0;}for (i = 0; i < g->n; i++)//对每个顶点做循环{if (!visited[i])//如果没有被访问过{BFS(g, i);//调⽤BFS函数}}}//因为拓扑排序要求⼊度为0,所以需要先求出每个顶点的⼊度void inDegree(linkG* g)//求图顶点⼊度{eNode* p;int i;for (i = 0; i < g->n; i++)//循环将顶点⼊度初始化为0{g->adjlist[i].in = 0;}for (i = 0; i < g->n; i++)//循环每个顶点{p = g->adjlist[i].firstedge;//获取第i个链表第1个边结点指针while (p != NULL)///当p不为空(边存在){g->adjlist[p->adjvex].in++;//该边终点结点⼊度+1p = p->next;//p指向下⼀个边结点}printf("顶点%c的⼊度为:%d\n", g->adjlist[i].vertex, g->adjlist[i].in);}void topo_sort(linkG *g)//拓扑排序{eNode* p;int i, k, gettop;int top = 0;//⽤于栈指针的下标索引int count = 0;//⽤于统计输出顶点的个数int* stack=(int *)malloc(g->n*sizeof(int));//⽤于存储⼊度为0的顶点for (i=0;i<g->n;i++)//第⼀次搜索⼊度为0的顶点{if (g->adjlist[i].in==0){stack[++top] = i;//将⼊度为0的顶点进栈}}while (top!=0)//当栈不为空时{gettop = stack[top--];//出栈,并保存栈顶元素(下标)printf("%c ",g->adjlist[gettop].vertex);count++;//统计顶点//接下来是将邻接点的⼊度减⼀,并判断该点⼊度是否为0p = g->adjlist[gettop].firstedge;//p指向该顶点的第⼀条边的指针while (p)//当p不为空时{k = p->adjvex;//相连接的顶点(下标)g->adjlist[k].in--;//该顶点⼊度减⼀if (g->adjlist[k].in==0){stack[++top] = k;//如果⼊度为0,则进栈}p = p->next;//指向下⼀条边}}if (count<g->n)//如果输出的顶点数少于总顶点数,则表⽰有环{printf("\n有回路!\n");}free(stack);//释放空间}void menu()//菜单{system("cls");//清屏函数printf("************************************************\n");printf("* 1.建⽴图 *\n");printf("* 2.深度优先遍历 *\n");printf("* 3.⼴度优先遍历 *\n");printf("* 4.求出顶点⼊度 *\n");printf("* 5.拓扑排序 *\n");printf("* 6.退出 *\n");printf("************************************************\n");}int main(){linkG* g = NULL;int c;while (1){menu();printf("请选择:");scanf("%d", &c);switch (c){case1:g = creat(g); system("pause");break;case2:DFSTravel(g); system("pause");break;case3:BFSTravel(g); system("pause");break;case4:inDegree(g); system("pause");break;case5:topo_sort(g); system("pause");break;case6:exit(0);break;}}return0;}实验⽤图:运⾏结果:关于深度优先遍历 a.从图中某个顶点v 出发,访问v 。
HUNAN UNIVERSITY数据结构实验报告题目:图的遍历问题学生姓名梁天学生学号************专业班级计科1403指导老师夏艳日期2016.05.14背景网络蜘蛛即Web Spider,是一个很形象的名字。
把互联网比喻成一个蜘蛛网,那么Spider 就是在网上爬来爬去的蜘蛛。
网络蜘蛛是通过网页的链接地址来寻找网页,从网站某一个页面(通常是首页)开始,读取网页的内容,找到在网页中的其它链接地址,然后通过这些链接地址寻找下一个网页,这样一直循环下去,直到把这个网站所有的网页都抓取完为止。
如果把整个互联网当成一个网站,那么网络蜘蛛就可以用这个原理把互联网上所有的网页都抓取下来。
这样看来,网络蜘蛛就是一个爬行程序,一个抓取网页的程序。
在抓取网页的时候,网络蜘蛛一般有两种策略:广度优先和深度优先(如下面这张简单化的网页连接模型图所示,其中A为起点也就是蜘蛛索引的起点)。
深度优先顾名思义就是让网络蜘蛛尽量的在抓取网页时往网页更深层次的挖掘进去讲究的是深度!也泛指: 网络蜘蛛将会从起始页开始,一个链接一个链接跟踪下去,处理完这条线路之后再转入下一个起始页,继续跟踪链接! 则访问的节点顺序为==> A --> B --> E --> H --> I --> C --> D --> F --> K --> L --> G。
深度爬行的优点是:网络蜘蛛程序在设计的时候相对比较容易些;缺点是每次爬行一层总要向"蜘蛛老家" 数据库访问一下。
问问老总有必要还要爬下一层吗! 爬一层问一次.... 如果一个蜘蛛不管3721不断往下爬很可能迷路更有可能爬到国外的网站去,不仅增加了系统数据的复杂度更是增加的服务器的负担。
广度优先在这里的定义就是层爬行,即一层一层的爬行,按照层的分布与布局去索引处理与抓取网页。
则访问的节点顺序为==> A --> B --> C --> D --> E --> F --> G --> H --> I--> K --> L。
实验5:树(二叉树)(采用二叉链表存储)一、实验项目名称二叉树及其应用二、实验目的熟悉二叉树的存储结构的特性以及二叉树的基本操作。
三、实验基本原理之前我们都是学习的线性结构,这次我们就开始学习非线性结构——树。
线性结构中结点间具有唯一前驱、唯一后继关系,而非线性结构中结点的前驱、后继的关系并不具有唯一性。
在树结构中,节点间关系是前驱唯一而后继不唯一,即结点之间是一对多的关系。
直观地看,树结构是具有分支关系的结构(其分叉、分层的特征类似于自然界中的树)。
四、主要仪器设备及耗材Window 11、Dev-C++5.11五、实验步骤1.导入库和预定义2.创建二叉树3.前序遍历4.中序遍历5.后序遍历6.总结点数7.叶子节点数8.树的深度9.树根到叶子的最长路径10.交换所有节点的左右子女11.顺序存储12.显示顺序存储13.测试函数和主函数对二叉树的每一个操作写测试函数,然后在主函数用while+switch-case的方式实现一个带菜单的简易测试程序,代码见“实验完整代码”。
实验完整代码:#include <bits/stdc++.h>using namespace std;#define MAX_TREE_SIZE 100typedef char ElemType;ElemType SqBiTree[MAX_TREE_SIZE];struct BiTNode{ElemType data;BiTNode *l,*r;}*T;void createBiTree(BiTNode *&T){ElemType e;e = getchar();if(e == '\n')return;else if(e == ' ')T = NULL;else{if(!(T = (BiTNode *)malloc(sizeof (BiTNode)))){cout << "内存分配错误!" << endl;exit(0);}T->data = e;createBiTree(T->l);createBiTree(T->r);}}void createBiTree2(BiTNode *T,int u) {if(T){SqBiTree[u] = T->data;createBiTree2(T->l,2 * u + 1);createBiTree2(T->r,2 * u + 2); }}void outputBiTree2(int n){int cnt = 0;for(int i = 0;cnt <= n;i++){cout << SqBiTree[i];if(SqBiTree[i] != ' ')cnt ++;}cout << endl;}void preOrderTraverse(BiTNode *T) {if(T){cout << T->data;preOrderTraverse(T->l);preOrderTraverse(T->r);}}void inOrderTraverse(BiTNode *T) {if(T){inOrderTraverse(T->l);cout << T->data;inOrderTraverse(T->r);}}void beOrderTraverse(BiTNode *T){if(T){beOrderTraverse(T->l);beOrderTraverse(T->r);cout << T->data;}}int sumOfVer(BiTNode *T){if(!T)return 0;return sumOfVer(T->l) + sumOfVer(T->r) + 1;}int sumOfLeaf(BiTNode *T){if(!T)return 0;if(T->l == NULL && T->r == NULL)return 1;return sumOfLeaf(T->l) + sumOfLeaf(T->r);}int depth(BiTNode *T){if(!T)return 0;return max(depth(T->l),depth(T->r)) + 1;}bool LongestPath(int dist,int dist2,vector<ElemType> &ne,BiTNode *T) {if(!T)return false;if(dist2 == dist)return true;if(LongestPath(dist,dist2 + 1,ne,T->l)){ne.push_back(T->l->data);return true;}else if(LongestPath(dist,dist2 + 1,ne,T->r)){ne.push_back(T->r->data);return true;}return false;}void swapVer(BiTNode *&T){if(T){swapVer(T->l);swapVer(T->r);BiTNode *tmp = T->l;T->l = T->r;T->r = tmp;}}//以下是测试程序void test1(){getchar();cout << "请以先序次序输入二叉树结点的值,空结点用空格表示:" << endl; createBiTree(T);cout << "二叉树创建成功!" << endl;}void test2(){cout << "二叉树的前序遍历为:" << endl;preOrderTraverse(T);cout << endl;}void test3(){cout << "二叉树的中序遍历为:" << endl;inOrderTraverse(T);cout << endl;}void test4(){cout << "二叉树的后序遍历为:" << endl;beOrderTraverse(T);cout << endl;}void test5(){cout << "二叉树的总结点数为:" << sumOfVer(T) << endl;}void test6(){cout << "二叉树的叶子结点数为:" << sumOfLeaf(T) << endl; }void test7(){cout << "二叉树的深度为:" << depth(T) << endl;}void test8(){int dist = depth(T);vector<ElemType> ne;cout << "树根到叶子的最长路径:" << endl;LongestPath(dist,1,ne,T);ne.push_back(T->data);reverse(ne.begin(),ne.end());cout << ne[0];for(int i = 1;i < ne.size();i++)cout << "->" << ne[i];cout << endl;}void test9(){swapVer(T);cout << "操作成功!" << endl;}void test10(){memset(SqBiTree,' ',sizeof SqBiTree);createBiTree2(T,0);cout << "操作成功!" << endl;}void test11(){int n = sumOfVer(T);outputBiTree2(n);}int main(){int op = 0;while(op != 12){cout << "-----------------menu--------------------" << endl;cout << "--------------1:创建二叉树--------------" << endl;cout << "--------------2:前序遍历----------------" << endl;cout << "--------------3:中序遍历----------------" << endl;cout << "--------------4:后序遍历----------------" << endl;cout << "--------------5:总结点数----------------" << endl;cout << "--------------6:叶子节点数--------------" << endl;cout << "--------------7:树的深度----------------" << endl;cout << "--------------8:树根到叶子的最长路径----" << endl;cout << "--------------9:交换所有节点左右子女----" << endl;cout << "--------------10:顺序存储---------------" << endl;cout << "--------------11:显示顺序存储-----------" << endl;cout << "--------------12:退出测试程序-----------" << endl;cout << "请输入指令编号:" << endl;if(!(cin >> op)){cin.clear();cin.ignore(INT_MAX,'\n');cout << "请输入整数!" << endl;continue;}switch(op){case 1:test1();break;case 2:test2();break;case 3:test3();break;case 4:test4();break;case 5:test5();break;case 6:test6();break;case 7:test7();break;case 8:test8();break;case 9:test9();break;case 10:test10();break;case 11:test11();break;case 12:cout << "测试结束!" << endl;break;default:cout << "请输入正确的指令编号!" << endl;}}return 0;}六、实验数据及处理结果测试用例:1.创建二叉树(二叉链表形式)2.前序遍历3.中序遍历4.后序遍历5.总结点数6.叶子结点数7.树的深度8.树根到叶子的最长路径9.交换所有左右子女10.顺序存储七、思考讨论题或体会或对改进实验的建议通过这次实验,我掌握了二叉树的顺序存储和链式存储,体会了二叉树的存储结构的特性,掌握了二叉树的树上相关操作。
深度优先搜索算法数据结构中的遍历方法深度优先搜索(Depth First Search,DFS)是一种常用的图遍历算法,它具有简单、易实现的特点,在很多问题中都有广泛的应用。
本文将介绍深度优先搜索算法数据结构中的遍历方法,包括递归实现和迭代实现两种方式。
一、递归实现深度优先搜索算法递归实现深度优先搜索算法十分简洁,基本思路是从起始节点开始,以深度优先的方式遍历整个图。
具体步骤如下:1. 定义一个标记数组visited,用于记录每个节点是否被访问过。
初始时,visited数组的所有元素都设置为false。
2. 从起始节点开始,对未被访问过的相邻节点进行递归访问。
在递归访问一个节点时,标记该节点为已访问。
3. 重复步骤2,直到所有节点都被访问过。
递归实现深度优先搜索算法的伪代码如下:```void DFS(int node, bool[] visited) {visited[node] = true;for (int i = 0; i < adj[node].length; i++) {int nextNode = adj[node][i];if (!visited[nextNode]) {DFS(nextNode, visited);}}}```二、迭代实现深度优先搜索算法除了递归实现外,深度优先搜索算法还可以通过迭代的方式来实现。
迭代实现的基本思路是使用栈(Stack)来辅助遍历,具体步骤如下:1. 定义一个标记数组visited,用于记录每个节点是否被访问过。
初始时,visited数组的所有元素都设置为false。
2. 创建一个空栈,并将起始节点入栈。
3. 循环执行以下操作,直到栈为空:- 出栈一个节点,并将其标记为已访问。
- 遍历该节点的所有未被访问过的相邻节点,将其入栈。
迭代实现深度优先搜索算法的伪代码如下:```void DFS(int startNode, bool[] visited) {Stack<int> stack = new Stack<int>();stack.Push(startNode);while (stack.Count > 0) {int node = stack.Pop();visited[node] = true;for (int i = 0; i < adj[node].length; i++) {int nextNode = adj[node][i];if (!visited[nextNode]) {stack.Push(nextNode);}}}}```三、总结深度优先搜索算法是一种重要且常用的图遍历算法,通过递归或迭代的方式可以实现节点的深度优先遍历。
2D-Delaunay三角网格的数据结构与遍历高晓沨1,黄懿2(1.清华大学数学系,北京 100080;南开大学数学科学学院,天津 300071) 摘要:本文总结了二维Delaunay三角网格的Bowyer-Watson自动生成算法及其实现步骤,提出了一种类的结构、函数范例(采用Visual C++ 6.0编写程序),并讨论了遍历三角网格各种方法的优劣性,给出实验数据对比;最后得出结论,用广度优先的遍历方法创建网格是生成三角网格一种相对便利有效率的方法;另外,讨论了初始点加入顺序对程序运行时间的影响。
关键词:Delaunay三角网格 类结构 自动生成 广度优先遍历Data Structure and Traverse of 2D-Delaunay TriangulationGao Xiaofeng1, Huang Yi2(Department of Mathematics ,Tsinghua University; Beijing,100080College of Mathematics, Nankai University, Tianjin, 300071) Abstruct: The article summarized the realization of 2D-Delaunay triangulation, thesteps of creating Bowyer-Watson automatic mesh generator, and then constructed a kindof Class structure as well as functions of this algorithm (using Visual C++ 6.0), andfinally discussed the advantage and disadvantage of different methods to traverse thetriangle mesh, using data examination as contrast. Lastly, the author got theconclusion that Width First Traversal method is more effective and convenient. Besides,we discussed the effect between the order of original point set and running time ofthe program.Key Word: Delaunay Triangulation, Class Structure,automatic generation, Width FirstTraversal1.引言近年来,平面任意点集的三角网格化(triangulation)问题一直是人们密切关注的问题。
深度优先遍历算法和广度优先遍历算法实验小结一、引言在计算机科学领域,图的遍历是一种基本的算法操作。
深度优先遍历算法(Depth First Search,DFS)和广度优先遍历算法(Breadth First Search,BFS)是两种常用的图遍历算法。
它们在解决图的连通性和可达性等问题上具有重要的应用价值。
本文将从理论基础、算法原理、实验设计和实验结果等方面对深度优先遍历算法和广度优先遍历算法进行实验小结。
二、深度优先遍历算法深度优先遍历算法是一种用于遍历或搜索树或图的算法。
该算法从图的某个顶点开始遍历,沿着一条路径一直向前直到不能再继续前进为止,然后退回到上一个节点,尝试下一个节点,直到遍历完整个图。
深度优先遍历算法通常使用栈来实现。
以下是深度优先遍历算法的伪代码:1. 创建一个栈并将起始节点压入栈中2. 将起始节点标记为已访问3. 当栈不为空时,执行以下步骤:a. 弹出栈顶节点,并访问该节点b. 将该节点尚未访问的邻居节点压入栈中,并标记为已访问4. 重复步骤3,直到栈为空三、广度优先遍历算法广度优先遍历算法是一种用于遍历或搜索树或图的算法。
该算法从图的某个顶点开始遍历,先访问起始节点的所有相邻节点,然后再依次访问这些相邻节点的相邻节点,依次类推,直到遍历完整个图。
广度优先遍历算法通常使用队列来实现。
以下是广度优先遍历算法的伪代码:1. 创建一个队列并将起始节点入队2. 将起始节点标记为已访问3. 当队列不为空时,执行以下步骤:a. 出队一个节点,并访问该节点b. 将该节点尚未访问的邻居节点入队,并标记为已访问4. 重复步骤3,直到队列为空四、实验设计本次实验旨在通过编程实现深度优先遍历算法和广度优先遍历算法,并通过对比它们在不同图结构下的遍历效果,验证其算法的正确性和有效性。
具体实验设计如下:1. 实验工具:使用Python编程语言实现深度优先遍历算法和广度优先遍历算法2. 实验数据:设计多组图结构数据,包括树、稠密图、稀疏图等3. 实验环境:在相同的硬件环境下运行实验程序,确保实验结果的可比性4. 实验步骤:编写程序实现深度优先遍历算法和广度优先遍历算法,进行多次实验并记录实验结果5. 实验指标:记录每种算法的遍历路径、遍历时间和空间复杂度等指标,进行对比分析五、实验结果在不同图结构下,经过多次实验,分别记录了深度优先遍历算法和广度优先遍历算法的实验结果。
软件学院学科基础课程实验报告册课程名称数据结构实验学期年至年第学期学生所在院(系)年级专业班级学生姓名学号指导教师实验最终成绩软件工程教研室制2010年3月实验报告须知1、学生按照“实训”课任课教师给出的题目和要求填写实验报告,填写应遵循实验报告样本格式。
2、完成的电子文档(文档、表格、演示文稿、操作过程截图等)按任课教师的要求发往指定的电子邮箱。
3、学生应该填写的内容包括:封面相关栏目、实验题目、时间、地点、实验目的、内容、过程和步骤、结果分析总结。
4、教师应该填写的内容包括:实验最终成绩、每次实验报告的成绩和对报告内容的评阅。
教师根据每学期该课程的实验教学要求,评定学生的实验成绩。
在课程结束后两周内将教学班的实验报告汇总交教学秘书存档。
5、未尽事宜,请参考该课程实验大纲和考试大纲。
实验报告(一)实验题目线性表的应用实验时间年月日实验地点实验成绩实验性质□应用性□设计性□综合性教师评阅:□实验目的明确;□操作步骤正确;□设计文稿(表格、程序、数据库、网页)符合要求;□保存路径正确;□实验结果正确;□实验分析总结全面;□实验报告规范;□其他:评阅教师签名:一、实验目的1 了解和掌握线性表的顺序存储和链式存储在计算机中的表示,基本操做在计算机中的实现。
2 能够利用线性表结构对实际问题进行分析建模,利用计算机求解。
3 能够从时间和空间复杂度的角度综合比较线性表两种存储结构的不同特点及其适用场合。
二、实验内容和要求1 利用程序设计语言分别实现顺序表和链表的抽象数据类型。
2 掌握程序分文件(头文件和实现文件)书写的方式。
3 分别用顺序表和链表实现课本算法2.2:合并两个非递减有序序列,并对其时间性能做出分析。
三、实验过程与步骤(原始记录)四、实验结果(设计文档、文稿、数据表、媒体文件存放路径)五、实验分析总结实验报告(二)实验题目栈和队列的应用实验时间年月日实验地点实验成绩实验性质□应用性□设计性□综合性教师评阅:□实验目的明确;□操作步骤正确;□设计文稿(表格、程序、数据库、网页)符合要求;□保存路径正确;□实验结果正确;□实验分析总结全面;□实验报告规范;□其他:评阅教师签名:一、实验目的1. 掌握栈和队列这两种抽象数据类型的特点,并能在相应的应用问题中正确选用它们。
关于数据的遍历方法数据遍历是指按照一定的规则和方法,遍历数据集合中的每个元素。
在计算机科学和信息技术领域,数据遍历是非常常见和重要的操作,可以用来查找特定数据、对数据进行处理和分析、进行数据可视化等。
数据遍历的方法有很多种,常用的方法包括线性遍历、递归遍历、并行遍历、深度优先遍历和广度优先遍历等。
下面将详细介绍这些遍历方法。
1.线性遍历:线性遍历是最常见和基本的数据遍历方法,也是最简单的方法。
线性遍历就是按顺序依次访问数据集合中的每个元素,无论是数组、链表还是其他数据结构。
线性遍历可以使用循环结构实现,比较常见的循环结构有for循环和while循环。
线性遍历的时间复杂度是O(n),其中n是数据集合的大小。
2.递归遍历:递归遍历是指通过递归的方式遍历数据集合。
递归是一种自我调用的方法,可以通过递归函数来实现对数据集合的遍历。
递归遍历的优点是代码简洁清晰,但是在大数据集合上可能存在性能问题。
递归遍历可以使用深度优先遍历或广度优先遍历的方式进行。
3.并行遍历:并行遍历是指同时遍历多个数据集合。
在多核处理器和分布式系统中,可以将不同的处理器或节点分配给不同的数据集合进行并行遍历。
并行遍历可以大大提高遍历大规模数据集合的效率,但同时也需要考虑数据同步和通信的问题。
4.深度优先遍历:深度优先遍历是一种先访问子节点再访问兄弟节点的遍历方式。
深度优先遍历一般使用递归或栈来实现。
在深度优先遍历中,先以深度优先的方式访问第一个子节点,然后再按深度优先的方式访问该子节点的子节点,直到最后一个子节点,然后回溯到上一级节点,继续访问该节点的兄弟节点,依此类推。
深度优先遍历通常用于查找特定数据或进行深度优先。
5.广度优先遍历:广度优先遍历是一种先访问兄弟节点再访问子节点的遍历方式。
广度优先遍历一般使用队列来实现。
在广度优先遍历中,首先访问根节点,然后按照广度优先的方式访问根节点的所有子节点,再逐层访问下去,直到访问到最后一层。
数据结构之的遍历深度优先搜索和广度优先搜索的实现和应用深度优先搜索和广度优先搜索是数据结构中重要的遍历算法,它们在解决各种问题时起着关键作用。
本文将介绍深度优先搜索和广度优先搜索的实现方法以及它们的应用。
一、深度优先搜索的实现和应用深度优先搜索(Depth First Search,DFS)是一种用于图或树的遍历算法。
它的基本思想是从起始节点开始,一直沿着某一分支深入直到不能再深入为止,然后回溯到前一个节点,再沿另一分支深入,直到遍历完所有节点。
深度优先搜索可以通过递归或者栈来实现。
在实现深度优先搜索时,可以采用递归的方式。
具体的实现步骤如下:1. 创建一个访问数组,用于标记节点是否已经被访问过。
2. 从起始节点开始,将其标记为已访问。
3. 遍历当前节点的邻接节点,对于每个邻接节点,如果该节点未被访问过,则递归调用深度优先搜索函数。
4. 重复步骤3,直到所有节点都被访问过。
深度优先搜索的应用非常广泛,以下是几个常见的应用场景:1. 图的连通性判断:深度优先搜索可以用于判断图中的两个节点是否连通。
2. 拓扑排序:深度优先搜索可以用于对有向无环图进行拓扑排序,即按照一种特定的线性顺序对节点进行排序。
3. 岛屿数量计算:深度优先搜索可以用于计算给定矩阵中岛屿的数量,其中岛屿由相邻的陆地单元组成。
二、广度优先搜索的实现和应用广度优先搜索(Breadth First Search,BFS)是一种用于图或树的遍历算法。
它的基本思想是从起始节点开始,逐层遍历,先访问当前节点的所有邻接节点,然后再依次访问下一层的节点,直到遍历完所有节点。
广度优先搜索可以通过队列来实现。
在实现广度优先搜索时,可以采用队列的方式。
具体的实现步骤如下:1. 创建一个访问数组,用于标记节点是否已经被访问过。
2. 创建一个空队列,并将起始节点入队。
3. 当队列不为空时,取出队首节点,并标记为已访问。
4. 遍历当前节点的邻接节点,对于每个邻接节点,如果该节点未被访问过,则将其入队。
数据结构实验报告
实验:图的遍历
一、实验目的:
1、理解并掌握图的逻辑结构和物理结构——邻接矩阵、邻接表
2、掌握图的构造方法
3、掌握图的邻接矩阵、邻接表存储方式下基本操作的实现算法
4、掌握图的深度优先遍历和广度优先原理
二、实验内容:
1、输入顶点数、边数、每个顶点的值以及每一条边的信息,构造一个无向图G,并用邻接矩阵存储改图。
2、输入顶点数、边数、每个顶点的值以及每一条边的信息,构造一个无向图G,并用邻接表存储该图
3、深度优先遍历第一步中构造的图G,输出得到的节点序列
4、广度优先遍历第一部中构造的图G,输出得到的节点序列
三、实验要求:
1、无向图中的相关信息要从终端以正确的方式输入;
2、具体的输入和输出格式不限;
3、算法要具有较好的健壮性,对错误操作要做适当处理;
4、程序算法作简短的文字注释。
四、程序实现及结果:
1、邻接矩阵:
#include <stdio.h>
#include <malloc.h>
#define VERTEX_MAX 30
#define MAXSIZE 20
typedef struct
{
int
arcs[VERTEX_MAX][VERTEX_MAX] ;
int vexnum,arcnum;
} MGraph; void creat_MGraph1(MGraph *g) { int i,j,k;
int n,m;
printf("请输入顶点数和边数:");
scanf("%d%d",&n,&m);
g->vexnum=n;
g->arcnum=m;
for (i=0;i<n;i++)
for (j=0;j<n;j++)
g->arcs[i][j]=0;
while(1)
{
printf("请输入一条边的两个顶点:\n");
scanf("%d%d",&i,&j);
if(i==-1 || j==-1)
break;
else if(i==j || i>=n || j>=n)
{
printf("输入错误,请重新输入!\n");
}
else
{
g->arcs[i][j]=1;
g->arcs[j][i]=1;
}
}
}
void printMG(MGraph *g) {
int i,j;
for (i=0;i<g->vexnum;i++)
{for (j=0;j<g->vexnum;j++)
printf(" %d",g->arcs[i][j]);
printf("\n");
}
printf("\n");
}
main()
{
int i,j;
int fg;
MGraph *g1;
g1=(MGraph
*)malloc(sizeof(MGraph));
printf("1:创建无向图的邻接矩阵\n\n");
creat_MGraph1(g1);
printf("\n此图的邻接矩阵为:\n"); printMG(g1);
}
2、邻接链表:
#include<stdio.h>
#include<malloc.h>
#define MAX_SIZE 10
typedef struct node{
int vertex;
struct node *next;
}node,adjlist[MAX_SIZE];
adjlist g;
int visited[MAX_SIZE+1];
int que[MAX_SIZE+1];
void creat()
{
int n,e;
int i;
int start,end;
node *p,*q,*pp,*qq;
printf("输入无向图的顶点数和边数:");
scanf("%d%d",&n,&e);
for(i = 1; i <= n ; i++)
{
visited[i] = 0;
g[i].vertex = i;
g[i].next = NULL;
}
printf("依次输入边:\n");
for(i = 1; i <= e ; i++)
{
scanf("%d%d",&start,&end);
p=(node *)malloc(sizeof(node));
p->vertex = end;
p->next = NULL;
q = &g[start];
while(q->next)
q = q->next;
q->next = p;
p1=(node
*)malloc(sizeof(node));
p1->vertex = start;
p1->next = NULL;
q1 = &g[end];
while(qq->next)
q1 = q1->next;
q1->next = p1;
}
}
void bfs(int vi)
{
int front,rear,v;
node *p;
front =0;
rear = 1;
visited[vi] = 1;
que[0] = vi;
printf("%d ",vi);
while(front != rear)
{
v = que[front];
p = g[v].next;
while(p)
{
if(!visited[p->vertex])
{
visited[p->vertex]= 1;
printf("%d
",p->vertex);
que[rear++] = p->vertex;
}
p = p->next;
}
front++;
}
}
int main()
{
creat();
bfs(1);
printf("\n");
return 0;
}
五.实验心得与体会:
(1)通过这次实验,使我基本上掌握了图的存储和遍历,让我弄清楚了如何用邻接矩阵和邻接链表对图进行存储
(2)深度优先遍历和广度优先遍历都有着各自的优点,通过程序逐步调试,可以慢慢的理解这两种遍历方法的内涵和巧妙之处。
(3)实验过程中,总体来说还算顺畅,但在编写过程中,要养成良好的编程习惯,以免出错后浪费大量的时间在查错上。