气汽对流传热系数的测定实验
- 格式:doc
- 大小:600.50 KB
- 文档页数:4
化工原理实验(四)空气-蒸汽对流给热系数测定一、实验目的1、 了解间壁式传热元件,掌握给热系数测定的实验方法。
2、 掌握热电阻测温的方法,观察水蒸气在水平管外壁上的冷凝现象。
3、 学会给热系数测定的实验数据处理方法,了解影响给热系数的因素和强化传热的途径。
二、基本原理在工业生产过程中,大量情况下,冷、热流体系通过固体壁面(传热元件)进行热量交换,称为间壁式换热。
如图(4-1)所示,间壁式传热过程由热流体对固体壁面的对流传热,固体壁面的热传导和固体壁面对冷流体的对流传热所组成。
达到传热稳定时,有()()()()mm W M W p p t KA t t A T T A t t c m T T c m Q ∆=-=-=-=-=221112222111αα (4-1)Tt图4-1间壁式传热过程示意图式中:Q - 传热量,J / s ;m 1 - 热流体的质量流率,kg / s ; c p 1 - 热流体的比热,J / (kg ∙℃); T 1 - 热流体的进口温度,℃; T 2 - 热流体的出口温度,℃; m 2 - 冷流体的质量流率,kg / s ; c p 2 - 冷流体的比热,J / (kg ∙℃); t 1 - 冷流体的进口温度,℃; t 2 - 冷流体的出口温度,℃;α1 - 热流体与固体壁面的对流传热系数,W / (m 2 ∙℃);A 1 - 热流体侧的对流传热面积,m 2;()m W T T -- 热流体与固体壁面的对数平均温差,℃;α2 - 冷流体与固体壁面的对流传热系数,W / (m 2 ∙℃);A 2 - 冷流体侧的对流传热面积,m 2;()m W t t - - 固体壁面与冷流体的对数平均温差,℃;K - 以传热面积A 为基准的总给热系数,W / (m 2 ∙℃); m t ∆- 冷热流体的对数平均温差,℃;热流体与固体壁面的对数平均温差可由式(4—2)计算,()()()22112211ln W W W W m W T T T T T T T T T T -----=- (4-2)式中:T W 1 - 热流体进口处热流体侧的壁面温度,℃;T W 2 - 热流体出口处热流体侧的壁面温度,℃。
一、实验目的1. 了解对流传热的基本原理,掌握对流传热系数的测定方法。
2. 掌握牛顿冷却定律的应用,通过实验验证其对流传热系数的计算公式。
3. 分析影响对流传热系数的因素,如流体速度、温度差、流体性质等。
二、实验原理对流传热系数是指单位时间内,单位面积上流体温度差为1℃时,单位面积上传递的热量。
牛顿冷却定律描述了对流传热过程,即:Q = h A (T1 - T2)式中:Q ——传热量(W)h ——对流传热系数(W/(m²·K))A ——传热面积(m²)T1 ——高温流体温度(℃)T2 ——低温流体温度(℃)根据牛顿冷却定律,可以通过实验测量传热量、传热面积、流体温度差,从而计算出对流传热系数。
三、实验仪器与材料1. 套管换热器2. 温度计3. 流量计4. 计时器5. 计算器6. 水和空气四、实验步骤1. 准备实验仪器,连接套管换热器、温度计、流量计等。
2. 在套管换热器内注入水,打开冷却水阀门,调节流量至预定值。
3. 在套管换热器外通入空气,调节风速至预定值。
4. 同时打开加热器和冷却水阀门,使水加热至预定温度,空气冷却至预定温度。
5. 记录开始加热和冷却的时间,观察温度变化。
6. 当温度变化稳定后,记录温度计的读数,计算温度差。
7. 关闭加热器和冷却水阀门,停止实验。
五、实验数据与处理1. 记录实验数据,包括水温度、空气温度、流量、时间等。
2. 根据牛顿冷却定律计算传热量Q:Q = m c ΔT其中,m为水的质量流量(kg/s),c为水的比热容(J/(kg·K)),ΔT为温度差(K)。
3. 计算对流传热系数h:h = Q / (A ΔT)六、实验结果与分析1. 根据实验数据,计算对流传热系数h,并与理论值进行比较。
2. 分析实验结果,探讨影响对流传热系数的因素。
3. 分析实验误差,总结实验经验。
七、结论通过对对流传热系数的测定实验,掌握了对流传热的基本原理和牛顿冷却定律的应用。
对流传热系数的测定实验指导书1 训练目的:1.1熟悉换热装置中的各种设备及名称、各类测量仪表及名称、控制阀门的作用、冷热流体进出口位置等。
1.2了解换热器的结构,掌握对装置的试压、试漏等操作技能。
1.3掌握传热系统的流程和开、停车步骤及常见事故的处理方法。
1.4学会对流传热系数的测定方法。
1.5测定空气在圆形直管内(或螺旋槽管内)的强制对流传热系数,并把数据整理成准数关系式。
1.6了解影响对流传热系数的因素和强化传热的途径。
2.实验内容:测定不同空气流量下空气和水蒸汽在套管换热器中的进出口温度,求得空气在管内的对流传热系数。
3 基本原理3.1准数关系式对流传热系数是研究传过程及换热性能的一个很重要的参数。
在工业生产和科学研究中经常采用间壁式换热装置来达到物料的冷却和加热目的,这种传热过程是冷热流体通过固体壁面(传热元件)进行的热量交换,由热流体对固体壁面的对流传热、固体壁面的热传导和固体壁面对流传热所组成。
由单位传热速率议程式知,单位时间、单位传热面积所传递的热量为q=K(T-t)而对流传热所传递的热量,对于冷热流体可由牛顿定律表示q=a h·(T-T wl)或q=a·(t w2-t)式中q—传热量,W/℃;a—给热系数,W/㎡;T—热流体温度,℃;t—冷液体温度,℃;T w1、t w2—热冷液体的壁温,℃;下标:c—冷侧面h—热侧由于对流传热过程十分复杂,影响因素极多,目前尚不能通过解析法得到对流传热系数的关系式,它必须由实验加以测定获得各种因素下对流传热系数的定量关系。
为了减少实验工作量,采用因次分析法将有关的影响因素无因次化处理后组成若干个无因次数群,从而获得描述对流传热过程的无因次方块字程。
在此基础上组织实验,并经过数据处理得到相应的关系式,如流体在圆形(光滑)直管中做强制对流传热时传热系数的变化规律可用如下准数关联式表示N u=CR e m P r n=ad/λR e=duρ/µ=dw/AμNμ—努塞尔特准数;Re—雷诺准数;P r—普兰特准数;w—空气的质量流量,㎏/s;d—热管内径,m;A—换热管截面积,㎡;μ—定性温度下空气的粘度,P a·S;λ—定性温度下空气的导热系数,W/(m·℃);a—对流传热系数,W/(㎡·℃);当流体被加热时,n=0.4;被冷却时,n=0.3。
实验7. 空气-蒸汽对流给热系数的测定一、实验目的1.熟悉传热过程及间壁式换热器的结构,掌握热电阻的测温方法;2.观察蒸汽在水平冷凝管外壁上的冷凝现象,测定对流给热系数h ;3.测定努塞尔数Nu 与雷诺数e R 之间的关系,并确定它们的关联式;4.了解强化传热的途径,分析热交换过程的影响因素。
二、基本原理工业生产中冷流体和热流体常通过固体壁面进行热量交换,此种换热方式称为间壁式传热。
间壁式传热过程是由热流体对固体壁面的对流传热、固体壁面的热传导和固体壁面对冷流体的对流传热过程组成,间壁式传热过程如图2—10所示。
当传热过程达到稳定时,它们有如下关系: 图2—10 间壁式传热过程示意图()()()()112122121122m p m p W W m M mq c t t q c T T h A t t h A T T KA t Φ=-=-=-=-=∆ (2—45) 式中:Φ—传热速率,W ;q m1、q m2 —冷、热流体的质量流量,1kg s -⋅; c p1、c p2 —冷、热流体的比热容,11kJ kg K --⋅⋅;T 1 、T 2—热流体的进出口温度,K ; t 1、t 2 —冷流体的进出口的度,K ;A 1、A 2—冷、热流体侧的对流传热面积,m 2;12,h h —冷、热流体与固体壁面的对流给热系数,21W m K --⋅⋅; ()W m t t -、()W m T T -—冷、热流体与固体壁面的对数平均温度差,K ;K —总传热系数,21W m K --⋅⋅; A —传热面积,m 2;m t ∆—对数平均温度差,K ;热流体与固体壁面的对数平均温差可由下式计算()()()22112211ln W W W W m W T T T T T T T T T T -----=- (2-46)式中:12,W W T T —热流体进出口处热流体侧壁面的温度,K 。
固体壁面与冷流体的对数平均温差可由下式求得()()()22112211ln t t t t t t t t t t W W W W m W -----=- (2-47)式中:12,W W t t —冷流体进出口处冷流体侧壁面的温度,K ; 冷热流体间的对数平均温度差可由下式计算()()12211221ln m T t T t t T t T t ---∆=-- (2—48)在套管式换热器中,由于水蒸气通过套管的环隙,冷空气或水通过内管间,测定对流给热系数时,由式(2—45)可得内管内壁面与冷空气或水的对流给热系数()()112111p W mm c t t h A t t -=- (2—49)实验中,要测定内管的壁温t w1和t w2,冷空气或水的进出口温度t 1和t 2;实验用套管的长度l ,内径d 1,换热面积11A d l π=,冷流体的质量流量及比热容,即可求得对流给热系数h 1。
竭诚为您提供优质文档/双击可除对流传热系数测定实验报告篇一:空气—蒸汽对流给热系数测定实验报告及数据、答案空气—蒸汽对流给热系数测定一、实验目的⒈通过对空气—水蒸气光滑套管换热器的实验研究,掌握对流传热系数α1的测定方法,加深对其概念和影响因素的理解。
并应用线性回归分析方法,确定关联式nu=ARempr0.4中常数A、m的值。
⒉通过对管程内部插有螺纹管的空气—水蒸气强化套管换热器的实验研究,测定其准数关联式nu=bRem中常数b、m的值和强化比nu/nu0,了解强化传热的基本理论和基本方式。
二、实验装置本实验设备由两组黄铜管(其中一组为光滑管,另一组为波纹管)组成平行的两组套管换热器,内管为紫铜材质,外管为不锈钢管,两端用不锈钢法兰固定。
空气由旋涡气泵吹出,由旁路调节阀调节,经孔板流量计,由支路控制阀选择不同的支路进入换热器。
管程蒸汽由加热釜发生后自然上升,经支路控制阀选择逆流进入换热器壳程,其冷凝放出热量通过黄铜管壁被传递到管内流动的空气,达到逆流换热的效果。
饱和蒸汽由配套的电加热蒸汽发生器产生。
该实验流程图如图1所示,其主要参数见表1。
表1实验装置结构参数12蒸汽压力空气压力图1空气-水蒸气传热综合实验装置流程图1—光滑套管换热器;2—螺纹管的强化套管换热器;3—蒸汽发生器;4—旋涡气泵;35—旁路调节阀;6—孔板流量计;7、8、9—空气支路控制阀;10、11—蒸汽支路控制阀;12、13—蒸汽放空口;15—放水口;14—液位计;16—加水口;三、实验内容1、光滑管①测定6~8个不同流速下光滑管换热器的对流传热系数α1。
②对α1的实验数据进行线性回归,求关联式nu=ARem 中常数A、m的值。
2、波纹管①测定6~8个不同流速下波纹管换热器的对流传热系数α1。
②对α1的实验数据进行线性回归,求关联式nu=bRem 中常数b、m的值。
四、实验原理1.准数关联影响对流传热的因素很多,根据因次分析得到的对流传热的准数关联为:nu=cRemprngrl式中c、m、n、l为待定参数。
实验三 蒸汽─空气对流传热传热系数的测定一、实验目的1. 测定套管式换热器的总传热系数K ;2. 测定圆形直管内传热膜系数α,并学会用实验方法将流体在管内对流及强制对流 时的实验数据整理成包括传热膜系数α的准数方程式;3. 了解并掌握热电偶和电位差计的使用及其温度测量。
二、基本原理1.测定传热系数K根据传热速率方程式:m T KA ∆=φ (1)mT A K ∆=φ(2)式中: φ传热速率,W ; K 总传热系数,W/(m 2·℃);A 传热面积; m T ∆两流体的平均温度差。
实验时,若能测定或确定φ、A 和,则可测定K 。
m T ∆⑴ 实验是测定蒸汽加热空气时的对流传热总传热系数,其中蒸汽通加套管环隙加热内管的空气,具体的流程如下:在不考虑热损失的条件下,有)(122211T T c q r q p −==m m φ (3)式中: q m1— 蒸汽冷凝液的质量,kg/s ; r 1 — 蒸汽冷凝潜热,J/kg ;q m2— 空气的质量流量,kg/s ; c p2 — 空气的定压比热,J/(kg ·K);T 1、T 2— 空气的进出口温度,℃; T W1、T W2— 内管外壁温度与内壁温度,℃。
实验中传热速率φ按空气的吸热速率计算。
其中空气的质量流量由孔板流量计测量其 体积流量后转化为质量流量。
即:q m =t ρq V (4)式中:t ρ—为空气进出口平均温度下的密度,kg/m 3。
q V — 为空气的体积流量,m 3/s 。
本实验中,空气的体积流量由孔板流量计测量并通过压力传感器将其差压数字在显示仪表上显示出。
20℃ 下空气流量由公式(5)计算。
6203.000)(p C q t ∆×=V (5)其中, — 20℃ 下的体积流量,m 0t q V 3/h ;C 0— 孔板流量系数,本实验装置中其值为22.696。
p ∆—孔板两端压差,kPa 。
则实验条件下的空气流量q V (m 3/h)则需按下式计算:2732730t Tq q t t ++×=V V式中:t q V —实验条件(管内平均温度)下的空气流量,m 3/h 。
化学实验教学中心实验报告化学测量与计算实验Ⅱ实验名称:气-汽对流传热综合实验报告学生姓名:学号:院(系):年级:级班指导教师:研究生助教:实验日期:交报告日期:2.对流传热系数准数关系式的实验确定流体在管内做强制湍流,被加热状态,准数关联式的形式为:αα=ααααααα(6)其中,αα=αααααα,αα=αααααααα,αα=ααααααα物性数据αα、ααα、αα、αα可根据定性温度αα查得。
经计算可知,对于管内被加热的空气,普兰特常数αα变化不大,可认为是常数,则关联式的形式简化为:αα=αααααα0.4(7)这样通过实验确定不同流量下的αα与αα,然后用线性回归方法确定A、m的值。
(二)强化管换热器传热系数、准数关联式及强化比的测定强化传热又被学术界称为第二代传热技术,它能减小初设计的传热面积,以减小换热器的体积和重量;提高现有换热器的换热能力;使换热器能在较低温差下工作;并且能够减少换热器的阻力以减少换热器的动力消耗,更有效地利用能源和资金。
强化传热的方法有多种,本实验装置是采用在换热器内管插入螺旋线圈的方法来强化传热的。
螺旋线圈的结构图如图1所示,螺旋线圈由直径3mm以下的铜丝和钢丝按一定节距绕成。
将金属螺旋线圈插入并固定在管内,即可构成一种强化传热管。
在近壁区域,流体一面由于螺旋线圈的作用而发生旋转,一面还周期性地受到线圈的螺旋金属丝的扰动,因而可以使传热强化。
由于绕制线圈的金属丝直径很细,流体旋流强度也较弱,所以阻力较小,有利于节省能源。
螺旋线圈是以线圈节距H与管内径d的比值技术参数,且长径比是影响传热效果和阻力系数的重要因素。
科学家通过实验研究总结了形式为αα=Bααα的经验公式,其中B和m的值因螺旋丝尺寸不同而不同。
采用和光滑套管同样的实验方法确定不同流量下得Rei和αα,用线性回归方法可确定B和m的值。
单纯研究强化手段的强化效果(不考虑阻力的影响),可以用强化比的概念作为评判准则,它的形式是:αααα0⁄,其中αα是强化管的努塞尔准数,αα0是普通管的努塞尔准数,显然,强化比αααα0⁄>1,而且它的值越大,强化效果越好。
蒸汽空气对流传热传热系数的测定实验三蒸汽—空气对流传热传热系数的测定实验目的 1.测定套管式换热器的总传热系数 K; 2.测定圆形直管内传热膜系数α,并学会用实验方法将流体在管内对流及强制对流时的实验数据整理成包括传热膜系数α的准数方程式; 3.了解并掌握热电偶和电位差计的使用及其温度测量。
实验原理由量纲分析法可知,空气在园形直管中强制对流被加热时的传热膜系数符合下列关联式:式中 A 与 n 为待定系数与指数.本实验通过调节空气的流量,测得对应的传热膜系数,然后,将实验数据整理为 Re 与 Nu 等特征数,再将所得的一系列Nu~Re 数据,通过双对数坐标作图或回归分析法求Pr0.4.得待定系数 A 和指数n,进而得到传热膜系数α与 Re 的经验公式。
测定传热膜系数实验装置实验步骤 1.实验前的准备,检查工作。
1 向电加热釜加水至液位计上端红线处。
2 检查空气流量旁路调节阀是否全开。
3 检查蒸气管支路各控制阀是否已打开,保证蒸汽和空气管线的畅通。
4 电源是否完好。
2.实验开始―人工实验操作。
1 合上电源总开关。
2 打开加热电源开关,设定加热电压不得大于200V ,直至有水蒸气冒出,在整个实验过程中始终保持换热器出口处有水蒸气。
3 启动风机并用放空阀来调节流量。
在一定的流量下稳定 5~10 分钟后分别测量空气的流量、空气进出口的温度。
温度由显示仪显示,切换开关:1-光滑管空气入口温度;2-光滑管空气出口温度;3-粗糙管空气入口温度;4-粗糙管空气出口温度;5-加热器内温度。
换热器内管壁面的温度由双路显示仪(上面光滑管壁面热电势;下面粗糙管壁面热电势)测得。
然后改变流量,稳定后分别测量空气的流量、进出口的温度及壁面温度,再继续实验。
4 实验结束后,依次关闭加热电源、风机和总电源。
注意事项 1 实验前将加热器内的水加到指定的位置,防止电热器干烧损坏电器。
2 计算机数据采集和过程控制实验时,应严格按照计算机使用规程操作计算机,采集数据和控制实验时要注意观察实验现象。
空气蒸汽对流传热系数的测定实验报告实验目的:测定空气中的蒸汽对流传热系数,了解其在热传导过程中的特性和规律。
实验原理:空气中的热传导有两个主要的途径,即对流传热和辐射传热。
在大气压力下,空气中的蒸汽通常以微小的水滴或颗粒的形式存在。
当热量传递给空气蒸汽颗粒时,其会通过对流传热的方式将热量散发到周围的空气中。
对流传热系数(h)是描述对流传热性能的一个重要参数,通过测量传热流量和温度差,可以计算出空气蒸汽对流传热系数。
实验器材:1. 空气蒸汽发生器:用于产生空气中的蒸汽。
2. 传热试样:具有良好的导热性能的金属试样。
3. 温度测量仪器:如温度计或热电偶,用于测量传热试样和周围环境的温度。
4. 流量计:用于测量蒸汽的流量。
5. 电源和电表:用于供电和测量电能消耗。
实验步骤:1. 将空气蒸汽发生器连接到传热试样,并保持一定的温度差。
2. 打开空气蒸汽发生器和流量计,开始生成空气中的蒸汽,并调整蒸汽流量至稳定。
3. 同时开启温度测量仪器,分别测量传热试样的表面温度和周围环境的温度。
4. 根据传热试样表面温度和周围环境温度的差值,计算出传热速率,即传热流量。
5. 根据蒸汽流量和传热流量,计算得到空气蒸汽的对流传热系数。
实验数据记录与处理:1. 记录传热试样表面温度和周围环境温度的数值。
2. 根据所测得的温度差值,计算出传热速率。
3. 根据蒸汽流量和传热速率的比值,计算得到空气蒸汽的对流传热系数。
实验结果与讨论:根据实验测得的数据,计算出空气蒸汽的对流传热系数,并进行实验结果的分析和讨论,比较不同实验条件下的对流传热系数差异,探究影响因素与对流传热系数的关系。
结论:通过本次实验,测定并计算得到了空气蒸汽的对流传热系数,并对影响因素进行了讨论。
实验结果可以为热传导以及相关工程问题的研究和应用提供参考。
《气-汽对流传热系数的测定》实验
一、仪器设备简介
流程如图,冷空气由风机13,经孔板流量计11计量后,进入换热器内管,并与套管环隙中蒸汽换热。
空气被加热后,排入大气。
空气的流量可用控制阀9调节。
1
、蒸汽发生器 2、蒸汽管 3、补水口 4、补水阀 5、排水阀 6、套管换热器 7、放气阀 8、冷凝水回流管 9、空气流量调节阀
10、压力传感器 11、孔板流量计 12、空气管 13、风机
二、试验目的、任务
1、掌握传热膜系数α及传热系数K 的测定方法。
2、通过实验掌握确定传热膜系数准数关联式中的系数A 和指数m 、n 的方法。
3、通过实验提高对α准数关联式的理解,并分析影响α的因素,了解工程上强化传热的措施。
三、实验原理及步骤
1、实验原理:
对流传热的核心问题是求算传热膜系数α,当流体无相变式对流传热准数关联式的一般形式为:
Nu=A·R e m ·P r n ·G r p
对于强制湍流而言,G r 准数可以忽略,故
Nu=A· R e m ·P r n
本实验中,可用图解法和最小二乘法计算上述准数关联式中的指数m 、n 和系数A 。
用图解法对多变量方程进行关联时,要对不同变量R e m 和P r 分别回归。
本实验可简化上式,即取n=0.4(流体被加热)。
这样,上式即变为单变量方程,在两边取对数,既得到直线方程:
lg(Nu/P r 0.4)=lgA+mlgR e
在双对数坐标中作图,找出直线斜率,即为方程的指数m 。
在直线上任取一点的函数值带入方程式中,则可得到系数A ,即
A=Nu/(P r 0.4·R e m )
用图解法,根据实验点确定直线位置有一定的人为性。
而用最小二乘法回归,可以得到最佳关联式。
应用微机,对多变量方程进行一次回归,就能同时得到A 、m 、n 。
对于方程的关联,首先要有Nu 、Re 、Pr 的数据组。
其准数定义式分别为:
R e=duρ/μ, P r=cpμ/λ, Nu=αd/λ
实验中改变空气的流量以改变Re准数的值。
根据定性温度(空气进出口温度的算术平均值)计算对应的Pr准数值。
同时,有牛顿冷却定律,求出不同流速下的传热膜系数α值。
进而算得Nu准数值。
牛顿冷却定律:
Q=α·A·Δt m
式中:
α——传热膜系数,[w/m2·℃]被加热流体体积流量,m3/s
Q——传热量,[w]
A——总传热面积,[m2],A=πd i l
Δt m——管壁温度与管内流体温度的对数平均温差,[℃]
传热量Q可由下式求得:
Q=W·C p(t2-t1)/3600=ρ·V C p(t2-t1)/3600
式中:
w——质量流量,[kg/h];
C p——流体定压比热,[J/kg℃];
t2、t1——流体进、出口温度,[℃];
ρ——定性温度下流体密度,[kg/m3];
V——流体体积流量,[m3/h]。
流量测量:测定孔板压降R(Pa),查孔板Q—R流量曲线。
2、实验步骤:
(1)实验开始前,先弄清配电箱上个按钮与设备的对应关系,以使正确开启按钮。
(2)检查蒸汽发生器中水位,使其保持在水罐高度的1/2—2/3。
(3)打开总电源开关,看其是否正常。
(4)实验开始时,关闭蒸汽发生器补水阀,启动风机,并接通蒸汽发生气的加热电源,打开放气阀排气。
(5)将空气流量控制在某一值,待数值稳定后记录(温度值和压差计读数)。
改变空气流量(8—10次),重复实验,记录数据。
(6)实验结束后,先停蒸汽发生器电源,再停风机,清理现场。
注意:
①实验前,务必使蒸汽发生器液位合适,液位过高,则水会溢入蒸汽套管;过低,则可能烧毁加热器。
②调解空气流量时,要做到心中有数,为保证湍流状态,压差计读数不应从0开始。
实验中要合理取点,以保证数据点均匀。
③每改变一个流量后,等读数稳定后再测取数据。
④排除空气等不凝性气体,实验过程中定期排放。
⑤开风机前先开旁路阀值最大,风机不要在出口阀关闭下长时间运行。
四、基本要求
1、每组五个学生要分工协调配合进行实验。
2、掌握对流传热系数的测定方法;用测定的对流传热系数数据检验通用的对流传热准数关联式;了解通过实验得到描述过程规律经验公式的方法;了解强化传热过程的措施。
五、实验内容、重点、难点
1、实验内容:掌握传热膜系数α及传热系数K的测定方法.
2、重点:通过实验提高对α准数关联式的理解,并分析影响α的因素,了解工程上强化传热的措施。
难点:分析影响α的因素,了解工程上强化传热的措施。
六、实验报告的基本要求
1、实验数据:
(1)确定传热膜系数准数关联式中的系数A和指数m、n;
(2)求出传热膜系数α及传热系数K。
七、成绩评定
1、成绩评定方法:
(1)、正常情况下的学生的实验成绩应按学生的实验操作、纪律、实验报告三个方面
(2)、实验成绩按优、良、中、及格、不及格评定,
(3)、有下列情况之一者,没有实验成绩或成绩不及格。
A、不参加实验者;
B、没有完成实验报告者;
C、报告内容过于简单、错误显著者;或抄袭者。
(4)、课内实验,其学生的实验成绩可视为平时(作业)成绩。
2、评定标准:
(1)、操作认真、无误;遵守纪律;实验报告格式标准内容翔实、语言规范;问题分析透彻、明了;对实验掌握好。
可给优;
(2)、操作认真、无误;遵守纪律;实验报告格式标准、内容翔实、语言规范;问题分析比较透彻、;对实验掌握较好。
可给良;
(3)、操作较认真、无误;较遵守纪律;实验报告符合要求、内容翔实;有问题分析;对实验掌握尚可。
可给中;
(4)、操作基本认真;较遵守纪律;实验报告格及内容尚可;问题分析简单;对实验掌握一般。
可给及格;
(5)、操作不认真;实验报告格及内容简单、语言规范;问题分析差;对实验掌握不好。
不及格。