角平分线教案(教学设计)
- 格式:doc
- 大小:87.50 KB
- 文档页数:3
角的平分线的性质优秀教学设计教学设计:角的平分线的性质教学目标:1.了解角的平分线的概念;2.掌握角的平分线的性质;3.能够应用角的平分线的性质解决相关问题。
教学准备:1.教学课件、教学板书;2.角规、直尺、铅笔等绘图工具;3.《数学课程标准》中关于角的知识点。
教学步骤:第一步:引入知识(时间:10分钟)1.利用实物或图片引入角的概念,让学生了解角的组成元素和名称。
2.引导学生思考:如果一条直线能够将一个角平分成两个角,这条直线是什么?这个性质有什么特点?3.引入角的平分线的概念,并提示学生,我们将要研究角的平分线的性质。
第二步:探究角的平分线的性质(时间:30分钟)1.在教师引导下,学生边观察边探究角的平分线的性质。
2.学生利用角规和直尺,绘制不同角度的角,并将其角度平分,观察平分线的特点。
3.教师通过示范,引导学生观察和总结,整理角的平分线的性质。
第三步:总结角的平分线的性质(时间:15分钟)1.学生与教师一起总结和讨论角的平分线的性质。
2.教师将角的平分线的性质整理成教学板书,并与学生一起进行强化记忆。
第四步:应用角的平分线的性质解决问题(时间:30分钟)1.学生在教师的指导下,通过绘制图形和应用角的平分线的性质解决相关问题。
2.分组活动:每个小组设计一道角的平分线的问题,并交换进行解答,加深对角的平分线性质的理解和应用能力。
第五步:课堂练习(时间:15分钟)1.教师提供一些练习题,让学生在课堂上进行练习,巩固所学的知识点。
2.教师布置一些作业题,让学生完成,并要求学生在下节课上检查和讨论解题过程。
第六步:课堂总结(时间:10分钟)1.教师与学生一起进行课堂总结,巩固角的平分线的性质。
2.学生回答教师提问,对所学知识进行总结和归纳。
教学评价:1.通过观察学生的参与度和答题情况,评价学生对角的平分线的性质的理解和应用能力;2.检查学生完成的作业题,评价学生课后的复习和自主学习的情况。
教学延伸:1.引导学生分组设计更复杂的角平分线问题,并互相交换解答,促使学生深入理解和应用角的平分线的性质。
北师大版数学九年级上册1.4《角平分线》教学设计1一. 教材分析《角平分线》是北师大版数学九年级上册第1章“几何图形变换”中的一个知识点。
本节课主要介绍了角平分线的概念、性质及运用。
教材通过引入角平分线来让学生进一步理解角的性质,培养学生的几何思维能力。
二. 学情分析学生在学习本节课之前,已经掌握了直线、射线、线段等基本几何概念,并了解了垂线的性质。
在此基础上,学生需要进一步理解角平分线的概念,并能够运用角平分线解决实际问题。
三. 教学目标1.知识与技能目标:让学生掌握角平分线的概念、性质和运用。
2.过程与方法目标:通过观察、操作、思考、交流等活动,培养学生的几何思维能力。
3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作精神。
四. 教学重难点1.重点:角平分线的概念、性质和运用。
2.难点:角平分线的证明和运用。
五. 教学方法1.引导发现法:教师引导学生观察、操作、思考,发现角平分线的性质。
2.合作学习法:学生分组讨论,共同解决问题。
3.实践操作法:学生动手操作,加深对角平分线性质的理解。
六. 教学准备1.教具:三角板、直尺、圆规等。
2.学具:学生每人一份三角板、直尺、圆规等。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾直线、射线、线段的性质,为新课的学习做好铺垫。
2.呈现(10分钟)教师通过展示三角板,引导学生观察角平分线的定义,并用几何画板软件动态展示角平分线的性质。
3.操练(10分钟)学生分组讨论,利用三角板、直尺、圆规等工具,自行探索角平分线的性质。
教师巡回指导,解答学生疑问。
4.巩固(10分钟)教师选取几组学生得出的结论,让学生进行分析、判断、验证。
学生通过互相交流,巩固对角平分线性质的理解。
5.拓展(10分钟)教师提出一些实际问题,让学生运用角平分线的性质进行解决。
例如:在平面直角坐标系中,如何找到一点,使得该点到两点的距离相等?6.小结(5分钟)教师引导学生总结本节课所学内容,巩固角平分线的性质及运用。
人教版数学七年级上册《角平分线的性质》教学设计一. 教材分析人教版数学七年级上册《角平分线的性质》是学生在学习了角的概念、垂线的性质等知识后,进一步研究角平分线的性质。
通过本节课的学习,学生能够掌握角平分线的定义、性质和作法,并为后续学习三角形内心的性质和线段的垂直平分线打下基础。
二. 学情分析七年级的学生已经具备了一定的逻辑思维能力和空间想象力,他们对角的概念和垂线的性质有一定的了解。
但是,对于角平分线的性质和作法,学生可能还比较陌生。
因此,在教学过程中,教师需要通过生动形象的讲解和丰富的实例,帮助学生理解和掌握角平分线的性质。
三. 教学目标1.知识与技能:学生能够准确地描述角平分线的定义和性质,并会运用角平分线的性质解决一些简单的问题。
2.过程与方法:学生通过观察、操作、思考、交流等活动,培养自己的空间想象能力和逻辑思维能力。
3.情感态度与价值观:学生能够积极参与数学学习,体验成功的喜悦,增强对数学学科的兴趣。
四. 教学重难点1.重点:角平分线的定义和性质。
2.难点:角平分线的作法和在实际问题中的应用。
五. 教学方法1.情境教学法:通过生活实例和模型,引发学生的兴趣,引导学生主动探究角平分线的性质。
2.启发式教学法:教师提问引导学生思考,激发学生的思维,培养学生的创新能力。
3.合作学习法:学生分组讨论,共同完成任务,培养学生的团队协作能力。
六. 教学准备1.教具:三角板、直尺、圆规、多媒体课件等。
2.学具:每人一套几何工具,包括三角板、直尺、圆规等。
七. 教学过程1.导入(5分钟)教师通过一个生活实例引入本节课的主题——角平分线。
例如,教师可以提问:“在修筑公路时,如何确定两个交叉路口之间的距离?”引导学生思考角平分线的作用。
2.呈现(10分钟)教师通过PPT展示角平分线的定义和性质,引导学生初步理解角平分线的概念。
同时,教师可以给出一些实例,让学生观察和思考,进一步加深对角平分线性质的理解。
北师大版数学八年级下册1.4《角平分线》教案一. 教材分析《角平分线》是北师大版数学八年级下册第1章“几何变换”中的一个重要内容。
本节课主要介绍了角平分线的性质及其在几何图形中的应用。
学生通过学习角平分线,可以进一步理解几何图形的性质,提高解决问题的能力。
二. 学情分析学生在学习本节课之前,已经掌握了线段的中垂线、垂直平分线的性质,对几何图形的变换有一定的了解。
但部分学生对角平分线的概念和性质理解不够深入,运用角平分线解决实际问题的能力较弱。
三. 教学目标1.理解角平分线的定义及其性质;2.学会运用角平分线解决简单几何问题;3.培养学生的空间想象能力和解决问题的能力。
四. 教学重难点1.角平分线的定义及其性质;2.运用角平分线解决实际问题。
五. 教学方法采用讲授法、示范法、讨论法、实践法等多种教学方法,引导学生通过观察、思考、操作、交流等活动,掌握角平分线的性质和应用。
六. 教学准备1.准备相关课件和教学素材;2.准备角平分线的模型或实物;3.准备练习题和拓展题。
七. 教学过程1.导入(5分钟)利用课件或实物展示,引导学生回顾线段的中垂线、垂直平分线的性质。
提问:线段的垂直平分线和中垂线有什么关系?它们在几何图形中有什么作用?2.呈现(10分钟)展示角平分线的模型或实物,引导学生观察并思考:角平分线是什么?它有什么特点?通过示范和讲解,阐述角平分线的定义及其性质。
3.操练(10分钟)学生分组讨论,尝试运用角平分线解决简单几何问题。
教师巡回指导,解答学生疑问。
4.巩固(10分钟)出示练习题,让学生独立完成。
教师选取部分学生的作业进行点评,指出错误并讲解原因。
5.拓展(10分钟)出示拓展题,引导学生运用所学知识解决实际问题。
学生分组讨论,教师巡回指导。
6.小结(5分钟)总结本节课所学内容,强调角平分线的性质及其在几何图形中的应用。
7.家庭作业(5分钟)布置适量的作业,让学生巩固所学知识。
8.板书(5分钟)设计简洁明了的板书,突出角平分线的性质和应用。
角平分线性质教案教学设计教学目标:1. 了解角平分线的定义和性质;2. 掌握角平分线的构造方法;3. 理解角平分线的重要性,并能在解决相关问题中灵活运用。
教学内容:1. 角平分线的定义和性质;2. 角平分线的构造方法;3. 角平分线在解决相关问题中的应用。
教学重点:1. 角平分线的定义和性质;2. 角平分线的构造方法。
教学难点:角平分线在解决相关问题中的应用。
教学准备:教学课件、直尺、量角器、教学展示材料等。
教学过程设计:步骤一: 导入新课1. 引导学生回顾之前学过的角的基本概念,如角度的概念和度量等。
2. 提出一个问题:如何确定一个角的平分线?步骤二: 角平分线的定义和性质1. 引导学生思考并讨论什么是角平分线。
2. 学生掌握角平分线的定义:将一个角分成两个相等的角,其所在的直线称为角的平分线。
3. 学生了解角平分线的性质:a. 角的两条平分线相交于角的顶点;b. 形成的两个相邻角相等;c. 延长角两边所成的相邻外角互补。
步骤三: 角平分线的构造方法1. 学生通过观察和实践,发现构造角平分线的基本方法。
2. 学生学习使用直尺和量角器来构造角平分线的方法。
3. 引导学生进行角平分线的构造实践,并与同桌合作交流,彼此纠正。
步骤四: 角平分线的应用1. 提供一些角平分线的应用实例,如图形的定点、角度的测量等。
2. 学生分组合作,应用角平分线解决问题,并向全班展示解决过程和结果。
3. 教师对学生的解题过程和答案进行点评和指导,确保学生掌握角平分线的应用方法。
步骤五: 总结和拓展1. 小结角平分线的定义、性质和构造方法。
2. 拓展讨论其他与角平分线相关的知识,如辅助角和互补角等。
教学延伸:1. 鼓励学生在日常生活中寻找和探索角平分线的实际应用,并进行展示和交流。
2. 提供相关练习题让学生巩固所学知识。
教学评估:1. 教师观察学生在课堂上的参与情况,评估学生对角平分线概念的理解程度。
2. 分组展示和解答问题过程中的表现评价学生在角平分线应用方面的能力。
角的平分线数学教案
标题:《探索角的平分线》
一、教学目标
1. 知识与技能目标:理解并掌握角的平分线的概念,能够熟练地运用尺规作图法作出任意角的平分线。
2. 过程与方法目标:通过观察、思考、实践,提高学生的空间观念和逻辑思维能力。
3. 情感态度价值观目标:培养学生对几何学习的兴趣,增强他们解决问题的信心。
二、教学重点和难点
重点:理解和掌握角的平分线的概念,掌握尺规作图法作出任意角的平分线的方法。
难点:理解和应用角的平分线的性质。
三、教学过程
1. 导入新课:通过实例引入角的平分线的概念,引发学生的好奇心和求知欲。
2. 新课讲授:
(1) 角的平分线的概念:讲解角的平分线的定义,并让学生自己画出一些角的平分线,加深理解。
(2) 尺规作图法:详细解释如何使用尺规作图法作出任意角的平分线,包括步骤和注意事项。
(3) 角的平分线的性质:引导学生通过实验、讨论等方式发现角的平分线的一些性质,如等腰三角形的判定定理等。
3. 巩固练习:设计一些习题,让学生在实践中巩固所学知识。
4. 总结反思:回顾本节课的主要内容,鼓励学生分享他们的学习体验和收获。
四、作业布置
设计一些题目,要求学生在家中完成,以检验他们对角的平分线的理解和掌握程度。
五、教学评价
根据学生在课堂上的表现和作业完成情况,对学生的学习效果进行评估。
六、教学反思
教师应反思自己的教学方法是否有效,是否有需要改进的地方,以便更好地满足学生的学习需求。
角平分线
【教学目标】
1.知识与技能:
掌握角平分线的性质定理和判定定理,能灵活运用角平分线的性质定理和判定定理解题。
2.过程与方法:
让学生通过自主探索,运用逻辑推理的方法证明关于角平分线的重要结论,并体会感性认识与理性认识之间的联系与区别。
3.情感、态度与价值观:
通过认识的升华,使学生进一步理解数学,也使学生关注数学、热爱数学。
【教学重难点】
1.重点:
角平分线的性质定理和判定定理,能灵活运用角平分线的性质定理和判定定理解题。
2.难点
灵活运用角平分线的性质定理和判定定理解题。
【教学过程】
一、创设情景,导入新课
角是轴对称图形吗?它的对称轴是什么?
如图,点P是∠AOB的角平分线OC上的任一点,且PD⊥OA于D,PE⊥OB于E,将∠AOB沿OC对折你发现了什么?如何表达,并简述你的证明过程。
二、师生互动,探究新知
在学生交流发言的基础上,老师板书:角平分线的性质定理,即角平分线上的点到角两边的距离相等。
几何推理为:∵OP平分∠AOB,PD⊥OA于D,PE⊥OB于E,∴PD=PE。
教师指出条件中不能漏掉PD⊥OA于点D,PE⊥OB于点E。
教师指出:角平分线是一条射线,那么这个逆定理应如何表述?学生讨论并发言。
在学生发言基础上教师归纳总结,并板书:角的内部到角两边距离相等的点在角的角平分线上。
三、随堂练习,巩固新知
1.如图,OP平分∠AOB,PC⊥OA,PD⊥OB,则PC与PD的大小关系是()。
A.PC>PD;
B.PC=PD;
C.PC<PD;
D.不能确定。
2.如图等腰△ABC中,AC=BC,CD⊥AB,DE⊥AC,DF⊥BC,则DE________DF(填=,>或)。
答案:
1.B;2.=。
四、典例精析,拓展新知
例1:
如图,在△ABC中,∠A=90°,AB=AC,BD是∠ABC的平分线,DE⊥BC于E,且BC=8 cm,求△DEC的周长。
答案:
因为BD平分∠ABC,DE⊥BC,∠A=90°,
所以DA=DE(角平分线上的点到这个角的两边的距离相等),
所以DC+DE=DC+DA=AC。
在Rt△ABD ≌Rt△EBD,
所以AB=BE。
又因为AB=AC,
所以AC=BE,
所以DC+DE+EC=AC+EC=BE+EC=BC,
所以△DEC的周长为8 cm。
五、运用新知,深化理解
例2:
如图,已知BD=CD,BF⊥AC,CE⊥AB,求证:点D在∠BAC的平分线上。
答案:
因为BF⊥AC,CE⊥AB,所以∠BED=∠CFD=90°。
在△BDE和CDF中,
因为∠BED=∠CFD,∠BED=∠CDF,BD=CD,
所以△BDE ≌△CDF,所以DE=DF,
所以点D在∠BAC的平分线上。
六、师生互动,课堂小结
这节课你学习了什么?有何收获?有何困惑?与同伴交流,在学生交流发言的基础上教师归纳总结。
学生要会证明角平分线性质与判定定理,并会应用这个定理,会证明三角形三条角平分线相交于一点,并会运用这个定理。
【教学反思】
本节课的教学类比线段垂直平分线的教学,本课时的教学应突出学生的主体性原则,指引学生自己操作、观察、发现、归纳、论证,相互交流或课堂展示,让学生分享学习的收获,从而激发学生参与的热情,体验成功的快乐。