(精心整理)2一元二次方程解法及应用
- 格式:doc
- 大小:371.00 KB
- 文档页数:6
一元二次方程的解法及其应用一元二次方程是指只含有一个未知数的二次方程,其一般形式为ax^2 + bx + c = 0,其中a、b、c为已知实数且a ≠ 0。
解法:一元二次方程的解法主要有两种:因式分解法和求根公式法。
1. 因式分解法:当一元二次方程的形式可以直接因式分解时,使用因式分解法可以快速求得其解。
例如,对于方程x^2 + 5x + 6 = 0,我们可以将其因式分解为(x + 2)(x + 3) = 0。
根据零乘法,当一个乘积等于零时,其中一个或多个因子必须为零。
因此,我们得到x + 2 = 0或x + 3 = 0,从而解得x = -2或x = -3。
这两个解是方程的根,即方程的解集为{-2, -3}。
2. 求根公式法:对于一般形式的一元二次方程ax^2 + bx + c = 0,可以使用求根公式法求得其解。
根据求根公式:x = (-b ± √(b^2 - 4ac)) / (2a),我们可以直接计算出方程的解。
例如,对于方程2x^2 + 5x - 3 = 0,根据求根公式,我们有x = (-5 ±√(5^2 - 4*2*(-3))) / (2*2)。
计算得x = (-5 ± √(25 + 24)) / 4,进一步化简得x = (-5 ± √49) / 4,即x = (-5 ± 7) / 4。
因此,方程的解为x = (-5 + 7) / 4或x = (-5 - 7) / 4,简化得x = 1/2或x = -3/2。
解集为{1/2, -3/2}。
应用:一元二次方程的解法在数学中有着广泛的应用。
以下是一些常见的应用场景:1. 几何问题:一元二次方程的解法可以应用于几何问题中,例如求解二次函数的零点,即方程y = ax^2 + bx + c = 0的解,可以帮助我们确定函数的图像与x轴的交点,从而求得抛物线的顶点、焦点等信息。
2. 物理问题:在物理学中,一元二次方程的解法可以用于解决与运动和力有关的问题。
一元二次方程解法及应用一、填空题1.若关于x 的一元二次方程2(3)0x k x k +++=的一个根是2-,则另一个根是______.2.某种品牌的手机经过四、五月份连续两次降价,每部售价由3200元降到了2500元.设平均每月降价的百分率为x ,根据题意列出的方程是 .3.某县2008年农民人均年收入为7 800元,计划到2010年,农民人均年收入达到9 100元.设人均年收入的平均增长率为x ,则可列方程 .4.若关于x 的方程2210x x k ++-=的一个根是0,则k = .5.某果农2006年的年收入为5万元,由于党的惠农政策的落实,2008年年收入增加到7.2万元,则平均每年的增长率是__________.6.已知1O ⊙和2O ⊙的半径分别是一元二次方程()()120x x --=的两根,且122O O =,则1O ⊙和2O ⊙的位置关系是 .7.某制药厂两年前生产1吨某种药品的成本是100万元,随着生产技术的进步,现在生产1吨这种药品的成本为81万元,.则这种药品的成本的年平均下降率为______________.8.如果2是一元二次方程x 2+bx +2=0的一个根,那么常数b 的值为 .9、阅读材料:设一元二次方程ax 2+bx +c =0(a ≠0)的两根为x 1,x 2,则两根与方程系数之间有如下关系:x 1+x 2=-b a ,x 1·x 2=c a .根据该材料填空:已知x 1、x 2是方程x 2+6x +3=0的两实数根,则21x x +12x x 的值为 . 10.已知关于x 的方程x 2-3x+2k=0的一个根是1,则k=11.一元二次方程230x mx ++=的一个根为1-,则另一个根为 .12.某公司2006年的产值为500万元,2008年的产值为720万元,则该公司产值的年平均增长率为 .二.选择题13.三角形两边的长是3和4,第三边的长是方程212350x x -+=的根,则该三角形的周长为( )A .14B .12C .12或14D .以上都不对 14.某市2008年(GDP )比2007年增长了12%,由于受到国际金融危机的影响,预计今年比2008年增长7%,若这两年GDP 年平均增长率为x %,则x %满足的关系是…………………………【 】A .12%7%%x +=B .(112%)(17%)2(1%)x ++=+C .12%7%2%x +=D .2(112%)(17%)(1%)x ++=+ 15.已知2x =是一元二次方程220x mx ++=的一个解,则m 的值是( )A .3-B .3C .0D .0或316.若关于x 的一元二次方程2210kx x --=有两个不相等的实数根,则k 的取值范围是(A)1k >- (B) 1k >-且0k ≠ (c)1k < (D) 1k <且0k ≠17.已知关于x 的方程260x kx --=的一个根为3x =,则实数k 的值为( )A .1B .1-C .2D .2-18.为了改善居民住房条件,我市计划用未来两年的时间,将城镇居民的住房面积由现在的人均约为210m 提高到212.1m ,若每年的年增长率相同,则年增长率为( )A .9%B .10%C .11%D .12%19用配方法解方程23610x x -+=,则方程可变形为( )A .21(3)3x -=B .213(1)3x -=C .2(31)1x -=D .22(1)3x -= 20方程29180x x -+=的两个根是等腰三角形的底和腰,则这个三角形的周长为( )A .12B .12或15C .15D .不能确定21在一幅长为80cm ,宽为50cm 的矩形风景画的四周镶一条相同宽度的金色纸边,制成一幅矩形挂图,如图5所示,如果要使整个挂图的面积是5400cm 2,设金色纸边的宽为x cm ,那么x 满足的方程是( )A .213014000x x +-=B .2653500x x +-=C .213014000x x --=D .2653500x x --= 22.如图5,在ABCD 中,AE BC ⊥于E ,AE EB EC a ===,且a 是一元二次方程2230x x +-=的根,则ABCD 的周长为( )A.4+ B.12+ C.2+ D.212+23.如图,在宽为20米、长为30米的矩形地面上修建两条同样宽的道路,余下部分作为耕地.若耕地面积需要551米2,则修建的路宽应为( )A .1米B .1.5米C .2米D .2.5米A DC EB 图524.方程2x =x 的解是 【 】(A )x =1 (B )x =0(C) x 1=1 x 2=0 (D) x 1=﹣1 x 2=025.某农机厂四月份生产零件50万个,第二季度共生产零件182万个.设该厂五、六月份 平均每月的增长率为x ,那么x 满足的方程是( )A 、182)1(502=+xB .182)1(50)1(50502=++++x xC 、50(1+2x)=182D .182)21(50)1(5050=++++x x 26.设a b ,是方程220090x x +-=的两个实数根,则22a a b ++的值为( )A .2006B .2007C .2008D .2009 27.若n (0n ≠)是关于x 的方程220x mx n ++=的根,则m +n 的值为A.1B.2C.-1D.-228.关于x 的一元二次方程2210x mx m -+-=的两个实数根分别是12x x 、,且22127x x +=,则212()x x -的值是( )A .1B .12C .13D .25 29.若方程2310x x --=的两根为1x 、2x ,则1211x x +的值为( ) A .3 B .-3 C .13D .13- 30.若n (0n ≠)是关于x 的方程220x mx n ++=的根,则m +n 的值为( )(A )1 (B )2 (C )-1 (D )-231.方程(3)(1)3x x x -+=-的解是( )A .0x =B .3x =C .3x =或1x =-D .3x =或0x = 32.若12x x ,是一元二次方程2560x x -+=的两个根,则12x x +的值是( )A .1B .5C .5-D .633已知关于x 的一元二次方程2610x x k -++=的两个实数根是12x x ,,且2212x x +=24,则k 的值是( )A .8B .7-C .6D .5 34.关于x 的方程2(6)860a x x --+=有实数根,则整数a 的最大值是( )A .6B .7C .8D .9 35.三角形两边的长是3和4,第三边的长是方程212350x x -+=的根,则该三角形的周长为( )A .14B .12C .12或14D .以上都不对 三.解答题36.解方程:2420x x ++=. 2230x x --=60.某工厂今年3月份的产值为100万元,由于受国际金融风暴的影响,5月份的产值下降到81万元,求平均每月产值下降的百分率。
一元二次方程的解法求根公式的使用技巧一元二次方程的解法是数学中的基础知识,在解决实际问题时起到了重要的作用。
其中,求根公式是一种常见的解法,它可以帮助我们快速求解一元二次方程的根。
本文将介绍一元二次方程的求根公式的使用技巧。
一、一元二次方程的形式一元二次方程通常具有以下形式:ax^2 + bx + c = 0其中,a、b、c为实数,并且a ≠ 0。
根据这个方程的形式,我们可以使用求根公式来求解方程的根。
二、一元二次方程的求根公式一元二次方程的求根公式如下:x = (-b ± √(b^2 - 4ac)) / (2a)其中,±表示两个根,√表示开方运算。
这个公式中的分子部分可以分为两个部分,分别是-b和√(b^2 - 4ac)。
根据这个公式,我们可以通过将方程中的系数代入公式中,快速求得方程的根。
三、使用技巧在使用一元二次方程的求根公式时,有一些技巧可以帮助我们更加高效地求解方程的根。
1. 化简方程在应用求根公式之前,我们可以先对方程进行化简。
例如,如果方程的系数存在公因子,我们可以将其提取出来,以简化计算过程。
2. 辨别方程的根的性质根据一元二次方程的判别式Δ=b^2-4ac的值,我们可以判断方程的根的性质。
- 当Δ>0时,方程有两个不相等的实数根;- 当Δ=0时,方程有两个相等的实数根;- 当Δ<0时,方程没有实数根,但存在两个共轭复数根。
通过辨别方程的根的性质,我们可以在求根过程中有所侧重,提高求解的效率。
3. 使用解根公式的步骤使用一元二次方程的求根公式时,可以按照以下步骤进行:Step 1: 计算判别式Δ的值。
Δ = b^2 - 4acStep 2: 根据Δ的值进行分类讨论。
- 当Δ>0时,应用求根公式计算两个不相等的实数根;- 当Δ=0时,应用求根公式计算两个相等的实数根;- 当Δ<0时,应用求根公式计算两个共轭复数根。
Step 3: 将方程系数代入求根公式,计算出根的近似值。
一元二次方程的解法
1、知识要点:一元二次方程和一元一次方程都是整式方程
一元二次方程的一般形式为:ax2+bx+c=0, (a≠0),它是只含一个未知数,并且未知数的最高次数是2的整式方程。
解一元二次方程的基本思想方法是通过“降次”将它化为两个一元一次方程。
一元二次方程有四种解法:1、直接开平方法;2、配方法;3、公式法;4、因式分解法。
2、方法
1、直接开平方法:
直接开平方法就是用直接开平方求解一元二次方程的方法。
用直接开平方法解形如(x-m)2=n (n≥0)的方程,其解为x=m±
.
2.配方法:用配方法解方程ax2+bx+c=0 (a≠0) 先将常数c移到方程右边:ax2+bx=-c
将二次项系数化为1:x2+
x=-
方程两边分别加上一次项系数的一半的平方:
x2+
x+(
)2=-
+(
)2方程左边成为一个完全平方式:(x+
)2=
当b2-4ac≥0时,x+
=±
∴x=
(这就是求根公式)
3.公式法:把一元二次方程化成一般形式,然后计算判别式△=b2-4ac的值,当b2-4ac≥0时,把各项系数a, b, c的值代入求根公式x=
(b2-4ac≥0)就可得到方程的根。
4.因式分解法:把方程变形为一边是零,把另一边的二次三项式分解成两个一次因式的积的形式,让两个一次因式分别等于零,得到两个一元一次方程,解这两个一元一次方程所得到的根,就是原方程的两个根。
这种解一元二次方程的方法叫做因式分解法。
1.一元二次方程:只含有一个未知数,未知数的最高次数是2,且系数不为 0,这样的方程叫一元二次方 程.一般形式:ax 2+bx+c=0(a ≠0)2.一元二次方程的解法:⑴ 配方法:配方法是一种以配方为手段,以开平方为基础的一种解一元二次方程的方法.用配方法解一元二次方程:ax 2+bx+c=0(k ≠0)的一般步骤是:①化二次项系数为1,即方程两边同除以二次项系数;②移项,即使方程的左边为二次项和一次项,右边为常数项;③配方,即方程两边都加上一次项系数的绝对值一半的平方;④化原方程为(x+m )2=n 的形式;⑤如果n ≥0就可以用两边开平方来求出方程的解;如果n=<0,则原方程无解.⑵ 公式法:公式法是用求根公式求出一元二次方程的解的方法.它是通过配方推导出来的.一元二次方程的求根公式是aac b b x 242-±-=(b 2-4ac ≥0) ⑶ 因式分解法:用因式分解的方法求一元二次方程的根的方法叫做因式分解法.它的理论根据是两个因式中至少要有一个等于0,因式分解法的步骤是:①将方程右边化为0;②将方程左边分解为两个一次因式的乘积;③令每个因式等于0,得到两个一元一次方程,解这两个一元一次方程,它们的解就是原一元二次方程的解.3.一元二次方程的注意事项:⑴ 在一元二次方程的一般形式中要注意,强调a ≠0.因当a=0时,不含有二次项,即不是一元二次方程.如关于x 的方程(k 2-1)x 2+2kx+1=0中,当k=±1时就是一元一次方程了.⑵ 应用求根公式解一元二次方程时应注意:①化方程为一元二次方程的一般形式;②确定a 、b 、c 的值;③求出b 2-4ac 的值;④若b 2-4ac ≥0,则代人求根公式,求出x 1 ,x 2.若b 2-4a <0,则方程无解.⑶ 方程两边绝不能随便约去含有未知数的代数式.如-2(x +4)2=3(x +4)中,不能随便约去(x +4⑷ 注意解一元二次方程时一般不使用配方法(除特别要求外)但又必须熟练掌握,解一元二次方程的一般顺序是:开平方法→因式分解法→公式法. 例1、下列方程中,关于x 的一元二次方程是( )2222211.3(1)2(1) .20.0 .21A x xB x yC ax bx cD x x x +=++-=++=+=- 2、若22324x ( )x x +-与互为相反数,则的值为A .12B 、2C 、±2D 、±123、关于x 的一元二次方程22(1)2m x x m m +++-30-=,则m 的值为( )A .m=3或m=-1 B. .m=-3或m= 1C .m=-1D .m=-3一元二次方程的应用1.构建一元二次方程数学模型:一元二次方程也是刻画现实问题的有效数学模型,通过审题弄清具体问题中的数量关系,是构建数学模型,解决实际问题的关键.2.注重.解法的选择与验根:在具体问题中要注意恰当的选择解法,以保证解题过程简洁流畅,特别要对方程的解注意检验,根据实际做出正确取舍,以保证结论的准确性.例、某水果批发商场经销一种高档水果如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克,现该商场要保证每天盈利6000元,同时又要使顾客得到实惠,那么每千克应涨价多少元?一、填空题1、已知代数式4x2– 14=50, 则x的值为2、已知方程x2+kx+2=0 的一个根是- 1,则k= , 另一根为3、若关于x 的方程x2– 2 (a –1 )x = (b+2)2有两个相等的实根,则a2004+b5的值为4、如图,折叠直角梯形纸片的上底AD,点D落在底边BC上点F处,已知DC=8㎝,FC = 4㎝,则EC长㎝5、已知点C为线段AB的黄金分割点,且AC=1㎝,则线段AB的长为二、选择题1、若(b - 1)2+a2 = 0 下列方程中是一元二次方程的只有()(A)ax2+5x – b=0(B)(b2– 1)x2+(a+4)x+ab=0 (C)(a+1)x – b=0 (D)(a+1)x2– bx+a=02、下列方程中,不含一次项的是()(A)3x2– 5=2x (B)16x=9x2(C)x(x –7)=0 (D)(x+5)(x-5)=03、若关于x的方程x2– 2x(k-x)+6=0无实根,则k可取的最小整数为()(A)- 5 (B)- 4 (C)- 3(D)- 24、8块相同的长方形地砖拼成面积为2400㎝2的矩形ABCD(如图),则矩形ABCD 的周长为()(A)200㎝(B)220 ㎝(C)240 ㎝(D)280㎝5、如图,在矩形ABCD中,AB=1,BC=2,将其折叠,使AB边落在对角线AC上,得到折痕AE,则点E到点B的距离为()(A)212-(B)213-(C)215-(D)216-三、解答题:1、请尽可能地找出下列两个方程的相同点和不同点(1)x2+2x – 3=0 (2)x2+2x+3=02、已知关于x的二次方程(m+1)x2+3x+m2– 3m – 4=0的一个根为0,求m的值。
一元二次方程的解法及实际应用一、引言在数学中,一元二次方程是一种常见的形式,它可以用来解决很多实际生活中的问题。
本文将介绍一元二次方程的解法,并探讨一些实际应用。
二、一元二次方程的解法1. 标准形式一元二次方程的标准形式为:ax² + bx + c = 0。
其中,a、b、c分别代表方程中的系数,且a ≠ 0。
2. 利用“求根公式”解方程一元二次方程可通过求根公式来解决。
求根公式为:x = (-b ± √(b² - 4ac)) / 2a。
- 若b² - 4ac > 0,方程有两个不同实数根;- 若b² - 4ac = 0,方程有一个实数根,且为重根;- 若b² - 4ac < 0,方程无实数根,但可以有复数根。
三、实际应用1. 抛体运动在物理学中,抛体运动问题可以通过一元二次方程来建模和求解。
例如,当我们抛出一个物体时,可以通过解一元二次方程来计算物体的落地时间、最高高度等。
2. 金融领域一元二次方程在金融领域中也有实际应用。
例如,在债券定价中,可以使用一元二次方程来计算债券的到期回报率;在利润预测模型中,可以通过一元二次方程来估计销售量与利润之间的关系。
3. 工程建模在工程领域中,一元二次方程经常用于建立工程模型和解决实际问题。
例如,用于预测水位变化情况、建筑物的稳定性分析等。
4. 生活中的应用一元二次方程还广泛应用于我们的日常生活中,例如:- 菜价预测:可以使用一元二次方程拟合历史数据,预测未来的价格变动趋势;- 汽车刹车距离计算:根据实验数据构建一元二次方程,通过计算得到刹车距离;- 光学仪器矫正:利用一元二次方程来计算镜片的度数以及矫正度数;- 音乐振动学:通过一元二次方程来计算乐器的音调和共振频率。
四、结论一元二次方程作为数学中常见的形式,具有广泛的实际应用领域。
掌握一元二次方程的解法有助于我们在解决实际问题时提供更准确的结果。
一元二次方程的解法及应用【解一元二次方程】1一元二次方程的解法: 一元二次方程的四种解法要求灵活运用, 其中直接开平方法虽然简单,但是适用范围较小;公式法虽然适用范围大,但计算较繁,易发生计算错误;因式分解法适用范围较大,且计算简便,是首选方法;配方法使用较少.2. 一元二次方程根的判别式: 当ax 2+bx+c=0 (a ≠0)时,Δ=b 2-4ac 叫一元二次方程根的判别式.请注意以下等价命题:Δ>0 <=> 有两个不等的实根; Δ=0 <=> 有两个相等的实根;Δ<0 <=> 无实根; Δ≥0 <=> 有两个实根(等或不等).3. 一元二次方程的根系关系: 当ax 2+bx+c=0 (a ≠0) 时,如Δ≥0,有下列公式:.ac x x a b x x )2(a 2ac 4b b x )1(212122,1=-=+-±-=,; 【巩固训练】1. 用开方法解一元二次方程1)(5x -1)2=16 2)(3x -2)2=(2x +1)23)(x -2)2=3 4)05.1532=-x2. 用公式法解方程1)4x 2+9x =0 2)x 2―x ―6=0 3)x (x +5)=244)5x 2+7x =6 5)085472=++x x3.用因式分解法解方程1)8x2+6x-35=0; 2)18x2-21x+5=0;3) 20-9y-20y2=0; 4)6x2-13x+6=0;5)(x-5)(x+3)+(x-3)(x+4)=94. 用配方法1)x2+3x+1=0 2)6x2+x=3 3)2x2+7x-3=05.选择合适的方法解下列方程1). x²+2√3x=1 2). x²-2x-2=03). 2x²-8x=1 4). 3x²+2x-4=05). x²+18x+5=0 6). 3x²-4x-1=07). 2x²-7x+7=0 8). √2(x²+1)=1-x²+2x 9).(x+1)(x-1)=2√2x 10).√2x²-4x=4√211).8x²-10x+5=0 12).x²-|x|-2=032 3 5 337 9 11 34 13 15 17 19 【一元二次方程的应用】1.一个多边形有70条对角线,则这个多边形有________条边.2.九年级(3)班文学小组在举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,全组共互赠了240本图书,如果设全组共有x 名同学,依题意,可列出的方程是( )A .x (x+1)=240B .x (x-1)=240C .2x (x+1)=240D .12x (x+1)=240 3.一个小组若干人,新年互送贺卡,若全组共送贺卡72张,则这个小组共( ).A .12人B .18人C .9人D .10人4.有一人患了流感,经过两轮传染后,共有121人患了流感,若设每轮传染中平均每人传染了x 人,那么可列方程为 .5.学校组织了一次篮球单循环比赛,共进行了15场比赛,那么有几个球队参加了这次比赛?6、32,33和34分别可以按如图所示方式“分裂”成2个、3个和4个连续奇数的和,36也能按此规律进行“分裂”,则36“分裂”出的奇数中最大的是( )A 、41B 、39C 、31D 、297.某商店将甲、乙两种糖果混合运算,•并按以下公式确定混合糖果的单价:单价=112212a m a m m m ++(元/千克),其中m 1,m 2分别为甲、乙两种糖果的重量(千克),a 1,a 2分别为甲、乙两种糖果的单价(元/千克).已知a 1=20元/千克,a 2=16元/千克,现将10千克乙种糖果和一箱甲种糖果混合(搅拌均匀)销售,售出5千克后,•又在混合糖果中加入5千克乙种糖果,再出售时混合糖果的单价为17.5元/千克,问这箱甲种糖果有多少千克?【中考真题】8.(2008.福建南平市)有一人患了流感,经过两轮传染后共有100人患了流感,那么每轮传染中平均一个人传染的人数为( )A .8人B .9人C .10人D .11人9.(2008年聊城市)如图是某广场用地板铺设的部分图案,中央是一块正六边形的地板砖,周围是正三角形和正方形的地板砖.从里向外的第1层包括6个正方形和6个正三角形,第2层包括6个正方形和18个正三角形,依此递推,第8层中含有正三角形个数是( )A .54个B .90个C .102个D .114个【巩固训练】 1.某药品原来每盒售价96元,由于两次降价,现在每盒54元,•则平均每次降价的百分数为_______.2.某农场的粮食产量,若两年内从25万公斤,增加到30.25万公斤,则平均每年的增长率为_______.3.某人在银行存了400元钱,两年后连本带息一共取款484元,设年利率为x ,则列方程为__________________,解得年利率是_________.4.某市2002年底人口为20万人,人均住房面积9m 2,计划2003年、2004年两年内平均每年增加人口为1万,为使到2004年底人均住房面积达到10m ,则该市两年内住房平均增长率必须达到_________.=3.317,精确到1%)5.某林场原有森林木材存量为a ,木材每年以25%的增长率生长,而每年冬天要砍伐的木材量为x ,•••则经过一年木材存量达到________,经过两个木材存量达到__________.6.某商品连续两次降价10%后为m 元,则该商品原价为( )A .1.12m 元B .1.12m 元C .0.81m 元 D .0.81m 元 7.某钢铁厂去年1月份某种钢的产量为5000吨,3月份上升到7200吨,设平均每月的增长率为x ,根据题意,得( )A .5000(1+x 2)=7200B .5000(1+x )+5000(1+x )2=7200C .5000(1+x )2=7200D .5000+5000(1+x )+5000(1+x )2=72008.某书城开展学生优惠购书活动,凡一次性购书不超过200元的一律九折优惠,超过200元的,其中200元按九折算,超过200元的部分按八折算.•某学生第一次去购书付款72元,第二次又去购书享受了八折优惠,他查看了所买书的定价,•发现两次共节省了34元,则该学生第二次购书实际付款________元.9.益群精品店以每件21元的价格购进一批商品,该商品可以自行定价,•若每件商品售价a元,则可卖出(350-10a)件,但物价局限定每件商品的利润不得超过20%,商店计划要盈利400元,需要进货多少件?每件商品应定价多少?10.恒利商厦九月份的销售额为200万元,十月份的销售额下降了20%,•商厦从十一月份起加强管理,改善经营,使销售额稳步上升,十二月份的销售额达到了193.6万元,求这两个月的平均增长率.11.某果园有100棵桃树,一棵桃树平均结1000个桃子,•现准备多种一些桃树以提高产量,试验发现,每多种一棵桃树,每棵桃树的产量就会减少2个,•如果要使产量增加15.2%,那么应多种多少棵桃树?【中考真题】12.某县为发展教育事业,加强了对教育经费的投入,2007年投入3 000万元,预计2009年投入5 000万元.设教育经费的年平均增长率为x,根据题意,下面所列方程正确的是()A.2+= B.2x3000(1)5000x=30005000C.2x x+++=3000(1)3000(1)5000 3000(1)5000x+=% D.213.某商品原价289元,经连续两次降价后售价为256元,设平均每降价的百分率为x,则下面所列方程正确的是( )A、256)x-2562=1()x1(2892=- B、289C、25621(256=)x-- D、2892)x289=1(14.乌鲁木齐农牧区校舍改造工程初见成效,农牧区最漂亮的房子是学校.2005年市政府对农牧区校舍改造的投入资金是5786万元,2007年校舍改造的投入资金是8058.9万元,若设这两年投入农牧区校舍改造资金的年平均增长率为x,则根据题意可列方程为.15.汽车产业的发展,有效促进我国现代化建设.某汽车销售公司2005年盈利1500万元,到2007年盈利2160万元,且从2005年到2007年,每年盈利的年增长率相同.(1)该公司2006年盈利多少万元?(2)若该公司盈利的年增长率继续保持不变,预计2008年盈利多少万元?16.西瓜经营户以2元/千克的价格购进一批小型西瓜,以3元/千克的价格出售,每天可售出200千克.为了促销,该经营户决定降价销售.经调查发现,这种小型西瓜每降价O.1元/千克,每天可多售出40千克.另外,每天的房租等固定成本共24元.该经营户要想每天盈利2O0元,应将每千克小型西瓜的售价降低多少元?。
一元二次方程的解法及应用一元二次方程是数学中常见的二次多项式方程,其一般形式为ax²+bx+c=0,其中a、b、c为实数且a≠0。
解一元二次方程的方法通常有因式分解法、配方法和求根公式法等。
本文将依次介绍这几种解法,并探讨一元二次方程在实际生活中的应用。
一、因式分解法对于一元二次方程ax²+bx+c=0,当其可以因式分解成两个一次因式的乘积时,可以直接利用因式分解法求解。
具体步骤如下:1. 将方程转化为标准形式,即将方程两边移项合并同类项,使等式右边为0;2. 对方程进行因式分解,将二次项拆分为两个一次项的乘积;3. 令得到的每个一次项等于0,解出方程;4. 检查解是否满足原方程,若满足则为方程的解,若不满足则舍去。
例如,对于方程3x²+7x+2=0,可以进行因式分解得到(3x+1)(x+2)=0,解得x=-1/3和x=-2。
二、配方法配方法是通过变形将一元二次方程转化为一个完全平方的形式,进而求解方程。
其主要步骤如下:1. 将方程转化为标准形式;2. 将方程的一次项系数b通过添加或减去一个适当的常数c/2a使其成为一个完全平方;3. 将方程的左边转化为一个完全平方,即将一次项的系数与1/2a相乘后平方;4. 将方程的两边开平方,解出方程。
例如,对于方程x²+4x-3=0,可以通过配方法将其变形为(x+2)²-7=0,进而解得x=-2+√7和x=-2-√7。
三、求根公式法求根公式法也称为根号公式法,适用于任何一元二次方程的解法。
一元二次方程ax²+bx+c=0的解可通过求根公式x=(-b±√(b²-4ac))/2a得到。
具体步骤如下:1. 将方程的系数代入求根公式,并计算出方程的两个解;2. 验证解是否满足原方程,若满足则为方程的解,若不满足则舍去。
例如,对于方程2x²-5x+2=0,代入求根公式得到x=1和x=2/2。
一元二次方程的解法及应用一元二次方程是高中数学中的重要内容,它在现实生活中的应用领域十分广泛。
本文将介绍一元二次方程的基本概念、解法和应用,以帮助读者更好地理解和应用这一数学知识。
1. 一元二次方程的基本概念一元二次方程是指含有一个未知数的二次项的方程,其一般形式为ax^2+bx+c=0,其中a、b、c为已知常数,且a≠0。
方程中的x代表未知数,而a、b、c则分别表示二次项系数、一次项系数和常数项。
2. 一元二次方程的解法解一元二次方程的常用方法有因式分解法、配方法和求根公式法。
下面将逐一介绍这些方法。
2.1 因式分解法当一元二次方程可以因式分解时,可以利用因式分解法求解。
例如,对于方程x^2+5x+6=0,可以将其分解为(x+2)(x+3)=0,然后令括号中的两个因式分别等于0,解得x=-2和x=-3,即方程的解为x=-2和x=-3。
2.2 配方法对于一些无法直接因式分解的一元二次方程,可以使用配方法进行求解。
配方法的关键是通过添加或减少适当的常数,使方程转化为一个可以因式分解的形式。
以方程x^2+4x-5=0为例,我们可以通过加上9和减去9来完成配方,即(x^2+4x+9)-9-5=0,化简后得到(x+2)^2=14,然后对方程两边开方,得到x+2=±√14,再解得x=-2±√14。
因此,方程的解为x=-2+√14和x=-2-√14。
2.3 求根公式法如果一元二次方程无法通过因式分解或配方法求解,可以利用求根公式进行计算。
求根公式即一元二次方程的根的公式表示。
根据求根公式,一元二次方程ax^2+bx+c=0的根可由公式x=(-b±√(b^2-4ac))/2a给出。
例如,对于方程2x^2+5x-3=0,可以直接利用求根公式计算,得到x=(-5±√(5^2-4*2*(-3)))/(2*2),进一步计算得到x=1/2和x=-3。
3. 一元二次方程的应用一元二次方程在各个领域有广泛的应用。
一元二次方程解法及应用一、填空题1.若关于x 的一元二次方程2(3)0x k x k +++=的一个根是2-,则另一个根是______.2.某种品牌的手机经过四、五月份连续两次降价,每部售价由3200元降到了2500元.设平均每月降价的百分率为x ,根据题意列出的方程是 .3.某县2008年农民人均年收入为7 800元,计划到2010年,农民人均年收入达到9 100元.设人均年收入的平均增长率为x ,则可列方程 .4.若关于x 的方程2210x x k ++-=的一个根是0,则k = .5.某果农2006年的年收入为5万元,由于党的惠农政策的落实,2008年年收入增加到7.2万元,则平均每年的增长率是__________.6.已知1O ⊙和2O ⊙的半径分别是一元二次方程()()120x x --=的两根,且122O O =,则1O ⊙和2O ⊙的位置关系是 .7.某制药厂两年前生产1吨某种药品的成本是100万元,随着生产技术的进步,现在生产1吨这种药品的成本为81万元,.则这种药品的成本的年平均下降率为______________.8.如果2是一元二次方程x 2+bx +2=0的一个根,那么常数b 的值为 .9、阅读材料:设一元二次方程ax 2+bx +c =0(a ≠0)的两根为x 1,x 2,则两根与方程系数之间有如下关系:x 1+x 2=-b a ,x 1·x 2=c a .根据该材料填空:已知x 1、x 2是方程x 2+6x +3=0的两实数根,则21x x +12x x 的值为 . 10.已知关于x 的方程x 2-3x+2k=0的一个根是1,则k=11.一元二次方程230x mx ++=的一个根为1-,则另一个根为 .12.某公司2006年的产值为500万元,2008年的产值为720万元,则该公司产值的年平均增长率为 .二.选择题13.三角形两边的长是3和4,第三边的长是方程212350x x -+=的根,则该三角形的周长为( )A .14B .12C .12或14D .以上都不对 14.某市2008年(GDP )比2007年增长了12%,由于受到国际金融危机的影响,预计今年比2008年增长7%,若这两年GDP 年平均增长率为x %,则x %满足的关系是…………………………【 】A .12%7%%x +=B .(112%)(17%)2(1%)x ++=+C .12%7%2%x +=D .2(112%)(17%)(1%)x ++=+ 15.已知2x =是一元二次方程220x mx ++=的一个解,则m 的值是( )A .3-B .3C .0D .0或316.若关于x 的一元二次方程2210kx x --=有两个不相等的实数根,则k 的取值范围是(A)1k >- (B) 1k >-且0k ≠ (c)1k < (D) 1k <且0k ≠17.已知关于x 的方程260x kx --=的一个根为3x =,则实数k 的值为( )A .1B .1-C .2D .2-18.为了改善居民住房条件,我市计划用未来两年的时间,将城镇居民的住房面积由现在的人均约为210m 提高到212.1m ,若每年的年增长率相同,则年增长率为( )A .9%B .10%C .11%D .12%19用配方法解方程23610x x -+=,则方程可变形为( )A .21(3)3x -=B .213(1)3x -=C .2(31)1x -=D .22(1)3x -= 20方程29180x x -+=的两个根是等腰三角形的底和腰,则这个三角形的周长为( )A .12B .12或15C .15D .不能确定21在一幅长为80cm ,宽为50cm 的矩形风景画的四周镶一条相同宽度的金色纸边,制成一幅矩形挂图,如图5所示,如果要使整个挂图的面积是5400cm 2,设金色纸边的宽为x cm ,那么x 满足的方程是( )A .213014000x x +-=B .2653500x x +-=C .213014000x x --=D .2653500x x --= 22.如图5,在ABCD 中,AE BC ⊥于E ,AE EB EC a ===,且a 是一元二次方程2230x x +-=的根,则ABCD 的周长为( )A.4+ B.12+ C.2+ D.212+23.如图,在宽为20米、长为30米的矩形地面上修建两条同样宽的道路,余下部分作为耕地.若耕地面积需要551米2,则修建的路宽应为( )A .1米B .1.5米C .2米D .2.5米A DC EB 图524.方程2x =x 的解是 【 】(A )x =1 (B )x =0(C) x 1=1 x 2=0 (D) x 1=﹣1 x 2=025.某农机厂四月份生产零件50万个,第二季度共生产零件182万个.设该厂五、六月份 平均每月的增长率为x ,那么x 满足的方程是( )A 、182)1(502=+xB .182)1(50)1(50502=++++x xC 、50(1+2x)=182D .182)21(50)1(5050=++++x x 26.设a b ,是方程220090x x +-=的两个实数根,则22a a b ++的值为( )A .2006B .2007C .2008D .2009 27.若n (0n ≠)是关于x 的方程220x mx n ++=的根,则m +n 的值为A.1B.2C.-1D.-228.关于x 的一元二次方程2210x mx m -+-=的两个实数根分别是12x x 、,且22127x x +=,则212()x x -的值是( )A .1B .12C .13D .25 29.若方程2310x x --=的两根为1x 、2x ,则1211x x +的值为( ) A .3 B .-3 C .13D .13- 30.若n (0n ≠)是关于x 的方程220x mx n ++=的根,则m +n 的值为( )(A )1 (B )2 (C )-1 (D )-231.方程(3)(1)3x x x -+=-的解是( )A .0x =B .3x =C .3x =或1x =-D .3x =或0x = 32.若12x x ,是一元二次方程2560x x -+=的两个根,则12x x +的值是( )A .1B .5C .5-D .633已知关于x 的一元二次方程2610x x k -++=的两个实数根是12x x ,,且2212x x +=24,则k 的值是( )A .8B .7-C .6D .5 34.关于x 的方程2(6)860a x x --+=有实数根,则整数a 的最大值是( )A .6B .7C .8D .9 35.三角形两边的长是3和4,第三边的长是方程212350x x -+=的根,则该三角形的周长为( )A .14B .12C .12或14D .以上都不对 三.解答题36.解方程:2420x x ++=. 2230x x --=60.某工厂今年3月份的产值为100万元,由于受国际金融风暴的影响,5月份的产值下降到81万元,求平均每月产值下降的百分率。
37.某企业2006年盈利1500万元,2008年克服全球金融危机的不利影响,仍实现盈利2160万元.从2006年到2008年,如果该企业每年盈利的年增长率相同,求:(1)该企业2007年盈利多少万元?(2)若该企业盈利的年增长率继续保持不变,预计2009年盈利多少万元?38.某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现,销售量y (件)与销售单价x (元)符合一次函数y kx b =+,且65x =时,55y =;75x =时,45y =.(1)求一次函数y kx b =+的表达式;(2)若该商场获得利润为W 元,试写出利润W 与销售单价x 之间的关系式;销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?(3)若该商场获得利润不低于500元,试确定销售单价x 的范围.39. (2009年湖州)随着人民生活水平的不断提高,我市家庭轿车的拥有量逐年增加.据统计,某小区2006年底拥有家庭轿车64辆,2008年底家庭轿车的拥有量达到100辆.(1) 若该小区2006年底到2009年底家庭轿车拥有量的年平均增长率都相同,求该小区到2009年底家庭轿车将达到多少辆?(2) 为了缓解停车矛盾,该小区决定投资15万元再建造若干个停车位.据测算,建造费用分别为室内车位5000元/个,露天车位1000元/个,考虑到实际因素,计划露天车位的数量不少于室内车位的2倍,但不超过室内车位的2.5倍,求该小区最多可建两种车位各多少个?试写出所有可能的方案.40.(2009年中山)某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?41.某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?42.有一批图形计算器,原售价为每台800元,在甲、乙两家公司销售.甲公司用如下方法促销:买一台单价为780元,买两台每台都为760元.依此类推,即每多买一台则所买各台单价均再减20元,但最低不能低于每台440元;乙公司一律按原售价的75%促销.某单位需购买一批图形计算器:(1)若此单位需购买6台图形计算器,应去哪家公司购买花费较少?(2)若此单位恰好花费7 500元,在同一家公司购买了一定数量的图形计算器,请问是在哪家公司购买的,数量是多少?。