固体核磁共振波谱基本理论19年3月
- 格式:pptx
- 大小:3.95 MB
- 文档页数:37
核磁共振波谱法一、概述早在1924年Pauli就预见某些原子核具有自旋和磁矩的性质,它们在磁场中可以发生能级的分裂。
1946年美国科学家布洛赫(Bloch,斯坦福大学)和珀塞尔(Purcell,哈佛大学)分别发现在射频区(频率0.1~100MHz,波长1~1000m)的电磁波能与暴露在强磁场中的磁性原子核(或称磁性核或自旋核)相互作用,引起磁性原子核在外磁场中发生核自旋能级的共振跃迁,从而产生吸收信号,他们把这种原子对射频辐射的吸收称为核磁共振(nuclear magnetic resonance spectroscopy,NMR),他们也因此分享了1952年的诺贝尔物理奖。
所产生的波谱,叫核磁共振(波)谱。
通过研究核磁共振波谱获得相关信息的方法,称为核磁共振波谱法。
NMR和红外光谱、紫外—可见光谱相同之处是微观粒子吸收电磁波后发生能级上的跃迁,但引起核磁共振的电磁波能量很低,不会引起振动或转动能级跃迁,更不会引起电子能级跃迁。
.1949年,Kight第一次发现了化学环境对核磁共振信号的影响,并发现了信号与化合物结构有一定的关系。
而1951年Arnold等人也发现了乙醇分子由三组峰组成,共振吸收频率随不同基团而异,揭开了核磁共振与化学结构的关系。
1953年出现了世界上第一台商品化的核磁共振波谱仪。
1956年,曾在Block实验室工作的Varian制造出第一台高分辩率的仪器,从此,核磁共振波谱法成了化学家研究化合物的有力工具,并逐步扩大其应用领域。
七十年代以后,由于科学技术的发展,科学仪器的精密化、自动化,核磁共振波谱法得到迅速发展,在许多领域中已得到广泛应用,特别在有机化学、生物化学领域中的研究和应用发挥着巨大的作用。
八十年代以来,又不断出现新仪器,如高强磁场的超导核磁共振波谱仪,脉冲傅里叶变换核磁共振波谱仪,大大提高灵敏度和分辨率,使灵敏度小的原子核能被测定;计算机技术的应用和多脉冲激发方法的采用,产生二维谱,对判断化合物的空间结构起重大作用。
核磁共振光谱原理核磁共振(NMR)光谱是一种非常重要的分析技术,广泛应用于化学、生物化学、生物医学、化学工程、材料科学等领域。
核磁共振光谱可以用来研究分子的结构、动力学、反应机理、动力学和热力学性质等,并且已经成为现代分析化学的重要工具。
核磁共振光谱基于磁共振原理,即核磁矩在外部磁场中的取向受到外部磁场对它的取向的作用而发生变化。
当处于一个静态高强度的外部磁场中时,核自旋可以发生两种取向:平行或反平行于外磁场方向,这种取向状态被称为核自旋磁量子数。
当一个核检测到一个外部射频脉冲时,这个脉冲的射频能量将会抵消相邻核的磁性相互作用,从而导致这些核的共振频率被准确测定。
核磁共振光谱通常使用氢、碳、氧等核的磁共振来进行分析,因为这些原子在大多数有机和生物分子中都是丰富的。
在分析中,样品通常是通过将其溶解在有机溶剂中,并在核磁共振仪内通过一个探头进行检测得到的。
探头包含一个产生高强度的外部磁场的磁铁圆筒,一个产生射频脉冲的射频发生器和一个接收机来检测并记录反馈信号。
核磁共振光谱的光谱图通常展示了核的吸收峰或信号,这些峰或信号与特定的核自旋产生的共振频率有关。
通过测量这些峰的位置、积分强度和形状,分析人员可以确定样品分子的结构和相对数量。
氢核的化学位移可以由环境的埃及螺旋度和磁场大致相互作用的变化来解释。
核磁共振光谱在现代分析化学和其他领域中的广泛应用,使其成为一种非常重要的分析工具。
在化学和生物化学方面,核磁共振光谱可以用于确定新物质的结构和合成过程中的反应,从而帮助理解生命过程中的化学反应。
在生物医学和化学工程方面,核磁共振光谱可以用于定量分析和疾病诊断。
在材料科学中,核磁共振光谱可以用于研究材料的结构和特性,并有助于合成新材料。
核磁共振光谱由于其独特的分析能力和广泛的应用领域,已成为现代分析化学的重要工具。
通过使用核磁共振光谱,化学家、生物化学家、生物医学家、化学工程师和材料科学家等研究人员可以更好地理解分子的结构和特性,从而推动化学、生物学、医学和工程学的研究。