数据结构:树和二叉树
- 格式:pdf
- 大小:128.05 KB
- 文档页数:9
数据结构(一)目录第1章序论 (1)1.1 什么是数据? (1)1.2 什么是数据元素? (1)1.3 什么是数据结构及种类? (1)1.4 数据的逻辑结构 (1)1.5 数据的物理结构 (1)1.6 算法和算法分析 (1)1.7 算法的五个特性 (1)1.8 算法设计的要求 (2)1.9 算法效率的度量 (2)第2章线性表 (3)2.1 线性表举例 (3)2.2 线性表的存储 (4)2.3 线性表-栈 (4)2.4 队列 (4)2.5 双端队列 (6)第3章树和二叉树 (6)3.1 树 (6)3.1.1 树的基本概念 (6)3.1.2 树的常用存储结构 (6)3.1.3 树的遍历 (7)3.2 二叉树 (7)3.2.1 二叉树的基本概念 (7)3.2.2 二叉树与树的区别 (7)3.2.3 树及森林转到二叉树 (7)3.2.4 二叉树的性质 (8)3.2.5 满二叉树 (8)3.2.6 完全二叉树 (8)3.2.7 完全二叉树的性质 (9)3.2.8 二叉树的四种遍历 (9)3.2.9 二叉排序树 (10)3.2.10 平衡二叉树 (11)3.2.11 m阶B-树 (11)3.2.12 最优二叉树 (11)3.2.13 二叉树的存储结构 (12)3.3 广义表 (13)3.4 矩阵的压缩存储 (14)3.4.1 特殊矩阵 (14)3.4.2 压缩存储 (14)第4章历年真题讲解 (15)4.1 2009年上半年 (15)4.2 2009年下半年 (15)4.3 2010年上半年 (15)4.4 2011年上半年 (16)4.5 2011年下半年 (16)4.6 2012年上半年 (17)4.7 2012年下半年 (17)4.8 2013年上半年 (18)4.9 2013年下半年 (18)4.10 2014年上半年 (18)4.11 2014年下半年 (19)4.12 2015年上半年 (19)4.13 2015年下半年 (19)4.14 2016年上半年 (20)第1章序论什么是数据?所有能输入到计算机中并能够被计算机程序处理的符号的总称,它是计算机程序加工的原料。
数据结构⼊门-树的遍历以及⼆叉树的创建树定义:1. 有且只有⼀个称为根的节点2. 有若⼲个互不相交的⼦树,这些⼦树本⾝也是⼀个树通俗的讲:1. 树是有结点和边组成,2. 每个结点只有⼀个⽗结点,但可以有多个⼦节点3. 但有⼀个节点例外,该节点没有⽗结点,称为根节点⼀、专业术语结点、⽗结点、⼦结点、根结点深度:从根节点到最底层结点的层数称为深度,根节点第⼀层叶⼦结点:没有⼦结点的结点⾮终端节点:实际上是⾮叶⼦结点度:⼦结点的个数成为度⼆、树的分类⼀般树:任意⼀个结点的⼦结点的个数都不受限制⼆叉树:任意⼀个结点的⼦结点个数最多是两个,且⼦结点的位置不可更改⼆叉数分类:1. ⼀般⼆叉数2. 满⼆叉树:在不增加树层数的前提下,⽆法再多添加⼀个结点的⼆叉树3. 完全⼆叉树:如果只是删除了满⼆叉树最底层最右边的连续若⼲个结点,这样形成的⼆叉树就是完全⼆叉树森林:n个互不相交的树的集合三、树的存储⼆叉树存储连续存储(完全⼆叉树)优点:查找某个结点的⽗结点和⼦结点(也包括判断有没有⼦结点)速度很快缺点:耗⽤内存空间过⼤链式存储⼀般树存储1. 双亲表⽰法:求⽗结点⽅便2. 孩⼦表⽰法:求⼦结点⽅便3. 双亲孩⼦表⽰法:求⽗结点和⼦结点都很⽅便4. ⼆叉树表⽰法:把⼀个⼀般树转化成⼀个⼆叉树来存储,具体转换⽅法:设法保证任意⼀个结点的左指针域指向它的第⼀个孩⼦,右指针域指向它的兄弟,只要能满⾜此条件,就可以把⼀个⼀般树转化为⼆叉树⼀个普通树转换成的⼆叉树⼀定没有右⼦树森林的存储先把森林转化为⼆叉树,再存储⼆叉树四、树的遍历先序遍历:根左右先访问根结点,再先序访问左⼦树,再先序访问右⼦树中序遍历:左根右中序遍历左⼦树,再访问根结点,再中序遍历右⼦树后续遍历:左右根后续遍历左⼦树,后续遍历右⼦树,再访问根节点五、已知两种遍历求原始⼆叉树给定了⼆叉树的任何⼀种遍历序列,都⽆法唯⼀确定相应的⼆叉树,但是如果知道了⼆叉树的中序遍历序列和任意的另⼀种遍历序列,就可以唯⼀地确定⼆叉树已知先序和中序求后序先序:ABCDEFGH中序:BDCEAFHG求后序:这个⾃⼰画个图体会⼀下就可以了,⾮常简单,这⾥简单记录⼀下1. ⾸先根据先序确定根,上⾯的A就是根2. 中序确定左右,A左边就是左树(BDCE),A右边就是右树(FHG)3. 再根据先序,A左下⾯就是B,然后根据中序,B左边没有,右边是DCE4. 再根据先序,B右下是C,根据中序,c左下边是D,右下边是E,所以整个左树就确定了5. 右树,根据先序,A右下是F,然后根据中序,F的左下没有,右下是HG,6. 根据先序,F右下为G,然后根据中序,H在G的左边,所以G的左下边是H再来⼀个例⼦,和上⾯的思路是⼀样的,这⾥就不详细的写了先序:ABDGHCEFI中序:GDHBAECIF已知中序和后序求先序中序:BDCEAFHG后序:DECBHGFA这个和上⾯的思路是⼀样的,只不过是反过来找,后序找根,中序找左右树简单应⽤树是数据库中数据组织⼀种重要形式操作系统⼦⽗进程的关系本⾝就是⼀棵树⾯向对象语⾔中类的继承关系哈夫曼树六、⼆叉树的创建#include <stdio.h>#include <stdlib.h>typedef struct Node{char data;struct Node * lchild;struct Node * rchild;}BTNode;/*⼆叉树建⽴*/void BuildBT(BTNode ** tree){char ch;scanf("%c" , &ch); // 输⼊数据if(ch == '#') // 如果这个节点的数据是#说明这个结点为空*tree = NULL;else{*tree = (BTNode*)malloc(sizeof(BTNode));//申请⼀个结点的内存 (*tree)->data = ch; // 将数据写⼊到结点⾥⾯BuildBT(&(*tree)->lchild); // 递归建⽴左⼦树BuildBT(&(*tree)->rchild); // 递归建⽴右⼦树}}/*⼆叉树销毁*/void DestroyBT(BTNode *tree) // 传⼊根结点{if(tree != NULL){DestroyBT(tree->lchild);DestroyBT(tree->rchild);free(tree); // 释放内存空间}}/*⼆叉树的先序遍历*/void Preorder(BTNode * node){if(node == NULL)return;else{printf("%c ",node->data );Preorder(node->lchild);Preorder(node->rchild);}}/*⼆叉树的中序遍历*/void Inorder(BTNode * node){if(node == NULL)return;else{Inorder(node->lchild);printf("%c ",node->data );Inorder(node->rchild);}}/*⼆叉树的后序遍历*/void Postorder(BTNode * node){if(node == NULL)return;else{Postorder(node->lchild);Postorder(node->rchild);printf("%c ",node->data );}}/*⼆叉树的⾼度树的⾼度 = max(左⼦树⾼度,右⼦树⾼度) +1*/int getHeight(BTNode *node){int Height = 0;if (node == NULL)return 0;else{int L_height = getHeight(node->lchild);int R_height = getHeight(node->rchild);Height = L_height >= R_height ? L_height +1 : R_height +1; }return Height;}int main(int argc, char const *argv[]){BTNode * BTree; // 定义⼀个⼆叉树printf("请输⼊⼀颗⼆叉树先序序列以#表⽰空结点:");BuildBT(&BTree);printf("先序序列:");Preorder(BTree);printf("\n中序序列:");Inorder(BTree);printf("\n后序序列:");Postorder(BTree);printf("\n树的⾼度为:%d" , getHeight(BTree));return 0;}// ABC##DE##F##G##。
数据结构详细教案——树与二叉树一、教学目标1.了解树和二叉树的基本概念和特点;2.掌握树和二叉树的基本操作;3.能够通过递归遍历树和二叉树。
二、教学重难点1.树和二叉树的基本概念和特点;2.递归遍历树和二叉树。
三、教学内容1.树的概念和特点1.1树的定义树是n(n>=0)个节点的有限集。
当n=0时,称为空树;如果不为空树,则1. 树有且仅有一个特殊节点被称为根(Root);2.其余节点可分为m(m>0)个互不相交的有限集T1,T2,...,Tm,其中每个集合又是一棵树。
1.2节点间的关系- 父节点(parent)是当前节点的直接上级节点;- 子节点(child)是当前节点的直接下级节点;- 兄弟节点(sibling)是具有同一父节点的节点;- 祖先节点(ancestor)是通过从当前节点到根的任意路径可以到达的节点;- 子孙节点(descendant)是通过从该节点到子树的任意节点可以到达的节点。
1.3树的特点-树是一个有层次的结构,可以看作是一个鱼骨图;-树中的每个节点都可以有多个子节点,但只有一个父节点;-树中的节点之间是唯一的,不存在重复节点;-树中的任意两个节点之间都有且仅有一条路径连接。
2.二叉树的概念和特点2.1二叉树的定义二叉树是一种特殊的树结构,它的每个节点最多只能有两个子节点,分别称为左子节点和右子节点。
2.2二叉树的特点-二叉树的度最大为2,即每个节点最多有两个子节点;-二叉树的第i层最多有2^(i-1)个节点;-对于任意一颗二叉树,如果其叶子节点数为n0,度为2的节点数为n2,则有n0=n2+1;-完全二叉树是一种特殊的二叉树,除了最后一层的叶子节点外,每一层的节点都是满的。
四、教学过程1.讲解树和二叉树的基本概念和特点,引导学生理解树和二叉树的定义和节点间的关系。
2.分析树和二叉树的基本操作,并通过实例演示操作过程,让学生掌握操作的步骤和方法。
3.运用递归算法遍历树和二叉树的过程,详细讲解前序遍历、中序遍历和后序遍历的定义和实现方法。
数据结构树和二叉树知识点总结
1.树的概念:树是一种非线性的数据结构,由节点和边构成,每个节点只能有一个父节点,但可以有多个子节点。
2. 二叉树的概念:二叉树是一种特殊的树结构,每个节点最多只有两个子节点,一个是左子节点,一个是右子节点。
3. 二叉树的遍历:二叉树的遍历分为前序遍历、中序遍历和后序遍历三种方式。
前序遍历是先访问根节点,再访问左子树,最后访问右子树;中序遍历是先访问左子树,再访问根节点,最后访问右子树;后序遍历是先访问左子树,再访问右子树,最后访问根节点。
4. 二叉搜索树:二叉搜索树是一种特殊的二叉树,它满足左子树中所有节点的值均小于根节点的值,右子树中所有节点的值均大于根节点的值。
因此,二叉搜索树的中序遍历是一个有序序列。
5. 平衡二叉树:平衡二叉树是一种特殊的二叉搜索树,它的左子树和右子树的高度差不超过1。
平衡二叉树的插入和删除操作可以保证树的平衡性,从而提高树的查询效率。
6. 堆:堆是一种特殊的树结构,它分为最大堆和最小堆两种。
最大堆的每个节点的值都大于等于其子节点的值,最小堆的每个节点的值都小于等于其子节点的值。
堆常用于排序和优先队列。
7. Trie树:Trie树是一种特殊的树结构,它用于字符串的匹配和检索。
Trie树的每个节点代表一个字符串的前缀,从根节点到叶子节点的路径组成一个完整的字符串。
以上是数据结构树和二叉树的一些基本知识点总结,对于深入学
习数据结构和算法有很大的帮助。
常见基本数据结构——树,⼆叉树,⼆叉查找树,AVL树常见数据结构——树处理⼤量的数据时,链表的线性时间太慢了,不宜使⽤。
在树的数据结构中,其⼤部分的运⾏时间平均为O(logN)。
并且通过对树结构的修改,我们能够保证它的最坏情形下上述的时间界。
树的定义有很多种⽅式。
定义树的⾃然的⽅式是递归的⽅式。
⼀棵树是⼀些节点的集合,这个集合可以是空集,若⾮空集,则⼀棵树是由根节点r以及0个或多个⾮空⼦树T1,T2,T3,......,Tk组成,这些⼦树中每⼀棵的根都有来⾃根r的⼀条有向的边所连接。
从递归的定义中,我们发现⼀棵树是N个节点和N-1条边组成的,每⼀个节点都有⼀条边连接⽗节点,但是根节点除外。
具有相同⽗亲的节点为兄弟,类似的⽅法可以定义祖⽗和孙⼦的关系。
从节点n1到nk的路径定义为节点n1,n2,...,nk的⼀个序列,并且ni是ni+1的⽗亲。
这个路径的长是路径上的边数,即k-1。
每个节点到⾃⼰有⼀条长为0的路径。
⼀棵树从根到叶⼦节点恰好存在⼀条路径。
对于任意的节点ni,ni的深度为从根到ni的唯⼀路径长。
ni的⾼是从ni到⼀⽚叶⼦的最长路径的长。
因此,所有的树叶的⾼度都是0,⼀棵树的⾼等于它的根节点的⾼。
⼀棵树的深度总是等于它最深叶⼦的深度;该深度等于这棵树的⾼度。
树的实现实现树的⼀种⽅法可以是在每⼀个节点除数据外还要有⼀些指针,使得该节点的每⼀个⼉⼦都有⼀个指针指向它。
但是由于每个节点的⼉⼦树可以变化很⼤⽽且事先不知道,故在各个节点建⽴⼦节点的链接是不可⾏的,这样将会浪费⼤量的空间。
实际的做法很简单:将每个节点的所有⼉⼦都放在树节点的链表中。
下⾯是典型的声明:typedef struct TreeNode *PtrToNodestruct TreeNode{ ElementType Element; PtrToNode FirstChild; PtrToNode NextSibling}下⾯是⼉⼦兄弟表⽰法的图⽰:树的遍历及应⽤⼀个常见的使⽤是操作系统中的⽬录结构。