一、带电粒子在匀强磁场中匀速圆周运动基本问题
- 格式:doc
- 大小:111.50 KB
- 文档页数:7
3 带电粒子在匀强磁场中的运动[学习目标] 1.理解带电粒子初速度方向和磁场方向垂直时,带电粒子在匀强磁场中做匀速圆周运动.2.会根据洛伦兹力提供向心力推导半径公式和周期公式.3.会分析带电粒子在匀强磁场中运动的基本问题.一、带电粒子在匀强磁场中的运动1.若v ∥B ,带电粒子以速度v 做匀速直线运动,其所受洛伦兹力F =0.所以粒子做匀速直线运动.2.若v ⊥B ,此时初速度方向、洛伦兹力的方向均与磁场方向垂直,粒子在垂直于磁场方向的平面内运动.(1)洛伦兹力与粒子的运动方向垂直,只改变粒子速度的方向,不改变粒子速度的大小. (2)带电粒子在垂直于磁场的平面内做匀速圆周运动,洛伦兹力提供向心力. 二、带电粒子在磁场中做圆周运动的半径和周期 1.半径一个电荷量为q 的粒子,在磁感应强度为B 的匀强磁场中以速度v 运动,那么带电粒子所受的洛伦兹力为F =q v B ,由洛伦兹力提供向心力得q v B =m v 2r ,由此可解得圆周运动的半径r=m vqB.从这个结果可以看出,粒子在匀强磁场中做匀速圆周运动的半径与它的质量、速度成正比,与电荷量、磁感应强度成反比. 2.周期由r =m v qB 和T =2πr v ,可得T =2πm qB .带电粒子在匀强磁场中做匀速圆周运动的周期与轨道半径和运动速度无关.1.判断下列说法的正误.(1)运动电荷进入磁场后(无其他场)可能做匀速圆周运动,不可能做类平抛运动.( √ ) (2)带电粒子在匀强磁场中做匀速圆周运动时,轨道半径跟粒子的速率成正比.( √ ) (3)带电粒子在匀强磁场中做匀速圆周运动的周期与轨道半径成正比.( × ) (4)带电粒子在匀强磁场中做圆周运动的周期随速度的增大而减小.( × )2.两个粒子带电荷量相等,在同一匀强磁场中只受到磁场力作用而做匀速圆周运动,则( ) A .若速率相等,则半径必相等 B .若质量相等,则周期必相等 C .若动能相等,则半径必相等 D .若动量相等,则周期必相等 答案 B一、带电粒子在匀强磁场中运动的基本问题 导学探究如图所示,可用洛伦兹力演示仪观察运动电子在匀强磁场中的偏转.(1)不加磁场时,电子束的运动轨迹如何? (2)加上磁场后,电子束的运动轨迹如何?(3)如果保持出射电子的速度不变,增大磁感应强度,轨迹圆半径如何变化? (4)如果保持磁感应强度不变,增大出射电子的速度,轨迹圆半径如何变化? 答案 (1)一条直线 (2)圆 (3)变小 (4)变大 知识深化1.分析带电粒子在匀强磁场中的匀速圆周运动,要紧抓洛伦兹力提供向心力,即q v B =m v 2r .2.同一粒子在同一匀强磁场中做匀速圆周运动,由r =m v qB 知,r 与v 成正比;由T =2πmqB知,T 与速度无关,与半径无关.例1 质子p(11H)和α粒子(42He)以相同的速率在同一匀强磁场中做匀速圆周运动,轨道半径分别为R p 和R α,周期分别为T p 和T α,则下列选项中正确的是( ) A .R p ∶R α=1∶2,T p ∶T α=1∶2 B .R p ∶R α=1∶1,T p ∶T α=1∶1 C .R p ∶R α=1∶1,T p ∶T α=1∶2 D .R p ∶R α=1∶2,T p ∶T α=1∶1 答案 A解析 质子p(11H)和α粒子(42He)的带电荷量之比为q p ∶q α=1∶2,质量之比m p ∶m α=1∶4.由带电粒子在匀强磁场中做匀速圆周运动的规律可知,轨道半径R =m v qB ,周期T =2πm qB ,因为两粒子速率相同,代入q 、m ,可得R p ∶R α=1∶2,T p ∶T α=1∶2,故选项A 正确,B 、C 、D 错误.针对训练1 薄铝板将同一匀强磁场分成 Ⅰ、Ⅱ 两个区域,高速带电粒子可穿过铝板一次,在两个区域内运动的轨迹如图所示,半径R 1>R 2.假定穿过铝板前后粒子带电荷量保持不变,则该粒子( )A .带正电B .在Ⅰ、Ⅱ区域的运动速度大小相同C .在Ⅰ、Ⅱ区域的运动时间相同D .从Ⅱ区域穿过铝板运动到Ⅰ区域 答案 C解析 粒子穿过铝板受到铝板的阻力,速度将减小.由r =m vBq 可得粒子在磁场中做匀速圆周运动的轨道半径将减小,故可得粒子由Ⅰ区域运动到Ⅱ区域,结合左手定则可知粒子带负电,选项A 、B 、D 错误;由T =2πmBq可知粒子运动的周期不变,粒子在Ⅰ区域和Ⅱ区域中运动的时间均为t =12T =πmBq ,选项C 正确.二、带电粒子在匀强磁场中的圆周运动 1.圆心位置确定的两种方法 (1)圆心一定在垂直于速度的直线上已知入射方向和出射方向时,可以过入射点和出射点作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨道的圆心(如图甲所示,P 为入射点,M 为出射点). (2)圆心一定在弦的垂直平分线上已知入射方向和出射点的位置时,可以过入射点作入射方向的垂线,连接入射点和出射点,作其垂直平分线,这两条垂线的交点就是圆弧轨道的圆心(如图乙所示,P 为入射点,M 为出射点).2.半径的确定半径的计算一般利用几何知识解直角三角形.做题时一定要作好辅助线,由圆的半径和其他几何边构成直角三角形.由直角三角形的边角关系或勾股定理求解.3.粒子在匀强磁场中运动时间的确定(1)粒子在匀强磁场中运动一周的时间为T ,当粒子运动轨迹的圆弧所对应的圆心角为α时,其运动时间t =α360°T (或t =α2πT ).确定圆心角时,利用好几个角的关系,即圆心角=偏向角=2倍弦切角. (2)当v 一定时,粒子在匀强磁场中运动的时间t =lv ,l 为带电粒子通过的弧长.例2 如图所示,a 和b 所带电荷量相同,以相同动能从A 点射入磁场,在匀强磁场中做圆周运动的半径r a =2r b ,则可知(重力不计)( )A .两粒子都带正电,质量比m am b =4B .两粒子都带负电,质量比m am b =4C .两粒子都带正电,质量比m a m b =14D .两粒子都带负电,质量比m a m b =14答案 B解析 由于q a =q b ,E k a =E k b ,由动能E k =12m v 2和粒子偏转半径r =m v qB ,可得m =r 2q 2B 22E k ,可见m 与半径r 的二次方成正比,故m a ∶m b =4∶1,再根据左手定则知粒子应带负电,故选B.例3 如图所示,一带电荷量为2.0×10-9 C 、质量为1.8×10-16kg 的粒子,从直线上一点O沿与PO 方向成30°角的方向进入磁感应强度为B 的匀强磁场中,经过1.5×10-6 s 后到达直线上的P 点,求:(1)粒子做圆周运动的周期; (2)磁感应强度B 的大小;(3)若O 、P 之间的距离为0.1 m ,则粒子的运动速度的大小. 答案 (1)1.8×10-6 s (2)0.314 T (3)3.49×105 m/s解析 (1)作出粒子的运动轨迹,如图所示,由图可知粒子由O 到P 的大圆弧所对的圆心角为300°,则t T =300°360°=56,周期T =65t =65×1.5×10-6 s =1.8×10-6 s (2)由q v B =m v 2r ,T =2πr v ,得T =2πm qB ,知B =2πm qT =2×3.14×1.8×10-162.0×10-9×1.8×10-6T =0.314 T.(3)由几何知识可知,半径r =OP =0.1 m 则q v B =m v 2r得,粒子的运动速度大小为v =Bqr m =0.314×2.0×10-9×0.11.8×10-16 m/s ≈3.49×105 m/s. 针对训练2 (多选)(2020·天津卷)如图所示,在Oxy 平面的第一象限内存在方向垂直纸面向里,磁感应强度大小为B 的匀强磁场.一带电粒子从y 轴上的M 点射入磁场,速度方向与y 轴正方向的夹角θ=45°.粒子经过磁场偏转后在N 点(图中未画出)垂直穿过x 轴.已知OM =a ,粒子电荷量为q ,质量为m ,重力不计.则( )A .粒子带负电荷B .粒子速度大小为qBa mC .粒子在磁场中运动的轨道半径为aD .N 与O 点相距(2+1)a 答案 AD解析 由题意可知,粒子在磁场中做顺时针圆周运动,根据左手定则可知粒子带负电荷,故A 正确;粒子的运动轨迹如图所示,O ′为粒子做匀速圆周运动的圆心,其轨道半径R =2a ,故C 错误;由洛伦兹力提供向心力可得q v B =m v 2R ,则v =2qBa m ,故B 错误;由图可知,ON =a +2a =(2+1)a ,故D 正确.考点一 周期公式与半径公式的基本应用1.(多选)两个粒子A 和B 带有等量的同种电荷,粒子A 和B 以垂直于磁场的方向射入同一匀强磁场,不计重力,则下列说法正确的是( ) A .如果两粒子的速度v A =v B ,则两粒子的半径R A =R B B .如果两粒子的动能E k A =E k B ,则两粒子的周期T A =T B C .如果两粒子的质量m A =m B ,则两粒子的周期T A =T B D .如果两粒子的动量大小相同,则两粒子的半径R A =R B 答案 CD解析 因为粒子在匀强磁场中做匀速圆周运动的半径r =m v qB ,周期T =2πmqB ,又粒子电荷量相等且在同一匀强磁场中,所以q 、B 相等,r 与m 、v 有关,T 只与m 有关,所以A 、B 错误,C 、D 正确.2.在匀强磁场中,一个带电粒子做匀速圆周运动,如果又顺利垂直进入另一磁感应强度是原来磁感应强度一半的匀强磁场,则( ) A .粒子的速率加倍,周期减半 B .粒子的速率不变,轨道半径减半 C .粒子的速率不变,周期变为原来的2倍D .粒子的速率减半,轨道半径变为原来的2倍 答案 C解析 因洛伦兹力对粒子不做功,故粒子的速率不变;当磁感应强度减半后,由r =m vBq 可知,轨道半径变为原来的2倍;由T =2πmBq 可知,粒子的周期变为原来的2倍,故C 正确,A 、B 、D 错误.3.一个带电粒子沿垂直于磁场的方向射入一匀强磁场.粒子的一段径迹如图所示.径迹上的每一小段都可近似看成圆弧.由于带电粒子能使沿途的空气电离,粒子的能量逐渐减小(电荷量不变).从图中情况可以确定( )A .粒子从a 到b ,带正电B .粒子从a 到b ,带负电C .粒子从b 到a ,带正电D .粒子从b 到a ,带负电 答案 C解析 由于带电粒子使沿途的空气电离,粒子的能量逐渐减小,可知速度逐渐减小;根据粒子在匀强磁场中做匀速圆周运动的半径公式r =m vqB 可知,粒子的运动半径逐渐减小,所以粒子的运动方向是从b 到a ;再根据左手定则可知粒子带正电,选项C 正确,A 、B 、D 错误. 4.质量和带电荷量都相等的带电粒子M 和N ,以不同的速率经小孔S 垂直进入匀强磁场并最终打在金属板上,运动的半圆轨迹如图中虚线所示,不计重力,下列表述正确的是( )A .M 带负电,N 带正电B .M 的速率小于N 的速率C .洛伦兹力对M 、N 做正功D .M 的运动时间大于N 的运动时间 答案 A解析 根据左手定则可知N 带正电,M 带负电,A 正确;因r =m vBq,而M 的轨迹半径大于N的轨迹半径,所以M 的速率大于N 的速率,B 错误;洛伦兹力不做功,C 错误;M 和N 的运动时间都为t =πmBq,D 错误.考点二 带电粒子做匀速圆周运动的分析5.如图,ABCD 是一个正方形的匀强磁场区域,两相同的粒子甲、乙分别以不同的速率从A 、D 两点沿图示方向射入磁场,均从C 点射出,则它们的速率之比v 甲∶v 乙和它们通过该磁场所用时间之比t 甲∶t 乙分别为( )A .1∶1,2∶1B .1∶2,2∶1C .2∶1,1∶2D .1∶2,1∶1答案 C解析 根据q v B =m v 2r ,得v =qBrm ,根据题图可知,甲、乙两粒子的轨迹半径之比为2∶1,又因为两粒子相同,故v 甲∶v 乙=r 甲∶r 乙=2∶1,粒子在磁场中的运动周期T =2πmqB ,两粒子相同,可知甲、乙两粒子的周期之比为1∶1,根据轨迹图可知,甲、乙两粒子转过的圆心角之比为1∶2,故两粒子在磁场中经历的时间之比t 甲∶t 乙=1∶2,选C.6.如图所示,MN 为铝质薄平板,铝板上方和下方分别有垂直于纸面的匀强磁场(未画出),一带电粒子从紧贴铝板上表面的P 点垂直于铝板向上射出,从Q 点穿越铝板后到达PQ 的中点O .已知粒子穿越铝板时,其动能损失一半,速度方向和电荷量不变,不计重力.铝板上方和下方的磁感应强度大小之比为( )A .2∶1 B.2∶1 C .1∶1 D.2∶2 答案 D解析 根据几何关系可知,带电粒子在铝板上方做匀速圆周运动的轨迹半径r 1是其在铝板下方做匀速圆周运动的轨迹半径r 2的2倍,设粒子在P 点的速度大小为v 1,动能为E k ,根据牛顿第二定律可得q v 1B 1=m v 12r 1,则B 1=m v 1qr 1=2mE kqr 1;同理,B 2=m v 2qr 2=2m ·12E kqr 2=mE kqr 2,则B 1B 2=2r 2r 1=22,D 正确.7.(多选)如图所示,分界线MN 上、下两侧有垂直纸面的匀强磁场,磁感应强度分别为B 1和B 2,一质量为m 、电荷量为q 的带电粒子(不计重力)从O 点出发以一定的初速度v 0沿纸面垂直MN 向上射出,经时间t 又回到出发点O ,形成了图示心形轨迹,则( )A .粒子一定带正电荷B .MN 上、下两侧的磁场方向相同C .MN 上、下两侧的磁感应强度的大小之比B 1∶B 2=1∶2D .时间t =2πm qB 2答案 BD解析 题中未给出磁场的方向和粒子绕行的方向,所以不能判定粒子所带电荷的正负,选项A 错误;粒子越过磁场的分界线MN 时,洛伦兹力的方向没有变,根据左手定则可知MN 上、下两侧的磁场方向相同,选项B 正确;设MN 上方的轨迹半径是r 1,下方的轨迹半径是r 2,根据几何关系可知r 1∶r 2=1∶2;洛伦兹力充当粒子做圆周运动的向心力,由q v 0B =m v 02r ,解得B =m v 0qr ,所以B 1∶B 2=r 2∶r 1=2∶1,选项C 错误;由题图知,时间t =T 1+T 22=2πmqB 1+πm qB 2,由B 1∶B 2=2∶1得t =2πm qB 2,选项D 正确. 8.如图所示,两个速度大小不同的同种带电粒子1、2沿水平方向从同一点垂直射入匀强磁场中,磁场方向垂直纸面向里,当它们从磁场下边界飞出时相对入射方向的偏转角分别为90°、60°,则粒子1、2在磁场中运动的( )A .轨迹半径之比为2∶1B .速度之比为1∶2C .时间之比为2∶3D .周期之比为1∶2答案 B解析 带电粒子在匀强磁场中运动时,洛伦兹力提供向心力,由牛顿第二定律有q v B =m v 2r,可得r =m v qB ,又T =2πr v ,联立可得T =2πmqB ,故两粒子运动的周期相同,D 错误;速度的偏转角等于轨迹所对的圆心角,故粒子1的运动时间t 1=90°360°T =14T ,粒子2的运动时间t 2=60°360°T=16T ,则时间之比为3∶2,C 错误;粒子1和粒子2运动轨迹的圆心O 1和O 2如图所示,设粒子1的轨迹半径R 1=d ,对于粒子2,由几何关系可得R 2sin 30°+d =R 2,解得R 2=2d ,故轨迹半径之比为1∶2,A 错误;由r =m vqB可知,速度之比为1∶2,B 正确.9.如图所示,在x 轴上方存在垂直于纸面向里的匀强磁场,磁场的磁感应强度为B ,在xOy 平面内,从原点O 处与x 轴正方向成θ角(0<θ<π),以速率v 发射一个带正电的粒子(重力不计),则下列说法正确的是( )A .若v 一定,θ越大,则粒子离开磁场的位置距O 点越远B .若v 一定,θ越大,则粒子在磁场中运动的时间越短C .若θ一定,v 越大,则粒子在磁场中运动的角速度越大D .若θ一定,v 越大,则粒子在磁场中运动的时间越短 答案 B解析 画出粒子在磁场中运动的轨迹如图所示,由几何关系得,轨迹对应的圆心角α=2π-2θ,粒子在磁场中运动的时间t =α2πT =2π-2θ2π·2πm qB =(2π-2θ)m qB ,可得,若v 一定,θ越大,粒子在磁场中运动的时间t 越短,若θ一定,则粒子在磁场中的运动时间一定,故B 正确,D 错误;设粒子的轨迹半径为r ,则r =m v qB ,由图有,AO =2r sin θ=2m v sin θqB ,可得,若θ是锐角,θ越大,AO 越大,若θ是钝角,θ越大,AO 越小,故A 错误;粒子在磁场中运动的角速度ω=2πT ,又T =2πm qB ,则得ω=qBm,与速度v 无关,故C 错误.10.(2019·全国卷Ⅲ)如图,在坐标系的第一和第二象限内存在磁感应强度大小分别为12B 和B 、方向均垂直于纸面向外的匀强磁场.一质量为m 、电荷量为q (q >0)的粒子垂直于x 轴射入第二象限,随后垂直于y 轴进入第一象限,最后经过x 轴离开第一象限.粒子在磁场中运动的时间为( )A.5πm 6qBB.7πm 6qBC.11πm 6qBD.13πm 6qB答案 B解析 设带电粒子进入第二象限的速度为v ,在第二象限和第一象限中运动的轨迹如图所示,对应的轨迹半径分别为R 1和R 2,由洛伦兹力提供向心力,有q v B =m v 2R、T =2πR v ,可得R 1=m v qB 、R 2=2m v qB 、T 1=2πm qB 、T 2=4πm qB ,带电粒子在第二象限中运动的时间为t 1=T 14,在第一象限中运动的时间为t 2=θ2πT 2,又由几何关系有cos θ=R 2-R 1R 2=12,可得t 2=T 26,则粒子在磁场中运动的时间为t =t 1+t 2,联立以上各式解得t =7πm 6qB,选项B 正确,A 、C 、D 错误.11.一带电粒子的质量m =1.7×10-27 kg ,电荷量q =+1.6×10-19 C ,该粒子以大小为v =3.2×106 m/s 的速度沿垂直于磁场同时又垂直于磁场边界的方向进入匀强磁场中,磁场的磁感应强度为B =0.17 T ,磁场的宽度L =10 cm ,如图所示.(粒子重力不计,g 取10 m/s 2,结果均保留两位有效数字)(1)带电粒子离开磁场时的速度多大?(2)带电粒子在磁场中运动多长时间?(3)带电粒子在离开磁场时偏离入射方向的距离d 为多大?答案 (1)3.2×106 m/s (2)3.3×10-8 s (3)2.7×10-2 m解析 (1)由于洛伦兹力不做功,所以带电粒子离开磁场时的速度大小仍为3.2×106 m/s.(2)由q v B =m v 2r 得, 轨迹半径r =m v qB =1.7×10-27×3.2×1061.6×10-19×0.17m =0.2 m. 由题图可知偏转角θ满足:sin θ=L r =0.1 m 0.2 m=0.5, 所以θ=30°=π6, 由q v B =m v 2r 及v =2πr T可得 带电粒子在磁场中运动的周期T =2πm qB, 所以带电粒子在磁场中运动的时间t =θ2π·T =112T , 所以t =πm 6qB = 3.14×1.7×10-276×1.6×10-19×0.17s ≈3.3×10-8 s. (3)带电粒子在离开磁场时偏离入射方向的距离d =r (1-cos θ)=0.2×(1-32) m ≈2.7×10-2 m.12.(2020·江苏卷改编)空间存在两个垂直于Oxy 平面的匀强磁场,y 轴为两磁场的边界,磁感应强度分别为2B 0、3B 0.质量为m 、带电荷量为q 的粒子从原点O 沿x 轴正向射入磁场,速度为v .粒子第1次、第2次经过y 轴的位置分别为P 、Q ,其轨迹如图所示.不考虑粒子重力影响.求:(1)Q 到O 的距离d ;(2)粒子两次经过P 点的时间间隔Δt .答案 (1)m v 3qB 0 (2)2πm qB 0解析 (1)粒子先后在两磁场中做匀速圆周运动,设半径分别为r 1、r 2由q v B =m v 2r 可知r =m v qB故r 1=m v 2qB 0,r 2=m v 3qB 0且d =2r 1-2r 2,解得d =m v 3qB 0(2)粒子先后在两磁场中做匀速圆周运动,设运动时间分别为t 1、t 2由T =2πr v =2πm qB 得t 1=πm 2qB 0,t 2=πm 3qB 0, 且Δt =2t 1+3t 2解得Δt =2πm qB 0.。
高中化学之带电粒子在匀强磁场中的匀速圆周运动知识点重/难点重点:洛伦兹力在匀速圆周运动中的具体应用及与数学知识的结合。
难点:洛伦兹力在匀速圆周运动中的具体应用及与数学知识的结合。
重/难点分析重点分析:带电粒子在磁场中的运动是高中物理的一个难点,也是高考的热点。
在历年的高考试题中几乎年年都有这方面的考题。
带电粒子在磁场中的运动问题,综合性较强,解这类问题既要用到物理中的洛仑兹力、圆周运动的知识,又要用到数学中的平面几何中的圆及解析几何知识。
难点分析:带电粒子在磁场中的运动问题是高考的难点和热点,特别是新的物理考试大纲将动量要求大幅度降低后,这类问题在高考中地位必将更为突出。
由于带电粒子在电磁场中的运动受到多种因素的影响,往往会形成多解的情况,而学生在解题的过程中由于思维不缜密常常不能解答完整。
教师在教学过程中,要引导学生对形成此类问题多解的原因进行总结和归类,要求学生在解答过程中参照这些原因一一分析。
突破策略一、轨道圆的“三个确定”(1)如何确定“圆心”①由两点和两线确定圆心,画出带电粒子在匀强磁场中的运动轨迹。
确定带电粒子运动轨迹上的两个特殊点(一般是射入和射出磁场时的两点),过这两点作带电粒子运动方向的垂线(这两垂线即为粒子在这两点所受洛伦兹力的方向),则两垂线的交点就是圆心。
如图(a)②若只已知过其中一个点的粒子运动方向,则除过已知运动方向的该点作垂线外,还要将这两点相连作弦,再作弦的中垂线,两垂线交点就是圆心。
如图(b)③若只已知一个点及运动方向,也知另外某时刻的速度方向,但不确定该速度方向所在的点,此时要将其中一速度的延长线与另一速度的反向延长线相交成一角(∠PAM),画出该角的角平分线,它与已知点的速度的垂线交于一点O,该点就是圆心。
如图(c)。
(2)如何确定“半径”方法一:由物理方程求:方法二:由几何方程求:一般由数学知识(勾股定理、三角函数等)计算来确定。
(3)如何确定“圆心角与时间”①速度的偏向角φ=圆弧所对应的圆心角(回旋角)θ=2倍的弦切角α,如图(d)。
带电粒子在磁场中做圆周运动的分析方法湖北省郧西县第二中学王兴青带电粒子在有界、无界磁场中的运动类试题在高考试题中出现的几率几乎为l00%,涉及临界状态的推断、轨迹图象的描绘等。
试题综合性强、分值大、类型多,能力要求高,有较强的选拔功能,故平时学习时应注意思路和方法的总结。
解答此类问题的基本规律是“四找”:找圆心、找半径、找周期或时间、找几何关系。
一、知识点:若v⊥B,带电粒子在垂直于磁感线的平面内以入射速度v做匀速圆周运动,如右图所示。
1、轨道半径带电粒子在磁场中受到的洛伦兹力: F=qvB粒子做匀速圆周运动的向心力:v2F向=mrv2粒子受到的洛伦兹力提供向心力: qvB=mrm v所以轨道半径公式: r=Bq带电粒子在匀强磁场中做匀速圆周运动的半径跟粒子的运动速率成正比.速率越大.轨道半径也越大.2、周期由r=Bqm v 和T=v r π2得:T= qB m π2 带电粒子在匀强磁场中做匀速圆周运动的周期T 跟轨道半径r 和运动速度v 无关.二、带电粒子在磁场中做圆周运动的分析方法1、圆心的确定带电粒子进入一个有界磁场后的轨道是一段圆弧,如何确定圆心是解决问题的前提,也是解题的关键。
首先,应有一个最基本的思路:即圆心一定在与速度方向垂直的直线上。
在实际问题中圆心位置的确定极为重要,通常有四种情况:(1)已知入射方向和出射方向,通过入射点和出射点分别作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨道的圆心(如图l 所示,图中P 为入射点,M 为出射点)(2)已知入射方向和出射点的位置时,可以通过入射点作入射方向的垂线,连接入射点和出射点,作其中垂线,这两条垂线的交点就是圆弧轨道的圆心(如图2所示,P为入射点,M 为出射点)。
(3)两条弦的中垂线:如图3所示,带电粒子在匀强磁场中分别经过0、A 、B 三点时,其圆心O ’在OA 、OB 的中垂线的交点上. (4)已知入射点、入射方向和圆周的一条切线:如图4所示,过入射点A 做v 垂线A0.延长v 线与切线CD 交于C 点,做∠ACD 的角平分线交A0于0点,0点即为圆心,求解临界问题常用。
高三物理“带电粒子在磁场中的圆周运动”解析处理带电粒子在匀强磁场中的圆周运动问题,其本质是平面几何知识与物理知识的综合运用。
重要的是正确建立完整的物理模型,画出准确、清晰的运动轨迹。
下面我们从基本问题出发对“带电粒子在磁场中的圆周运动”进行分类解析。
一、“带电粒子在磁场中的圆周运动”的基本型问题找圆心、画轨迹是解题的基础。
带电粒子垂直于磁场进入一匀强磁场后在洛仑兹力作用下必作匀速圆周运动,抓住运动中的任两点处的速度,分别作出各速度的垂线,则二垂线的交点必为圆心;或者用垂径定理及一处速度的垂线也可找出圆心;再利用数学知识求出圆周运动的半径及粒子经过的圆心角从而解答物理问题。
【例1】图示在y<0的区域内存在匀强磁场,磁场方向垂直于xy平面并指向纸面外,磁场的磁感应强度为B;一带正电的粒子以速度V0从O点射入磁场中,入射方向在xy平面内,与x轴正方向的夹角为θ;若粒子射出磁场的位置与O点的距离为L。
求①该粒子的电荷量和质量比;②粒子在磁场中的运动时间。
分析:①粒子受洛仑兹力后必将向下偏转,过O点作速度V0的垂线必过粒子运动轨迹的圆心O’;由于圆的对称性知粒子经过点P时的速度方向与x轴正方向的夹角必为θ,故点P作速度的垂线与点O处速(也可以用垂径定理作弦OP的垂直平分线与点O处速度的垂线的交点也为圆心)。
度垂线的交点即为圆心O’由图可知粒子圆周运动的半径由有。
再由洛仑兹力作向心力得出粒子在磁场中的运动半径为故有,解之。
②由图知粒子在磁场中转过的圆心角为,故粒子在磁场中的运动时间为。
【例2】如图以ab为边界的二匀强磁场的磁感应强度为B1=2B2,现有一质量为m带电+q的粒子从O 点以初速度V0沿垂直于ab方向发射;在图中作出粒子运动轨迹,并求出粒子第6次穿过直线ab所经历的时间、路程及离开点O的距离。
(粒子重力不计)分析:粒子在二磁场中的运动半径分别为,由粒子在磁场中所受的洛仑兹力的方向可以作出粒子的运动轨迹如图所示。
枣庄三中2013——2014学年度高二物理学案使用日期:2013年12月__日 学号_______ 姓名___________专题1:带电粒子在匀强磁场的运动典型问题分析问题1.带电粒子的轨道半径和周期1.粒子圆周运动的半径:Bqv =m R v 2R =Bqmv2.粒子圆周运动的周期:T =vRπ2=2π(Bq mv )/v =Bq m π2所以T =Bq m π23.带电粒子运动轨迹的圆心、半径的确定(1)已知入射方向和出射方向时,可以通过入射点和出射点作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨道的圆心,如图5-5-1(a )所示,P 为入射点,M 为出射点,O 为轨道圆心。
(2)已知入射方向和出射点的位置时,可以通过入射点作入射方向的垂线,连接入射点和出射点,作其中垂线,这两条垂线的交点就是圆弧轨道的圆心,如图5-5-1(b )所示,P 为入射点,M 为出射点,O 为轨道圆心。
(3)确定带电粒子运动圆弧所对圆心角的两个重要结论:带电粒子射出磁场的速度方向与射入磁场的速度方向之间的夹角φ叫做偏向角,偏向角等于圆弧轨道M P对应的圆心角α,即α=φ,如图5-5-1(a )所示。
(4)圆弧轨道M P所对应圆心角α等于PM 弦与切线的夹角(弦切角)θ的2倍,即α=2θ,如图5-5-1(b )所示。
4、带电粒子在磁场中运动的时间的确定带电粒子在匀强磁场中做匀速圆周运动时,转一周所用时间可用公式T=qBmπ2确定,从式中可以看出粒子转一周所用时间与粒子比荷有关,还与磁场有关。
若要计算转过任一段圆弧所用的时间,则必须确定粒子转过的圆弧所对的圆心角θ,并由表达式t=πθ2T 确定通过该段圆弧所用的时间,其中T 即为该粒子做圆周运动的周期,转过的圆心角越大,所用时间越长。
典例1. 质量为m ,电荷量为q 的粒子,以初速度v 0垂直进入磁感应强度为B 、宽度为L 的匀强磁场区域,如图所示。
求(1)带电粒子的运动轨迹及运动性质(2)带电粒子运动的轨道半径(3)带电粒子离开磁场时的速率 (4)带电粒子离开磁场时的偏转角θ(5)带电粒子在磁场中的运动时间t(6)带电粒子离开磁场时偏转的侧位移图5-5-1问题2.带电粒子在有界磁场中运动问题1.带电粒子在半无界磁场中的运动典例2.一个负离子,质量为m ,电量大小为q ,以速率V 垂直于屏S 经过小孔O 射入存在着匀强磁场的真空室中(如图1).磁感应强度B 的方向与离子的运动方向垂直,并垂直于图1中纸面向里.(1)求离子进入磁场后到达屏S 上时的位置与O 点的距离.(2)如果离子进入磁场后经过时间t 到达位置P ,证求直线OP 与离子入射方向之间的夹角θ跟t 的关系。
第3节 带电粒子在匀强磁场中的运动学习目标要求核心素养和关键能力1.知道带电粒子初速度方向和磁场方向垂直时,带电粒子在匀强磁场中做匀速圆周运动。
2.会应用动力学方法推导半径公式和周期公式。
3.会分析带电粒子在匀强磁场中运动的基本问题。
1.核心素养 应用动力学方法推导半径公式和周期公式。
2.关键能力画轨迹图的能力和推理能力。
一、带电粒子在匀强磁场中的运动1.洛伦兹力总是与粒子的运动方向垂直,只改变粒子速度的方向,不改变粒子速度的大小。
2.沿着与磁场垂直的方向射入磁场的带电粒子,在匀强磁场中做匀速圆周运动。
【想一想】带电粒子在匀强磁场中做圆周运动的向心力的来源是什么力? 答案 洛伦兹力提供做圆周运动的向心力。
二、带电粒子在磁场中做匀速圆周运动的半径和周期1.运动条件:不计重力的带电粒子沿着与磁场垂直的方向进入匀强磁场。
2.洛伦兹力作用:提供带电粒子做圆周运动的向心力,即q v B =m v 2r 。
3.基本公式半径:r =m vqB 。
周期:T =2πr v =2πmqB 。
【判一判】(1)带电粒子在匀强磁场中做匀速圆周运动,轨道半径跟粒子的速率成正比。
(√) (2)带电粒子在匀强磁场中做匀速圆周运动的周期与轨道半径成正比。
(×) (3)运动电荷在匀强磁场中做圆周运动的周期随速度增大而减小。
(×)探究1 带电粒子在匀强磁场中运动的基本问题■情境导入如图所示,可用洛伦兹力演示仪观察运动电子在匀强磁场中的偏转。
(1)不加磁场时,电子束的运动轨迹如何?加上磁场时,电子束的运动轨迹如何? (2)如果保持出射电子的速度不变,增大磁感应强度,轨迹圆半径如何变化?如果保持磁感应强度不变,增大出射电子的速度,圆半径如何变化? 答案 (1)一条直线 圆 (2)减小 增大 ■归纳拓展1.带电粒子在匀强磁场中做匀速圆周运动,匀速圆周运动的周期T =2πrv 。
将r =m v qB 代入可得T =2πm qB 。
匀强磁场中带电粒子的运动
带电粒子在匀强磁场中的运动是如下。
匀速直线运动:当v∥B时,带电粒子以速度v做匀速直线运动。
匀速圆周运动:当v⊥B时,带电粒子在垂直于磁感线的平面内以入射速度做匀速圆周运动。
带电粒子的运动问题
1、电场中的加速问题
带电粒子在电场中只受电场力作用的问题。
如果在匀强电场中问题可以根据牛顿运动定律结合运动学公式或动能定理进行处理。
但对于非匀强电场中的问题只能根据动能定理来解决了。
2、电场中的偏转问题
带电粒子以一定的速度和电场成一定角度进入电场,这样带电粒子的受力方向与速度方向不在同一直线上,粒子将做曲线运动。
常见的是带电粒子垂直电场方向射入电场,这类问题的分析方法和平抛运动问题的分析方法一样,把粒子的运动分解成沿受力方向的匀加速运动和沿初速度方向的匀速运动。
主要解决的问题是带电粒子的末速度、偏转距离、偏转角度。
3、磁场中的偏转问题
射入磁场的带电粒子,只要它的速度方向与磁场成一定的角度。
它就受到磁场对它的洛伦兹力作用。
如果垂直射入匀强磁场的带电粒子,它的初速度方向和所受洛伦兹力的方向都在跟磁场方向垂直的平面内,没有作用使粒子离开这个平面,所以粒子只能在这个平面运动。
4、复合场中的运动问题
所谓复合场中的运动,就是在两个或两个以上的场中运动的问题。
带电粒子在复合场中要受到两个或两个以上的力的作用,运动情况一般比较复杂,高中阶段很难解决。
但可设计出粒子匀速运动或匀速圆周运动的问题。
解题方法是分析出受力情况,根据粒子的运动特点来判断未知量。
带电粒子在匀强磁场中的运动专题一、带电粒子在匀强磁场中做匀速圆周运动的程序解题法——三步法1.画轨迹:即画出轨迹,确定圆心,用几何方法求半径。
2.找联系:轨道半径与磁感应强度、运动速度相联系,偏转角度与圆心角、运动时间相联系,在磁场中运动的时间与周期相联系。
3.用规律:即用牛顿第二定律和圆周运动的规律,特别是周期公式、半径公式。
例题1、如图所示,圆形区域内有垂直于纸面向里的匀强磁场,一个带电粒子以速度v从A点沿直径AOB方向射入磁场,经过Δt时间从C点射出磁场,OC与OB成60°角。
现将带电粒子的速度变为v/3,仍从A点沿原方向射入磁场,不计重力,则粒子在磁场中的运动时间变为( )A.12Δt B.2Δt C.13Δt D.3Δt例题2、如图,虚线OL与y轴的夹角θ=60°,在此角范围内有垂直于xOy平面向外的匀强磁场,磁感应强度大小为B。
一质量为m、电荷量为q(q>0)的粒子从左侧平行于x轴射入磁场,入射点为M。
粒子在磁场中运动的轨道半径为R,粒子离开磁场后的运动轨迹与x轴交于P点(图中未画出),且OP=R。
不计重力。
求M点到O点的距离和粒子在磁场中运动的时间。
二、带电粒子在磁场中运动的多解问题1.带电粒子电性不确定形成多解受洛伦兹力作用的带电粒子,可能带正电,也可能带负电,在相同的初速度的条件下,正、负粒子在磁场中运动轨迹不同,形成多解。
如图甲所示,带电粒子以速率v垂直进入匀强磁场,如带正电,其轨迹为a,如带负电,其轨迹为b。
2.磁场方向不确定形成多解有些题目只告诉了磁感应强度的大小,而未具体指出磁感应强度的方向,此时必须要考虑磁感应强度方向不确定而形成的多解。
如图乙所示,带正电粒子以速率v垂直进入匀强磁场,如B垂直纸面向里,其轨迹为a,如B垂直纸面向外,其轨迹为b。
3.临界状态不唯一形成多解带电粒子在洛伦兹力作用下飞越有界磁场时,由于粒子运动轨迹是圆弧状,因此,它可能穿过去了,也可能转过180°从入射界面这边反向飞出,如图甲所示,于是形成了多解。
带电粒子在磁场中运动一、不计重力的带电粒子在匀强磁场中的运动1.匀速直线运动:若带电粒子的速度方向与匀强磁场的方向平行,则粒子做匀速直线运动.2.匀速圆周运动:若带电粒子的速度方向与匀强磁场的方向垂直,则粒子做匀速圆周运动.质量为m、电荷量为q的带电粒子以初速度v垂直进入匀强磁场B中做匀速圆周运动,其角速度为ω,轨道半径为R,运动的周期为T,推导半径和周期公式:推导过程:运动时间t=3.对于带电粒子在匀强磁场中做匀速圆周运动的问题,应注意把握以下几点.(1)粒子圆轨迹的圆心的确定的常规方法①若已知粒子在圆周运动中的两个具体位置与通过某一位置时的速度方向,可在已知的速度方向的位置作速度的垂线,同时作两位置连线的中垂线,两垂线的交点为圆轨迹的圆心,如图4-2 所示.②若已知做圆周运动的粒子通过某两个具体位置的速度方向,可在两位置上分别作两速度的垂线,两垂线的交点为圆轨迹的圆心,如图4-3所示.③若已知做圆周运动的粒子通过某一具体位置的速度方向与圆轨迹的半径R,可在该位置上作速度的垂线,垂线上距该位置R处的点为圆轨迹的圆心(利用左手定则判断圆心在已知位置的哪一侧),如图4-4所示.图4-2图4-3图4-4例1 、一个质量为m电荷量为q的带电粒子从x轴上的P〔a,0〕点以速度v,沿与x正方向成60°的方向射入第一象限内的匀强磁场中,并恰好垂直于y轴射出第一象限。
求3〕〕匀强磁场的磁感应强度B和射出点的坐标。
〔坐标为〔0,a例2、电子自静止开始经M、N板间〔两板间的电压为U〕的电场加速后从A点垂直于磁场边界射入宽度为d的匀强磁场中,电子离开磁场时的位置P偏离入射方向的距离为L,如图2所示,求:〔1〕正确画出电子由静止开始直至离开磁场时的轨迹图; 〔2〕匀强磁场的磁感应强度.〔已知电子的质量为m ,电量为e 〕emUd L L 2222(2)利用速度的垂线与角的平分线的交点找圆心当带电粒子通过圆形磁场区后又通过无场区,如果只知道射入和射出时的速度的方向和射入时的位置,而不知道射出点的位置,应当利用角的平分线和半径的交点确定圆心。
带电粒子在匀强磁场中的运动知识点总结
带电粒子在匀强磁场中的运动知识点总结
物理学与其他许多自然科学息息相关,如物理、化学、生物和地理等。
以下是网为大家整理的高二物理下册带电粒子在匀强磁场中的运动知识点,希望可以解决您所遇到的.相关问题,加油,网一直陪伴您。
本实验的目的是:
1.探究带电粒子在匀强磁场中做匀速圆周运动的半径和周期与哪些因素有关。
2.练习使用左手定则。
操作步骤:
1.分别改变粒子发射的方向、改变粒子的正负、改变磁场的方向来练习使用左手定则。
2.保持出射粒子的速度不变,改变磁感应强度,观察粒子径迹和周期的变化。
3.保持磁感应强度不变,改变粒子的速度,观察粒子径迹和周期的变化。
4.依次类推,保持其他量不变,改变其中一个量的变化,观察粒子径迹和周期的变化。
最后,希望小编整理的高二物理下册带电粒子在匀强磁场中的运动知识点对您有所帮助,祝同学们学习进步。
带电粒子在圆形磁场区域的运动规律处理带电粒子在匀强磁场中的圆周运动问题,关键就是综合运用平面几何知识与物理知识。
最重要的是,画出准确、清晰的运动轨迹。
对于带电粒子在圆形磁场区域中做匀速圆周运动,有下面两个规律,可以帮助大家准确、清晰画出带电粒子的圆周运动的轨迹。
规律一:带电粒子沿着半径方向射入圆形边界内的匀强磁场,经过一段匀速圆周运动偏转后,离开磁场时射出圆形区域的速度的反向延长通过边界圆的圆心。
规律二:入射速度方向(不一定指向区域圆圆心)与轨迹圆弧对应的弦的夹角为θ(弦切角),则出射速度方向与入射速度方向的偏转角为2θ,轨迹圆弧对应的圆心角也为θ2,并且初末速度方向的交点、轨迹圆的圆心、区域圆的圆心都在弧弦的垂直平分线上。
以上两个规律,利用几何知识很容易证明,在解题时,可以直接应用,请看下面的两个例子:例1如图1所示,在平面坐标系xoy 内,第Ⅱ、Ⅲ象限内存在沿y 轴正方向的匀强电场,第I 、Ⅳ象限内存在半径为L的圆形匀强磁场,磁场圆心在M (L ,0)点,磁场方向垂直于坐标平面向外.一带正电粒子从第Ⅲ象限中的Q (一2L ,一L )点以速度0v 沿x 轴正方向射出,恰好从坐标原点O 进入磁场,从P (2L ,O )点射出磁场.不计粒子重力,求: (1)电场强度与磁感应强度大小之比 (2)粒子在磁场与电场中运动时间之比 解析:(1)设粒子的质量和所带正电荷分别为m 和q ,粒子在电场中运动,由平抛运动规律得:102t v L =2121at L =,又牛顿运动定律得:ma qE = 粒子到达O 点时沿y +方向分速度为0v at v y ==,1tan 0==v v y α 故045=α,粒子在磁场中的速度为02v v =,应用规律二,圆心角为:0902=α,画出的轨迹如图2所示,由rm v Bqv 2=,由几何关系得L r 2=得:2v B E = (2)在磁场中运动的周期vrT π2=粒子在磁场中运动时间为02241v L T t π==图2图1得412π=t t 例2如图3所示,真空中有一以(r ,O )为圆心,半径为r 的圆柱形匀强磁场区域,磁场的磁感应强度大小为B ,方向垂直于纸面向里,在y ≤一r 的范围内,有方向水平向右的匀强电场,电场强度的大小为E 。
专题七 带电粒子在直线边界匀强磁场中的运动基本知识点 1.轨迹圆心的两种确定方法(1)已知粒子运动轨迹上两点的速度方向时,作这两速度方向的垂线,交点即为圆心,如图所示。
(2)已知粒子轨迹上的两点和其中一点的速度方向时,画出粒子轨迹上的两点连线(即过这两点的圆的弦),作它的中垂线,并画出已知点的速度方向的垂线,则弦的中垂线与速度方向的垂线的交点即为圆心,如图所示。
2.三种求半径的方法 (1)根据半径公式r =m vqB求解。
(2)根据勾股定理求解,如图所示,若已知出射点相对于入射点侧移了x ,则满足r 2=d 2+(r -x )2。
(3)根据三角函数求解,如图所示,若已知出射速度方向与入射方向的夹角为θ,磁场的宽度为d ,则有关系式r =dsin θ。
3.四种角度关系 (1)如图所示,速度的偏向角(φ)等于圆心角(α)。
(2)圆心角α等于AB 弦与速度方向的夹角(弦切角θ)的2倍(φ=α=2θ=ωt )。
(3)相对的弦切角(θ)相等,与相邻的弦切角(θ′)互补,即θ+θ′=180°。
(4)进出同一直线边界时速度方向与该直线边界的夹角相等。
4.两种求时间的方法(1)利用圆心角求解,若求出这部分圆弧对应的圆心角,则t =θ2πT 。
(2)利用弧长s 和速度v 求解,t =sv 。
5.几个有用的结论:(1)粒子进入单边磁场时,进、出磁场具有对称性,如图2(a)、(b)、(c)所示.(2)当速率一定时,粒子运动的弧长越长,圆心角越大,运动时间越长.6.带电粒子的电性不确定形成多解受洛伦兹力作用的带电粒子,可能带正电,也可能带负电,当粒子具有相同速度时,正负粒子在磁场中运动轨迹不同,导致多解。
如图所示,带电粒子以速率v垂直进入匀强磁场,若带正电,其轨迹为a;若带负电,其轨迹为b.7.磁场方向的不确定形成多解磁感应强度是矢量,如果题述条件只给出磁感应强度的大小,而未说明磁感应强度的方向,则应考虑因磁场方向不确定而导致的多解。
高考物理带电粒子在磁场中的运动(一)解题方法和技巧及练习题及解析一、带电粒子在磁场中的运动专项训练1.如图,圆心为O、半径为r的圆形区域外存在匀强磁场,磁场方向垂直于纸面向外,磁感应强度大小为B。
P是圆外一点,OP=3r。
一质量为m、电荷量为q(q>0)的粒子从P点在纸面内垂直于OP射出。
己知粒子运动轨迹经过圆心O,不计重力。
求(1)粒子在磁场中做圆周运动的半径;(2)粒子第一次在圆形区域内运动所用的时间。
【答案】(1)(2)【解析】【分析】本题考查在匀强磁场中的匀速圆周运动及其相关的知识点,意在考查考生灵活运用相关知识解决问题的的能力。
【详解】(1)找圆心,画轨迹,求半径。
设粒子在磁场中运动半径为R,由几何关系得:①易得:②(2)设进入磁场时速度的大小为v,由洛伦兹力公式和牛顿第二定律有③进入圆形区域,带电粒子做匀速直线运动,则④联立②③④解得2.如图所示,同轴圆形区域内、外半径分别为R1=1 m、R2=3m,半径为R1的圆内分布着B1=2.0 T的匀强磁场,方向垂直于纸面向外;外面环形磁场区域分布着B2=0.5 T的匀强磁场,方向垂直于纸面向内.一对平行极板竖直放置,极板间距d=3cm,右极板与环形磁场外边界相切,一带正电的粒子从平行极板左板P点由静止释放,经加速后通过右板小孔Q,垂直进入环形磁场区域.已知点P、Q、O在同一水平线上,粒子比荷4×107C/kg,不计粒子的重力,且不考虑粒子的相对论效应.求:(1) 要使粒子不能进入中间的圆形磁场区域,粒子在磁场中的轨道半径满足什么条件?(2) 若改变加速电压大小,可使粒子进入圆形磁场区域,且能竖直通过圆心O,则加速电压为多大?(3) 从P点出发开始计时,在满足第(2)问的条件下,粒子到达O点的时刻.【答案】(1) r1<1m. (2) U=3×107V. (3) t=(6.1×10-8+12.2×10-8k)s(k=0,1,2,3,…)【解析】【分析】(1)画出粒子恰好不进入中间磁场区的临界轨迹,先根据几何关系求出半径;(2)画出使粒子进入圆形磁场区域,且能竖直通过圆心O的轨迹,结合几何关系求解半径,然后根据洛伦兹力提供向心力列方程,再根据动能定理对直线加速过程列方程,最后联立方程组求解加速电压;(3)由几何关系,得到轨迹对应的圆心角,求解粒子从Q孔进入磁场到第一次到O点所用的时间,然后考虑周期性求解粒子到达O点的时刻.【详解】(1) 粒子刚好不进入中间磁场时轨迹如图所示,设此时粒子在磁场中运动的半径为r1,在Rt△QOO1中有r12+R22=(r1+R1)2代入数据解得r1=1m粒子不能进入中间磁场,所以轨道半径r1<1m.(2) 轨迹如图所示,由于O、O3、Q共线且水平,粒子在两磁场中的半径分别为r2、r3,洛伦兹力不做功,故粒子在内外磁场的速率不变,由qvB=m2 v r得r=mvqB易知r3=4r2且满足(r2+r3)2=(R2-r2)2+r32解得r2=34m,r3=3m又由动能定理有qU=12mv2代入数据解得U=3×107V.(3)带电粒子从P到Q的运动时间为t1,则t1满足12v t1=d得t1=10-9s令∠QO2O3=θ,所以cosθ=0.8,θ=37°(反三角函数表达亦可)圆周运动的周期T=2mqBπ故粒子从Q孔进入磁场到第一次到O点所用的时间为8221372180532610360360m mt sqB qBππ-⨯⨯⨯-=+=考虑到周期性运动,t总=t1+t2+k(2t1+2t2)=(6.1×10-8+12.2×10-8k)s(k=0,1,2,3,…).3.在水平桌面上有一个边长为L的正方形框架,内嵌一个表面光滑的绝缘圆盘,圆盘所在区域存在垂直圆盘向上的匀强磁场.一带电小球从圆盘上的P点(P为正方形框架对角线AC与圆盘的交点)以初速度v0水平射入磁场区,小球刚好以平行于BC边的速度从圆盘上的Q点离开该磁场区(图中Q点未画出),如图甲所示.现撤去磁场,小球仍从P点以相同的初速度v0水平入射,为使其仍从Q点离开,可将整个装置以CD边为轴向上抬起一定高度,如图乙所示,忽略小球运动过程中的空气阻力,已知重力加速度为g.求:(1)小球两次在圆盘上运动的时间之比;(2)框架以CD为轴抬起后,AB边距桌面的高度.【答案】(1)小球两次在圆盘上运动的时间之比为:π:2;(2)框架以CD为轴抬起后,AB边距桌面的高度为222vg.【解析】【分析】【详解】(1)小球在磁场中做匀速圆周运动,由几何知识得:r2+r2=L2,解得:r=22L,小球在磁场中做圆周运的周期:T=2rvπ,小球在磁场中的运动时间:t1=14T=24Lvπ,小球在斜面上做类平抛运动,水平方向:x =r =v 0t 2, 运动时间:t 2=22L v , 则:t1:t 2=π:2;(2)小球在斜面上做类平抛运动,沿斜面方向做初速度为零的匀加速直线运动,位移:r =2212at ,解得,加速度:a =222v L,对小球,由牛顿第二定律得:a =mgsin mθ=g sinθ, AB 边距离桌面的高度:h =L sinθ=222v g;4.如图,平面直角坐标系中,在,y >0及y <-32L 区域存在场强大小相同,方向相反均平行于y 轴的匀强电场,在-32L <y <0区域存在方向垂直于xOy 平面纸面向外的匀强磁场,一质量为m ,电荷量为q 的带正电粒子,经过y 轴上的点P 1(0,L )时的速率为v 0,方向沿x 轴正方向,然后经过x 轴上的点P 2(32L ,0)进入磁场.在磁场中的运转半径R =52L (不计粒子重力),求:(1)粒子到达P 2点时的速度大小和方向; (2)EB; (3)粒子第一次从磁场下边界穿出位置的横坐标; (4)粒子从P 1点出发后做周期性运动的周期. 【答案】(1)53v 0,与x 成53°角;(2)043v ;(3)2L ;(4)()04053760L v π+.【解析】 【详解】(1)如图,粒子从P 1到P 2做类平抛运动,设到达P 2时的y 方向的速度为v y ,由运动学规律知32L=v0t1,L=2yvt1可得t1=32Lv,v y=43v0故粒子在P2的速度为v220yv v+=53v0设v与x成β角,则tanβ=yvv=43,即β=53°;(2)粒子从P1到P2,根据动能定理知qEL=12mv2-12mv02可得E=289mvqL粒子在磁场中做匀速圆周运动,根据qvB=m2vR解得:B=mvqR=5352m vq L⨯⨯=023mvqL解得:043vEB=;(3)粒子在磁场中做圆周运动的圆心为O′,在图中,过P2做v的垂线交y=-32L直线与Q′点,可得:P2O′=3253Lcos o=52L=r故粒子在磁场中做圆周运动的圆心为O′,因粒子在磁场中的轨迹所对圆心角α=37°,故粒子将垂直于y=-32L直线从M点穿出磁场,由几何关系知M的坐标x=32L+(r-r cos37°)=2L;(4)粒子运动一个周期的轨迹如上图,粒子从P1到P2做类平抛运动:t1=32Lv在磁场中由P2到M动时间:t2=372 360rvπ︒⨯o=37120Lvπ从M运动到N,a=qEm=289vL则t3=va=158Lv则一个周期的时间T=2(t1+t2+t3)=()4053760Lvπ+.5.如图所示,坐标原点O左侧2m处有一粒子源,粒子源中,有带正电的粒子(比荷为qm=1.0×1010C/kg)由静止进人电压U= 800V的加速电场,经加速后沿x轴正方向运动,O点右侧有以O1点为圆心、r=0.20m为半径的圆形区域,内部存在方向垂直纸面向里,磁感应强度大小为B=1.0×10-3T的匀强磁场(图中未画出)圆的左端跟y轴相切于直角坐标系原点O,右端与一个足够大的荧光屏MN相切于x轴上的A点,粒子重力不计。
一、带电粒子在匀强磁场中匀速圆周运动基本问题
找圆心、画轨迹是解题的基础。
带电粒子垂直于磁场进入一匀强磁场后在洛伦兹力作用下必作匀速圆周运动,抓住运动中的任两点处的速度,分别作出各速度的垂线,则二垂线的交点必为圆心;或者用垂径定理及一处速度的垂线也可找出圆心;再利用数学知识求出圆周运动的半径及粒子经过的圆心角从而解答物理问题。
二、带电粒子在磁场中轨道半径变化问题
导致轨道半径变化的原因有:①带电粒子速度变化导致半径变化。
如带电粒子穿过极板速度变化;带电粒子使空气电离导致速度变化;回旋加速器加速带电粒子等。
②磁场变化导致半径变化。
如通电导线周围磁场,不同区域的匀强磁场不同;磁场随时间变化。
③电量变化导致半径变化。
如吸收电荷等。
总之,由
看m、v、q、B中某个量或某两个量的乘积或比值的变化就会导致带电粒子的轨道半径变化。
(06年全国2)如图所示,在x<0与x>0的区域中,存在磁感应强度大小分别为B1与B2的匀强磁场,磁场方向垂直于纸面向里,且B1>B2。
一个带负电的粒子从坐标原点O以速度v沿x轴负方向射出,要使该粒子经过一段时间后又经过O点,B1与B2的比值应满足什么条件?
解析:粒子在整个过程中的速度大小恒为v,交替地在xy平面内B1与B2磁场区域中做匀速圆周运动,轨迹都是半个圆周。
设粒子的质量和电荷量的大小分别为m和q,圆周运动的半径分别为和r2,有
r
=①r2=②
1
分析粒子运动的轨迹。
如图所示,在xy平面内,
粒子先沿半径为r1的半圆C1运动至y轴上离O点距离
为2 r1的A点,接着沿半径为2 r2的半圆D1运动至y轴的O1点,O1O距离
d=2(r2-r1)③
此后,粒子每经历一次“回旋”(即从y轴出发沿半径r1
的半圆和半径为r2的半圆回到原点下方y轴),粒子y坐标就减
小d。
设粒子经过n次回旋后与y轴交于O n点。
若OO n即nd满
足nd=2r1④
则粒子再经过半圆C n+1就能够经过原点,式中n=1,2,3,……
为回旋次数。
由③④式解得⑤
由①②⑤式可得B1、B2应满足的条件
n=1,2,3,……⑥
三、带电粒子在磁场中运动的临界问题和带电粒子在多磁场中运动问题
带电粒子在磁场中运动的临界问题的原因有:粒子运动范围的空间临界问题;磁场所占据范围的空间临界问题,运动电荷相遇的时空临界问题等。
审题时应注意恰好,最大、最多、至少等关键字
(07全国1)两平面荧光屏互相垂直放置,在两屏内分别取垂直于两屏交线的直线为x轴和y轴,交点O为原点,如图所示。
在y>0,0<x<a的区域有垂直于纸面向里的匀强磁场,在y>0,x>a的区域有垂直于纸面向外的匀强磁场,两区域内的磁感应强度大小均为B。
在O点处有一小孔,一束质量为m、带电量为q(q>0)的粒子沿x轴经小孔射入磁场,最后打在竖直和水平荧光屏上,使荧光屏发亮。
入射粒子的速度可取从零到某一最大值之间的各种数值.已知速度最大的粒子在0<x<a的区域中运动的时间与在x>a的区域中运动的时间之比为2:5,在磁场中运动的总时间为7T/12,其中T为该粒子在磁感应强度为B的匀强磁场中作圆周运动的周期。
试求两个荧光屏上亮线的范围(不计重力的影响)。
解析:粒子在磁感应强度为B的匀强磁场中运动半径为:①
速度小的粒子将在x<a的区域走完半圆,射到竖直屏上。
半圆的直径在y
轴上,半径的范围从0到a,屏上发亮的范围从0到2a。
轨道半径大于a的粒子开始进入右侧磁场,考虑r=a的极限情况,这种粒子在右侧的圆轨迹与x轴在D点相切(虚线),OD=2a,这是水平屏上发亮范围的左边界。
速度最大的粒子的轨迹如图中实线所示,它由两段圆弧组成,圆心分别为C
和,C在y轴上,有对称性可知在x=2a直线上。
设t1为粒子在0<x<a的区域中运动的时间,t2为在x>a的区域中运动的时间,由题意可知
由此解得:②③
由②③式和对称性可
得⑤
⑥所以
⑦
即弧长AP为1/4圆周。
因此,圆心在x轴上。
设速度为最大值粒子的轨道半径为R,有直角可得
⑧
由图可知OP=2a+R,因此水平荧光屏发亮范围的右边界的坐标
⑨
四、带电粒子在有界磁场中的极值问题
寻找产生极值的条件:①直径是圆的最大弦;②同一圆中大弦对应大的圆心角;③由轨迹确定半径的极值。
有一粒子源置于一平面直角坐标原点O处,如图所示相同的速率v
向第一
象限平面内的不同方向发射电子,已知电子质量为m,电量为e。
欲使这些电子穿过垂直于纸面、磁感应强度为B的匀强磁场后,都能平行于x轴沿+x方向运动,求该磁场方向和磁场区域的最小面积s。
解析:由于电子在磁场中作匀速圆周运动的半径R=mv
/Be是确定的,设磁场区域足够大,作出电子可能的运动轨道如图所示,因为电子只能向第一象限平
面内发射,所以电子运动的最上面一条轨迹必为圆O
1
,它就是磁场的上边界。
其
它各圆轨迹的圆心所连成的线必为以点O为圆心,以R为半径的圆弧O
1O
2
O
n。
由
于要求所有电子均平行于x轴向右飞出磁场,故由几何知识有电子的飞出点必为每条可能轨迹的最高点。
如对图中任一轨迹圆O
2
而言,要使电子能平行于x轴
向右飞出磁场,过O
2作弦的垂线O
2
A,则电子必将从点A飞出,相当于将此轨迹
的圆心O
2
沿y方向平移了半径R即为此电子的出场位置。
由此可见我们将轨迹
的圆心组成的圆弧O
1O
2
O
n
沿y方向向上平移了半径R后所在的位置即为磁场的下
边界,图中圆弧OAP示。
综上所述,要求的磁场的最小区域为弧OAP与弧OBP
所围。
利用正方形OO
1PC的面积减去扇形OO
1
P的面积即为OBPC的面积;即R2-
πR2/4。
根据几何关系有最小磁场区域的面积为S=2(R2-πR2/4)=(π/2 -1)(mv
/Be)2。
五、带电粒子在复合场中运动问题
复合场包括:磁场和电场,磁场和重力场,或重力场、电场和磁场。
有带电粒子的平衡问题,匀变速运动问题,非匀变速运动问题,在解题过程中始终抓住洛伦兹力不做功这一特点。
粒子动能的变化是电场力或重力做功的结果。
(07四川)如图所示,在坐标系Oxy的第一象限中存在沿y轴正方形的匀强电场,场强大小为E。
在其它象限中存在匀强磁场,磁场方向垂直于纸面向里。
A是y轴上的一点,它到座标原点O的距离为h;C是x轴上的一点,到O点的距离为l,一质量为m、电荷量为q的带负电的粒子以某一初速度沿x轴方向从A点进入电场区域,继而通过C点进入大磁场区域,并再次通过A点。
此时速度方向与y轴正方向成锐角。
不计重力作用。
试求:
(1)粒子经过C点时速度的大小合方向;
(2)磁感应强度的大小B。
解析:(1)以a表示粒子在电场作用下的加速度,有
①
加速度沿y轴负方向。
设粒子从A点进入电场时的初速度为v
,由A点运动
到C点经历的时间为t,则有②
③
由②③式得④
设粒子从点进入磁场时的速度为v,v垂直于x轴的分量
=⑤
v
1
由①④⑤式得
v
==⑥
1
设粒子经过C点时的速度方向与x轴的夹角为α,则有
tanα=⑦
由④⑤⑦式
得⑧
(2)粒子经过C点进入磁场后在磁场中作速率为v的圆周运动。
若圆周的半径为R,则有
⑨
设圆心为P,则PC必与过C点的速度垂且有==R。
用β表示与y轴的夹角,由几何关系得⑩
⑾
由⑧⑩⑾式解得
R=⑿
由⑥⑨⑿式得
B=⒀
六、带电粒子在磁场中的周期性和多解问题
多解形成原因:带电粒子的电性不确定形成多解;磁场方向不确定形成多解;临界状态的不唯一形成多解,在有界磁场中运动时表现出来多解,运动的重复性形成多解,在半径为r的圆筒中有沿筒轴线方向的匀强磁场,磁感应强度为B;一质量为m带电+q的粒子以速度V从筒壁A处沿半径方向垂直于磁场射入筒中;若它在筒中只受洛伦兹力作用且与筒壁发生弹性碰撞,欲使粒子与筒壁连续相碰撞并绕筒壁一周后仍从A处射出;则B必须满足什么条件?
带电粒子在磁场中的运动时间分析:由于粒子从A处沿半径射入磁场后必作匀速圆周运动,要使粒子又从A处沿半径方向射向磁场,且粒子与筒壁的碰撞次数未知,故设粒子与筒壁的碰撞次数为n(不含返回A处并从A处射出的一次),
由图可知其中n为大于或等于2的整数(当n=1时即粒子必沿圆O的直径作直线运动,表示此时B=0);由图知粒子圆周运动的半径R,
再由粒子在磁场中的运动半径
可求出。
粒子在磁场中的运动周期为,粒子每碰撞
一次在磁场中转过的角度由图得,粒子从A射入磁场再从A 沿半径射出磁场的过程中将经过n+1段圆弧,故粒子运动的总时间为:
,将前面B代入T后与共同代入前式得。