中考数学总复习几何初步与三角形习题精选
- 格式:docx
- 大小:166.62 KB
- 文档页数:5
2020年全国中考数学试题精选50题:图形的初步认识与三角形一、单选题1.(2020·玉林)如图是A,B,C三岛的平面图,C岛在A岛的北偏东35°方向,B岛在A岛的北偏东80°方向,C岛在B岛的北偏西55°方向,则A,B,C三岛组成一个()A. 等腰直角三角形B. 等腰三角形 C. 直角三角形 D. 等边三角形2.(2020·玉林)一个三角形木架三边长分别是75cm,100cm,120cm,现要再做一个与其相似的三角形木架,而只有长为60cm和120cm的两根木条.要求以其中一根为一边,从另一根截下两段作为另两边(允许有余料),则不同的截法有()A. 一种B. 两种 C. 三种 D. 四种3.(2020·玉林)已知:点D,E分别是△ABC的边AB,AC的中点,如图所示.求证:DE∥BC,且DE=BC.证明:延长DE到点F,使EF=DE,连接FC,DC,AF,又AE=EC,则四边形ADCF是平行四边形,接着以下是排序错误的证明过程:①∴DF BC;②∴CF AD.即CF BD;③∴四边形DBCF是平行四边形;④∴DE∥BC,且DE=BC.则正确的证明顺序应是()A. ②→③→①→④B. ②→①→③→④C . ①→③→④→② D. ①→③→②→④4.(2020·河池)如图,在中,CE平分∠BCD,交AB于点E,EA=3,EB=5,ED=4.则CE的长是()A. 5B. 6C. 4D. 55.(2020·河池)观察下列作图痕迹,所作CD为△ABC的边AB上的中线是()A. B. C.D.6.(2020·河池)在Rt△ABC中,∠C=90°,BC=5,AC=12,则sinB的值是()A. B.C.D.7.(2020·河池)如图,AB是O的直径,CD是弦,AE⊥CD于点E,BF⊥CD于点F.若BF=FE=2,DC=1,则AC的长是()A. B.C.D.8.(2020·铁岭)一个零件的形状如图所示,,则的度数是()A. 70°B. 80°C. 90°D. 100°9.(2020·铁岭)如图,矩形的顶点在反比例函数的图象上,点和点在边上,,连接轴,则的值为()A. B.3 C. 4D.10.(2020·盘锦)我国古代数学著作《九章算术》记载了一道有趣的问题.原文是:今有池方一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐.问水深、葭长各几何.译为:有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺,如果把这根芦苇拉向水池一边的中点,它的顶端恰好到达池边的水面,水的深度与这根芦苇的长度分别是多少?设芦苇的长度是尺.根据题意,可列方程为()A. B. C.D.11.(2020·盘锦)如图,在中,,,以为直径的⊙O交于点,点为线段上的一点,,连接并延长交的延长线于点,连接交⊙O于点,若,则的长是()A. B.C.D.12.(2020·锦州)如图,在菱形中,P是对角线上一动点,过点P作于点E.于点F.若菱形的周长为20,面积为24,则的值为()A. 4B.C.6 D.13.(2020·锦州)如图,在中,,,平分,则的度数是()A. B.C.D.14.(2020·丹东)如图,在四边形中,,,,,分别以和为圆心,以大于的长为半径作弧,两弧相交于点和,直线与延长线交于点,连接,则的内切圆半径是()A. 4B.C. 2D.15.(2020·丹东)如图,是的角平分线,过点作交延长线于点,若,,则的度数为()C. 125°D. 135°16.(2020·朝阳)如图,在平面直角坐标系中,一次函数的图象与x轴、y轴分别相交于点B,点A,以线段AB为边作正方形,且点C在反比例函数的图象上,则k的值为()A. -12B. -42 C. 42D. -2117.(2020·朝阳)如图,四边形是矩形,点D是BC边上的动点(点D与点B、点C不重合),则的值为()A. 1B.C. 2D. 无法确定18.(2020·雅安)如图,内接于圆,,过点C的切线交的延长线于点.则()A. B.C.D.19.(2020·雅安)如图,在中,,若,则的长为()C.D.20.(2020·绵阳)下列四个图形中,不能作为正方体的展开图的是()A. B. C.D.21.(2020·绵阳)在螳螂的示意图中,AB∥DE,△ABC是等腰三角形,∠ABC=124°,∠CDE=72°,则∠ACD=()A. 16°B. 28°C. 44°D. 45°22.(2020·绵阳)如图,在四边形ABCD中,∠A=∠C=90°,DF∥BC,∠ABC的平分线BE交DF于点G,GH⊥DF,点E恰好为DH的中点,若AE=3,CD=2,则GH=()A. 1B. 2C. 3D. 423.(2020·眉山)如图,四边形的外接圆为⊙O,,,,则的度数为()A. B.C.D.24.(2020·眉山)一副三角板如图所示摆放,则与的数量关系为()A. B. C.D.25.(2020·凉山州)如图,等边三角形ABC和正方形ADEF都内接于,则()A. B.C.D.26.(2020·凉山州)点C是线段AB的中点,点D是线段AC的三等分点.若线段,则线段BD的长为()A. 10cmB. 8cmC. 8cm或10cm D. 2cm或4cm27.(2020·淄博)如图,若△ABC≌△ADE,则下列结论中一定成立的是()A. AC=DEB. ∠BAD=∠CAE C. AB=AE D. ∠ABC=∠AED28.(2020·淄博)如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的关系图象,其中M是曲线部分的最低点,则△ABC的面积是()A. 12B.24 C. 36 D. 48 29.(2020·淄博)如图,在直角坐标系中,以坐标原点O(0,0),A(0,4),B(3,0)为顶点的Rt△AOB,其两个锐角对应的外角角平分线相交于点P,且点P恰好在反比例函数y=的图象上,则k的值为()A. 36B.48 C.49 D. 64 30.(2020·淄博)如图,在四边形ABCD中,CD∥AB,AC⊥BC,若∠B=50°,则∠DCA等于()A. 30°B.35° C. 40°D. 45°二、填空题31.(2020·徐州)在中,若,,则的面积的最大值为________.32.(2020·徐州)如图,在中,,,.若以所在直线为轴,把旋转一周,得到一个圆锥,则这个圆锥的侧面积等于________.33.(2020·徐州)如图,在中,,、、分别为、、的中点,若,则________.34.(2020·徐州)如图,,在上截取.过点作,交于点,以点为圆心,为半径画弧,交于点;过点作,交于点,以点为圆心,为半径画弧,交于点;按此规律,所得线段的长等于________.35.(2020·河池)如图,菱形ABCD的周长为16,AC,BD交于点O,点E在BC上,OE∥AB,则OE的长是________.36.(2020·铁岭)如图,以为边,在的同侧分别作正五边形和等边,连接,则的度数是________.37.(2020·铁岭)如图,在中,,以为圆心,以适当的长为半径作弧,交于点,交于点,分别以为圆心,以大于的长为半径作弧,两弧在的内部相交于点,作射线,交于点,点在边上,,连接,则的周长为________.38.(2020·铁岭)一张菱形纸片的边长为,高等于边长的一半,将菱形纸片沿直线折叠,使点与点重合,直线交直线于点,则的长为________ .39.(2020·盘锦)如图,直线,的顶点和分别落在直线和上,若,,则的度数是________.40.(2020·盘锦)如图,菱形的边长为4,,分别以点和点为圆心,大于的长为半径作弧,两弧相交于两点,直线交于点,连接,则的长为________.三、综合题41.(2020·徐州)如图,,,. ,与交于点.(1)求证:;(2)求的度数.42.(2020·玉林)如图,四边形ABCD中,对角线AC与BD交于点O,且OA=OB=OC=OD=AB.(1)求证:四边形ABCD是正方形;(2)若H是边AB上一点(H与A,B不重合),连接DH,将线段DH绕点H顺时针旋转90°,得到线段HE,过点E分别作BC及AB延长线的垂线,垂足分别为F,G.设四边形BGEF的面积为s1,以HB,BC为邻边的矩形的面积为s2,且s1=s2.当AB=2时,求AH的长.43.(2020·玉林)如图,AB是⊙O的直径,点D在直径AB上(D与A,B不重合),CD⊥AB,且CD=AB,连接CB,与⊙O交于点F,在CD上取一点E,使EF=EC.(1)求证:EF是⊙O的切线;(2)若D是OA的中点,AB=4,求CF的长.44.(2020·河池)如图(1)如图(1),已知CE与AB交于点E,AC=BC,∠1=∠2.求证:.(2)如图(2),已知CD的延长线与AB交于点E,AD=BC,∠3=∠4.探究AE与BE的数量关系,并说明理由.45.(2020·铁岭)在等腰和等腰中,,,将绕点逆时针旋转,连接,点为线段的中点,连接.(1)如图1,当点旋转到边上时,请直接写出线段与的位置关系和数量关系;(2)如图2,当点旋转到边上时,(1)中的结论是否成立?若成立,请写出证明过程,若不成立,请说明理由.(3)若,在绕点逆时针旋转的过程中,当时,请直接写出线段的长.46.(2020·铁岭)如图,四边形内接于是直径,,连接,过点的直线与的延长线相交于点,且.(1)求证:直线是的切线;(2)若,,求的长.47.(2020·盘锦)如图,是的直径,是的弦,交于点,连接,过点作,垂足为,.(1)求证:;(2)点在的延长线上,连接.①求证:与相切;②当时,直接写出的长.48.(2020·盘锦)如图,两点的坐标分别为,将线段绕点逆时针旋转90°得到线段,过点作,垂足为,反比例函数的图象经过点.(1)直接写出点的坐标,并求反比例函数的解析式;(2)点在反比例函数的图象上,当的面积为3时,求点的坐标.49.(2020·锦州)已知和都是等腰直角三角形,.(1)如图1:连,求证:;(2)若将绕点O顺时针旋转,①如图2,当点N恰好在边上时,求证:;②当点在同一条直线上时,若,请直接写出线段的长.50.(2020·阜新)如图,正方形和正方形(其中),的延长线与直线交于点H.(1)如图1,当点G在上时,求证:,;(2)将正方形绕点C旋转一周.①如图2,当点E在直线右侧时,求证:;②当时,若,,请直接写出线段的长答案解析部分一、单选题1.【答案】 C【解析】【解答】解:如图,过点C作CD∥AE交AB于点D,∴∠DCA=∠EAC=35°,∵AE∥BF,∴CD∥BF,∴∠BCD=∠CBF=55°,∴∠ACB=∠ACD+∠BCD=35°+55°=90°,∴△ABC是直角三角形.故答案为:C.【分析】如图,过点C作CD∥AE交AB于点D,可得∠DCA=∠EAC=35°,根据AE∥BF,可得CD∥BF,可得∠BCD=∠CBF=55°,进而得△ABC是直角三角形.2.【答案】 B【解析】【解答】解:长120cm的木条与三角形木架的最长边相等,则长120cm的木条不能作为一边,设从120cm的木条上截下两段长分别为xcm,ycm(x+y≤120),由于长60cm的木条不能与75cm的一边对应,否则x、y有大于120cm,当长60cm的木条与100cm的一边对应,则,解得:x=45,y=72;当长60cm的木条与120cm的一边对应,则,解得:x=37.5,y=50.答:有两种不同的截法:把120cm的木条截成45cm、72cm两段或把120cm的木条截成37.5cm、50cm两段. 故答案为:B.【分析】分类讨论:长120cm的木条与三角形木架的最长边相等,则长120cm的木条不能作为一边,设从120cm的一根上截下的两段长分别为xcm,ycm(x+y≤120),易得长60cm的木条不能与75cm的一边对应,所以当长60cm的木条与100cm的一边对应时有;当长60cm的木条与120cm的一边对应时有,然后分别利用比例的性质计算出两种情况下得x和y的值.3.【答案】 A【解析】【解答】证明:延长DE到点F,使EF=DE,连接FC,DC,AF,∵点D,E分别是△ABC的边AB,AC的中点,∴AD=BD,AE=EC,∴四边形ADCF是平行四边形,∴CF AD.即CF BD,∴四边形DBCF是平行四边形,∴DF BC,∴DE∥BC,且DE=BC.∴正确的证明顺序是②→③→①→④,故答案为:A.【分析】证出四边形ADCF是平行四边形,得出CF AD.即CF BD,则四边形DBCF是平行四边形,得出DF BC,即可得出结论.4.【答案】 C【解析】【解答】解:∵CE平分∠BCD,∴∠BCE=∠DCE,∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,AB∥CD,∴∠BEC=∠DCE,∴∠BEC=∠BCE,∴BC=BE=5,∴AD=5,∵EA=3,ED=4,在△AED中,,即,∴∠AED=90°,∴CD=AB=3+5=8,∠EDC=90°,在Rt△EDC中,.故答案为:C.【分析】利用平行四边形的性质,可证得AB=CD,AD=BC,AB∥CD,再利用角平分线的定义及平行线的性质可以推出∠BEC=∠BCE,利用等角对等边,就可求出BC的长,即可得到AD的长;再利用勾股定理的逆定理证明△ADE是直角三角形,由此可证△DEC是直角三角形,利用勾股定理求出CE的长。
单元检测四几何初步知识与三角形(时间:90分钟满分:100分)一、选择题(本大题共8小题,每小题只有一个正确选项,每小题4分,共32分)1.如图,已知AB∥CD,直线AC和BD相交于点E,若∠ABE=70°,∠ACD=40°,则∠AEB等于()A.50°B.60°C.70°D.80°2.如果将长为6 cm,宽为5 cm的长方形纸片折叠一次,那么这条折痕的长不可能是()A.8 cmB.5√2 cmC.5.5 cmD.1 cm3.若有一条公共边的两个三角形称为一对“共边三角形”,则图中以BC为公共边的“共边三角形”有()A.2对B.3对C.4对D.6对4.如图所示,在△ABC中,AB=AC,过AC上一点作DE⊥AC,EF⊥BC,若∠BDE=140°,则∠DEF=()A.55°B.60°C.65°D.70°5.如图,等腰三角形ABC的周长为21,底边BC=5,AB的垂直平分线DE交AB于点D,交AC于点E,则△BEC的周长为()A.13B.14C.15D.166.如图,有一底角为35°的等腰三角形纸片,现过底边上一点,沿与底边垂直的方向将其剪开,分成三角形和四边形两部分,则四边形中,最大角的度数是()A.110°B.120°C.125°D.130°7.如图,在Rt△ABC中,∠C=90°,CD⊥AB于点D,AB=13,CD=6,则AC+BC等于()A.5B.5√13C.13√13D.9√58.(2021浙江中考)如图,菱形ABCD中,∠B=60°,点P从点B出发,沿折线BC—CD方向移动,移动到点D停止.在△ABP形状的变化过程中,依次出现的特殊三角形是()A.直角三角形→等边三角形→等腰三角形→直角三角形B.直角三角形→等腰三角形→直角三角形→等边三角形C.直角三角形→等边三角形→直角三角形→等腰三角形D.等腰三角形→等边三角形→直角三角形→等腰三角形二、填空题(本大题共5小题,每小题4分,共20分)9.如图,AB∥CD,CE平分∠ACD,若∠1=25°,则∠2的度数是.°10.如图,已知AB=AD,∠BAE=∠DAC,要使△ABC≌△ADE,可补充的条件是.(写出一个即可)或∠C=∠E或∠B=∠D11.如图,将Rt△ABC的斜边AB绕点A顺时针旋转α(0°<α<90°)得到AE,直角边AC绕点A逆时针旋转β(0°<β<90°)得到AF,连接EF.若AB=3,AC=2,且α+β=∠B,则EF=.√1312.如图,在△ABC中,AB=AC,AD是BC边上的高,点E,F是AD的三等分点,若△ABC的面积为12 cm2,则图中阴影部分的面积是cm2.13.如图,在Rt△ABC中,∠ACB=90°,∠B=30°,BC=3.点D是BC边上的一动点(不与点B,C重合),过点D作DE⊥BC交AB于点E,将∠B沿直线DE翻折,点B落在射线BC上的点F处.当△AEF为直角三角形时,BD的长为.或2三、解答题(本大题共4小题,共48分)14.(本小题满分10分)如图,在△ABC中,点E在AB上,点D在BC上,BD=BE,∠BAD=∠BCE,AD与CE相交于点F,试判断△AFC的形状,并说明理由.AFC是等腰三角形.理由如下:在△BAD 与△BCE 中, ∵∠B=∠B ,∠BAD=∠BCE ,BD=BE , ∴△BAD ≌△BCE. ∴BA=BC. ∴∠BAC=∠BCA.∴∠BAC-∠BAD=∠BCA-∠BCE , 即∠FAC=∠FCA. ∴△AFC 是等腰三角形.15.(本小题满分12分)(2021天津中考)如图,一艘货船在灯塔C 的正南方向,距离灯塔257海里的A 处遇险,发出求救信号.一艘救生船位于灯塔C 的南偏东40°方向上,同时位于A 处的北偏东60°方向上的B 处,救生船接到求救信号后,立即前往救援.求AB 的长(结果取整数). 参考数据:tan 40°≈0.84,√3取1.73.,过点B 作BH ⊥CA ,垂足为H.根据题意,∠BAC=60°,∠BCA=40°,CA=257.∵在Rt △BAH 中,tan ∠BAH=BH AH ,cos ∠BAH=AHAB , ∴BH=AH ·tan60°=√3AH ,AB=AHcos60°=2AH. ∵在Rt △BCH 中,tan ∠BCH=BHCH, ∴CH=BHtan40°=√3AH tan40°.又CA=CH+AH ,∴257=√3AHtan40°+AH ,可得AH=√3+tan40°.∴AB=√3+tan40°≈2×257×0.841.73+0.84=168.答:AB 的长约为168海里.16.(本小题满分12分)某货站传送货物的平面示意图如图.为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°改为30°.已知原传送带AB 长为4 m .(1)求新传送带AC 的长度;(2)如果需要在货物着地点C 的左侧留出2 m 的通道,试判断距离点B 处 4 m 的货物MNQP 是否需要挪走,并说明理由.(说明:(1),(2)的计算结果精确到0.1 m,参考数据:√2≈1.41,√3≈1.73,√5≈2.24,√6≈2.45)如图,过点A 作AD ⊥BC ,交CB 的延长线于点D.在Rt △ABD 中,AD=AB sin45°=4×√22=2√2(m). 在Rt △ACD 中,∵∠ACD=30°,∴AC=2AD=4√2≈5.6(m),即新传送带AC 的长度约为5.6m . (2)货物MNQP 需要挪走.理由:在Rt △ABD 中,BD=AB cos45°=4×√22=2√2(m),在Rt △ACD 中,CD=AC cos30°=4√2×√32=2√6(m),∴CB=CD-BD=2√6-2√2=2(√6−√2)≈2.1(m).∵PC=PB-CB ≈4-2.1=1.9(m),1.9<2,∴货物MNQP 需要挪走.17.(本小题满分14分)如图,在△ABC 中,∠BAC=90°,AB=AC=6,D 为BC 中点.(1)若E ,F 分别是AB ,AC 上的点,且AE=CF ,求证:△AED ≌△CFD ;(2)当点F ,E 分别从C ,A 两点同时出发,以1个单位长度/秒的速度沿CA ,AB 运动到点A ,B 时停止,设△DEF 的面积为y ,点F 的运动时间为x ,求y 与x 之间的函数关系式.BAC=90°,AB=AC=6,D 为BC 中点,∴AD=DC ,∠DAE=∠C=45°. 又AE=CF ,∴△AED ≌△CFD.AE=x ,AF=6-x ,∴EF 2=AE 2+AF 2=x 2+(6-x )2=2x 2-12x+36, 由(1)知:△AED ≌△CFD , ∴DE=DF ,∠ADE=∠CDF ,∴∠ADE+∠ADF=∠CDF+∠ADF=∠ADC=90°,∴△DEF 是等腰直角三角形, ∴DE 2=DF 2=12EF 2,∴S△DEF=12DE·DF=12DE2=14EF2,即y=14(2x2-12x+36)=12x2-3x+9.。
专题4.3 几何初步及三角形(培优篇)(真题专练)一、单选题1.(2021·江苏南京·中考真题)下列长度的三条线段与长度为5的线段能组成四边形的是( )A .1,1,1B .1,1,8C .1,2,2D .2,2,2 2.(2021·浙江丽水·中考真题)如图,在Rt ABC △纸片中,90,4,3ACB AC BC ∠=︒==,点,DE 分别在,AB AC 上,连结DE ,将ADE 沿DE 翻折,使点A 的对应点F 落在BC 的延长线上,若FD 平分EFB ∠,则AD 的长为( )A .259B .258C .157D .2073.(2021·湖南娄底·中考真题)如图,//AB CD ,点,E F 在AC 边上,已知70,130CED BFC ∠=︒∠=︒,则B D ∠+∠的度数为( )A .40︒B .50︒C .60︒D .70︒4.(2021·辽宁营口·中考真题)如图,一束太阳光线平行照射在放置于地面的正六边形上,若119∠=︒,则2∠的度数为( )A .41︒B .51︒C .42︒D .49︒5.(2021·黑龙江绥化·中考真题)已知在Rt ACB 中,90,75C ABC ∠=︒∠=︒,5AB =.点E 为边AC 上的动点,点F 为边AB 上的动点,则线段FE EB +的最小值是( )A B .52 C D 6.(2021·湖北宜昌·中考真题)如图,将一副三角尺按图中所示位置摆放,点F 在AC 上,其中90ACB ∠=︒,60ABC ∠=︒,90EFD ∠=︒,45DEF ∠=︒,//AB DE ,则AFD ∠的度数是( )A .15︒B .30C .45︒D .60︒7.(2021·山东东营·中考真题)如图,//AB CD ,EF CD ⊥于点F ,若150BEF ∠=︒,则ABE ∠=( )A .30B .40︒C .50︒D .60︒8.(2021·安徽·中考真题)两个直角三角板如图摆放,其中90BAC EDF ∠=∠=︒,45E ∠=︒,30C ∠=︒,AB 与DF 交于点M .若//BC EF ,则BMD ∠的大小为( )A .60︒B .67.5︒C .75︒D .82.5︒9.(2021·内蒙古赤峰·中考真题)如图,AB∥CD ,点E 在线段BC 上,CD=CE,若∥ABC=30°,则∥D 为( )A .85°B .75°C .60°D .30°10.(2021·青海西宁·中考真题)如图,ABC 的内切圆О与,,AB BC AC 分别相切于点D ,E ,F ,连接OE ,OF ,90C ∠=︒,6AC =,8BC =,则阴影部分的面积为( )A .122π-B .142π-C .4π-D .114π- 11.(2021·四川绵阳·中考真题)如图,在等腰直角ABC 中,90C ∠=︒,M 、N 分别为BC 、AC 上的点,50CNM ∠=︒,P 为MN 上的点,且12PC MN =,117BPC ∠=︒,则ABP ∠=( )A .22︒B .23︒C .25︒D .27︒12.(2021·四川巴中·中考真题)如图,矩形AOBC 的顶点A 、B 在坐标轴上,点C 的坐标是(﹣10,8),点D 在AC 上,将BCD 沿BD 翻折,点C 恰好落在OA 边上点E 处,则tan∥DBE等于( )A .34B .35CD .1213.(2021·辽宁盘锦·中考真题)如图,已知直线AB 和AB 上的一点C ,过点C 作直线AB 的垂线,步骤如下:第一步:以点C 为圆心,以任意长为半径作弧,交直线AB 于点D 和点E ;第二步:分别以点D 和点E 为圆心,以a 为半径作弧,两弧交于点F ;第三步:作直线CF ,直线CF 即为所求.下列关于a 的说法正确的是( )A .a ≥12DEB .a ≤12DEC .12a DE >D .12a DE < 14.(2021·西藏·中考真题)如图,在Rt ∥ABC 中,∥A =30°,∥C =90°,AB =6,点P 是线段AC 上一动点,点M 在线段AB 上,当AM =13AB 时,PB +PM 的最小值为( )A .B .C .2D .3二、填空题 15.(2021·广东深圳·中考真题)如图,在ABC 中,D ,E 分别为BC ,AC 上的点,将CDE沿DE 折叠,得到FDE ,连接BF ,CF ,90BFC ∠=︒,若//EF AB ,AB =10EF =,则AE 的长为__________.16.(2021·青海·中考真题)如图,AB∥CD ,FE∥DB ,垂足为E ,∥1=50°,则∥2的度数是_____.17.(2021·四川内江·中考真题)如图,矩形ABCD ,1AB =,2BC =,点A 在x 轴正半轴上,点D 在y 轴正半轴上.当点A 在x 轴上运动时,点D 也随之在y 轴上运动,在这个运动过程中,点C 到原点O 的最大距离为 __.18.(2021·四川内江·中考真题)已知,在ABC ∆中,45A ∠=︒,AB =5BC =,则ABC ∆的面积为 __.19.(2021·青海西宁·中考真题)如图,在矩形ABCD 中,E 为AD 的中点,连接CE ,过点E 作CE 的垂线交AB 于点F ,交CD 的延长线于点G ,连接CF .已知12AF =,5CF =,则EF =_________.20.(2021·青海西宁·中考真题)如图,ABC 是等边三角形,6AB =,N 是AB 的中点,AD是BC 边上的中线,M 是AD 上的一个动点,连接,BM MN ,则BM MN +的最小值是________.21.(2021·青海西宁·中考真题)如图,在Rt ABC △中,90BAC ∠=︒,D ,E 分别是AB ,BC 的中点,连接AE ,DE ,若92DE =,152AE =,则点A 到BC 的距离是________.22.(2021·辽宁鞍山·中考真题)如图,90POQ ∠=︒,定长为a 的线段端点A ,B 分别在射线OP ,OQ 上运动(点A ,B 不与点O 重合),C 为AB 的中点,作OAC 关于直线OC 对称的OA C ',A O '交AB 于点D ,当OBD 是等腰三角形时,OBD ∠的度数为_____________.23.(2021·西藏·中考真题)如图.在Rt ∥ABC 中,∥A =90°,AC =4.按以下步骤作图:(1)以点B 为圆心,适当长为半径画弧,分别交线段BA ,BC 于点M ,N ;(2)以点C 为圆心,BM 长为半径画弧,交线段CB 于点D ;(3)以点D 为圆心,MN 长为半径画弧,与第2步中所面的弧相交于点E ;(4)过点E 画射线CE ,与AB 相交于点F .当AF =3时,BC 的长是_______________.24.(2021·辽宁锦州·中考真题)如图,在∥ABC 中,AC =4,∥A =60°,∥B =45°,BC 边的垂直平分线DE 交AB 于点D ,连接CD ,则AB 的长为_________________.三、解答题25.(2021·山东青岛·中考真题)已知:O ∠及其一边上的两点A ,B .求作:Rt ABC ,使90C ∠=︒,且点C 在O ∠内部,BAC O ∠=∠.26.(2021·广西河池·中考真题)如图,CAD ∠是ABC 的外角.(1)尺规作图:作CAD ∠的平分线AE (不写作法,保留作图痕迹,用黑色墨水笔将痕迹加黑);(2)若//AE BC ,求证:AB AC =.参考答案1.D【分析】若四条线段能组成四边形,则三条较短边的和必大于最长边,由此即可完成.【详解】A 、1+1+1<5,即这三条线段的和小于5,根据两点间距离最短即知,此选项错误;B 、1+1+5<8,即这三条线段的和小于8,根据两点间距离最短即知,此选项错误;C 、1+2+2=5,即这三条线段的和等于5,根据两点间距离最短即知,此选项错误;D 、2+2+2>5,即这三条线段的和大于5,根据两点间距离最短即知,此选项正确; 故选:D .【点拨】本题考查了两点间线段最短,类比三条线段能组成三角形的条件,任两边的和大于第三边,因而较短的两边的和大于最长边即可,四条线段能组成四边形,作三条线段的和大于第四条边,因而较短的三条线段的和大于最长的线段即可.2.D【分析】先根据勾股定理求出AB ,再根据折叠性质得出∥DAE=∥DFE ,AD=DF ,然后根据角平分线的定义证得∥BFD=∥DFE =∥DAE ,进而证得∥BDF=90°,证明Rt∥ABC ∥Rt∥FBD ,可求得AD 的长.【详解】解:∥90,4,3ACB AC BC ∠=︒==,∥AB ,由折叠性质得:∥DAE=∥DFE ,AD=DF ,则BD =5﹣AD ,∥FD 平分EFB ∠,∥∥BFD =∥DFE=∥DAE ,∥∥DAE +∥B =90°,∥∥BDF +∥B =90°,即∥BDF =90°,∥Rt∥ABC ∥Rt∥FBD , ∥BD BC DF AC =即534AD AD -=,解得:AD =207, 故选:D .【点拨】本题考查折叠性质、角平分线的定义、勾股定理、相似三角形的判定与性质、三角形的内角和定理,熟练掌握折叠性质和相似三角形的判定与性质是解答的关键. 3.C【分析】取,ED FB 的交点为点G ,过点G 作平行于CD 的线MN ,利用两直线平行的性质,找到角之间的关系,通过等量代换即可求解.【详解】解:取,ED FB 的交点为点G ,过点G 作平行于CD 的线MN ,如下图:根据题意:70,130CED BFC ∠=︒∠=︒,50EFG ∴∠=︒,180507060EGF ∴∠=︒-︒-︒=︒,////MN CD AB ,,B BGN D DGN ∴∠=∠∠=∠,B D BGN DGN BGD ∴∠+∠=∠+∠=∠,,ED BF 相交于点G ,60EGF BGD ∴∠=∠=︒,60B D ∴∠+∠=︒,故选:C .【点拨】本题考查了两直线平行的性质和两直线相交对顶角相等,解题的关键是:添加辅助线,利用两直线平行的性质和对顶角相等,同过等量代换即可得解.4.A【分析】先求出正六边形的内角和外角,再根据三角形的外角性质以及平行线的性质,即可求解.【详解】解:∥正六边形的每个内角等于120°,每个外角等于60°,∥∥F AD=120°-∥1=101°,∥ADB=60°,∥∥ABD=101°-60°=41°∥光线是平行的,∥2∠=∥ABD=41︒,故选A【点拨】本题主要考查平行线的性质,三角形外角性质以及正六边形的性质,掌握三角形的外角性质以及平行线的性质是解题的关键.5.B【分析】作点F关于直线AB的对称点F’,如下图所示,此时EF+EB= EF’+EB,再由点到直线的距离垂线段长度最短求解即可.【详解】解:作点F关于直线AB的对称点F’,连接AF’,如下图所示:由对称性可知,EF=EF’,此时EF+EB= EF’+EB ,由“点到直线的距离垂线段长度最小”可知,当BF’∥AF’时,EF +EB 有最小值BF 0,此时E 位于上图中的E 0位置,由对称性知,∥CAF 0=∥BAC =90°-75°=15°,∥∥BAF 0=30°,由直角三角形中,30°所对直角边等于斜边的一半可知,BF 0=12AB =15522⨯=, 故选:B .【点拨】本题考查了30°角所对直角边等于斜边的一半,垂线段最短求线段最值等,本题的核心思路是作点F 关于AC 的对称点,将EF 线段转移,再由点到直线的距离最短求解. 6.A【分析】设AB 与EF 交于点M ,根据//AB DE ,得到45AMF E ∠=∠=︒,再根据三角形的内角和定理求出结果.【详解】解:设AB 与EF 交于点M ,∥//AB DE ,∥45AMF E ∠=∠=︒,∥90ACB ∠=︒,60ABC ∠=︒,∥30A ∠=︒,∥1803045105AFM ∠=︒-︒-︒=︒,∥90EFD ∠=︒,∥AFD ∠=15︒,故选:A ..【点拨】此题考查平行线的性质,三角形的内角和定理,熟记平行线的性质并应用是解题的关键.7.D【分析】过点E 作EH ∥CD ,由此求出90HEF ∠=︒,得到60BEH ∠=︒,根据平行线的推论得到AB ∥EH ,利用平行线的性质求出答案.【详解】解:过点E 作EH ∥CD ,如图,∥180DFE HEF ∠+∠=︒,∥EF CD ⊥,∥90DFE ∠=︒,∥90HEF ∠=︒,∥150BEF ∠=︒,∥60BEH ∠=︒,∥EH ∥CD ,//AB CD ,∥AB ∥EH ,∥ABE ∠=60BEH ∠=︒,故选:D .【点拨】此题考查平行线的推论,平行线的性质,正确引出辅助线、熟记定理是解题的关键. 8.C【分析】根据//BC EF ,可得45FDB F ∠=∠=︒,再根据三角形内角和即可得出答案.【详解】由图可得6045B F ∠=︒∠=︒,,∥//BC EF ,∥45FDB F ∠=∠=︒,∥180180456075BMD FDB B ∠=︒-∠-∠=︒-︒-︒=︒,故选:C .【点拨】本题考查了平行线的性质和三角形的内角和,掌握平行线的性质和三角形的内角和是解题的关键.9.B【详解】分析:先由AB∥CD ,得∥C=∥ABC=30°,CD=CE ,得∥D=∥CED ,再根据三角形内角和定理得,∥C+∥D+∥CED=180°,即30°+2∥D=180°,从而求出∥D .详解:∥AB∥CD ,∥∥C=∥ABC=30°,又∥CD=CE ,∥∥D=∥CED ,∥∥C+∥D+∥CED=180°,即30°+2∥D=180°,∥∥D=75°.故选B .点睛:此题考查的是平行线的性质及三角形内角和定理,解题的关键是先根据平行线的性质求出∥C ,再由CD=CE 得出∥D=∥CED ,由三角形内角和定理求出∥D .10.C【分析】连接OD ,由题意,先利用勾股定理求出AB 的长度,设半径为r ,然后求出内切圆的半径,再利用正方形的面积减去扇形的面积,即可得到答案.【详解】解:连接OD ,如图:在ABC 中,90C ∠=︒,6AC =,8BC =,由勾股定理,则 22226810AB AC BC ,设半径为r ,则OD OE OF r ===,∥CF CE OE OF r ====,∥四边形CEOF 是正方形;由切线长定理,则6AD AF r ==-,8BE BD r ==-,∥AB AD BD =+,∥6810r r -+-=,解得:2r ,∥2OD OE OF ===;∥阴影部分的面积为:2902224360S ππ⨯⨯=⨯-=-; 故选:C .【点拨】本题考查了三角形的内切圆,切线的性质,切线长定理,求扇形的面积,勾股定理等知识,解题的关键是熟练掌握所学的知识,正确的进行解题.11.A【分析】作辅助线,构建矩形,得P是MN的中点,则MP=NP=CP,根据等腰三角形的性质和三角形外角的性质可解答.【详解】解:如图,过点M作MG∥BC于M,过点N作NG∥AC于N,连接CG交MN于H,∥∥GMC=∥ACB=∥CNG=90°,∥四边形CMGN是矩形,∥CH=12CG=12MN,∥PC=12MN,存在两种情况:如图,CP=CP1=12MN,∥P是MN中点时,∥MP=NP=CP,∥∥CNM=∥PCN=50°,∥PMN=∥PCM=90°−50°=40°,∥∥CPM=180°−40°−40°=100°,∥∥ABC是等腰直角三角形,∥∥ABC=45°,∥∥CPB=117°,∥∥BPM=117°−100°=17°,∥∥PMC=∥PBM+∥BPM,∥∥PBM=40°−17°=23°,∥∥ABP=45°−23°=22°.∥CP1=1MN,2∥CP=CP1,∥∥CPP1=∥CP1P=80°,∥∥BP1C=117°,∥∥BP1M=117°−80°=37°,∥∥MBP1=40°−37°=3°,而图中∥MBP1>∥MBP,所以此种情况不符合题意.故选:A.【点拨】此题主要考查了等腰直角三角形的性质,矩形的性质和判定,等腰三角形的性质等知识,作出辅助线构建矩形CNGM 证明P 是MN 的中点是解本题的关键.12.D【分析】先根据四边形ABCD 是矩形,C (-10,8),得出BC =AO =10,AC =OB =8,∥A =∥O =∥C =90°,再由折叠的性质得到CD =DE ,BC =BE =10,∥DEB =∥C=90°,利用勾股定理先求出OE 的长,即可得到AE ,再利用勾股定理求出DE ,利用tan DE DBE BE ∠=求解即可. 【详解】解:∥四边形ABCD 是矩形,C (-10,8),∥BC =AO =10,AC =OB =8,∥A =∥O =∥C =90°,由折叠的性质可知:CD =DE ,BC =BE =10,∥DEB =∥C=90°,在直角三角形BEO 中:6OE =,∥4AE OA OE =-=,设CD DE x ==,则8AD AC CD x =-=-在直角三角形ADE 中:222AD AE DE +=,∥()22284x x -+=,解得5x =,∥5DE =,∥∥DEB =90°, ∥51tan 102DE DBE BE ===∠, 故选D.【点拨】本题主要考查了矩形的性质,折叠的性质,勾股定理,三角函数,解题的关键在于能够熟练掌握相关知识进行求解.13.C【分析】根据过直线外一点作已知直线的垂线的步骤,结合三角形三边关系判断即可.【详解】解:由作图可知,分别以点D和点E为圆心,以a为半径作弧,两弧交于点F,此时12a DE >,故选:C.【点拨】本题考查作图-基本作图,解题的关键是理解题意,灵活运用所学知识解决问题.14.B【分析】作B点关于AC的对称点B',连接B'M交AC于点P,则PB+PM的最小值为B'M的长,过点B'作B'H∥AB交H点,在Rt∥BB'H中,B'H=HB=3,可求MH=1,在Rt∥MHB'中,B'M=PB+PM的最小值为.【详解】解:作B点关于AC的对称点B',连接B'M交AC于点P,∥BP=B'P,BC=B'C,∥PB+PM=B'P+PM≥B'M,∥PB+PM的最小值为B'M的长,过点B'作B'H∥AB交H点,∥∥A=30°,∥C=90°,∥∥CBA=60°,∥AB=6,∥BC=3,∥BB '=BC +B 'C =6,在Rt ∥BB 'H 中,∥B 'BH =60°,∴∥BB 'H =30°,∥BH =3,由勾股定理可得:'B H ==∥AH =AB -BH =3,∥AM =13AB , ∥AM =2,∥MH =AH -AM =1,在Rt ∥MHB '中,'B M ==∥PB +PM 的最小值为故选:B .【点拨】本题考查轴对称—最短路线问题,涉及到解直角三角形,解题的关键是做辅助线,找出PB +PM 的最小值为B 'M 的长.15.10-【分析】延长ED ,交CF 于点G ,由折叠,可知DG CF ⊥,可得//ED BF ,延长EA ,FB ,交于点M ,结合//AB EF ,可得M BFE α∠=∠=,M ABM α∠=∠=,进而即可求解.【详解】解:如图,延长ED ,交CF 于点G ,设BFE α∠= 由折叠,可知DG CF ⊥,∥BF CF ⊥,∥//ED BF ,∥FED BFE α∠=∠=,延长EA ,FB ,交于点M ,∥//AB EF ,∥2BAC FEC α∠=∠=,ABM BFE α∠=∠=,∥M BAC ABM α∠=∠-∠=,∥M BFE α∠=∠=,M ABM α∠=∠=,∥10EM EF ==,AM AB ==∥10AE EM AM =-=-【点拨】本题主要考查折叠的性质,三角形外角的性质,平行线的判定和性质,等腰三角形的判定和性质,添加合适的辅助线,构造等腰三角形,是解题的关键.16.40°【分析】由EF∥BD ,∥1=50°,结合三角形内角和为180°,即可求出∥D 的度数,再由“两直线平行,同位角相等”即可得出结论.【详解】解:在∥DEF 中,∥1=50°,∥DEF=90°,∥∥D=180°-∥DEF -∥1=40°.∥AB∥CD ,∥∥2=∥D=40°.故答案为40°.【点拨】本题考查平行线的性质以及三角形内角和为180°,解题关键是求出∥D=40°.解决该题型题目时,根据平行线的性质,找出相等或互补的角是解题技巧.171##【分析】取AD 的中点H ,连接CH ,OH ,由勾股定理可求CH 的长,由直角三角形的性质可求OH 的长,由三角形的三边可求解.【详解】如图,取AD 的中点H ,连接CH ,OH ,矩形ABCD ,1AB =,2BC =,1CD AB ∴==,2AD BC ==,点H 是AD 的中点,1AH DH ∴==,CH ∴==90AOD ∠=︒,点H 是AD 的中点,112OH AD ∴==, 在OCH ∆中,CO OH CH <+,当点H 在OC 上时,CO OH CH =+,CO ∴的最大值为1OH CH +,1.【点拨】本题考查了矩形的性质,直角三角形的性质,三角形的三边形关系,勾股定理等知识,添加恰当辅助线构造三角形是解题的关键.18.2或14#14或2【分析】过点B 作AC 边的高BD ,Rt∥ABD 中,∥A =45°,AB 得BD=AD =4,在Rt∥BDC 中,BC =4,得,∥∥ABC 是钝角三角形时,∥∥ABC 是锐角三角形时,分别求出AC 的长,即可求解.【详解】解:过点B 作AC 边的高BD ,Rt ABD ∆中,45A ∠=︒,AB =4BD AD ∴==,在Rt BDC ∆中,5BC =,5CD ∴==,∥ABC ∆是钝角三角形时,1AC AD CD =-=,1114222ABC S AC BD ∆∴=⋅=⨯⨯=; ∥ABC ∆是锐角三角形时,7AC AD CD =+=,11741422ABC S AC BD ∆∴=⋅=⨯⨯=, 故答案为:2或14.【点拨】本题考查了勾股定理,三角形面积求法,解题关键是分类讨论思想.19【分析】由题意,先证明∥AEF ∥∥DEG ,则EF =EG ,12DG AF ==,利用等腰三角形的性质,求出5CG CF ==,然后得到AB =CD =92,则4BF =,利用勾股定理求出BC ,然后得到AE 的长度,即可求出FE 的长度.【详解】解:根据题意,在矩形ABCD 中,则AB =CD ,BC =AD ,∥A =∥EDG =90°,∥E 为AD 的中点,∥AE =DE ,∥∥AEF =∥DEG ,∥∥AEF ∥∥DEG ,∥EF =EG ,12DG AF ==; ∥CE ∥FG ,∥5CG CF ==,∥AB =CD =19522-=, ∥91422BF =-=, 在直角∥BCF 中,由勾股定理则3BC =,∥AD =3, ∥32AE =, 在直角∥AEF 中,由勾股定理则EF ;【点拨】本题考查了矩形的性质,全等三角形的判定和性质,垂直平分线的性质,勾股定理等知识,解题的关键是熟练掌握所学的知识,正确得到5CG CF ==.20.【分析】根据题意可知要求BM +MN 的最小值,需考虑通过作辅助线转化BM ,MN 的值,从而找出其最小值,进而根据勾股定理求出CN ,即可求出答案.【详解】解:连接CN ,与AD 交于点M ,连接BM .(根据两点之间线段最短;点到直线垂直距离最短),AD 是BC 边上的中线即C 和B 关于AD 对称,则BM +MN =CN ,则CN 就是BM +MN 的最小值.∥ABC 是等边三角形,6AB =,N 是AB 的中点,∥AC =AB =6,AN =12AB =3, CN AB ⊥,∥CN即BM +MN 的最小值为故答案为:【点拨】本题考查的是轴对称-最短路线问题,涉及到等边三角形的性质,勾股定理,轴对称的性质,等腰三角形的性质等知识点的综合运用.21.365 【分析】根据题意可求得AC 、AB 、BC 的长度,设点A 到BC 的距离是h ,由Rt ABC △的面积相等可列式1212AB AC BC h ••=••,从而点A 到BC 的距离即可求解. 【详解】解:∥在Rt ABC △中,90BAC ∠=︒,D ,E 分别是AB ,BC 的中点,92DE =, ∥9AC =,DE//AC ,∥∥BDE =∥BAC =90°,∥∥ADE =90°,6AD ∴==, ∥212AB AD ==,∥15BC ,设点A 到BC 的距离是h , 则1212AB AC BC h ••=••,即112915221h ⨯⨯=⨯, 解得:365h =, ∥点A 到BC 的距离是365. 故答案为:365. 【点拨】本题考查了勾股定理的应用、三角形中位线的性质,三角形的面积公式,解题的关键是用勾股定理和中位线的性质求出各线段的长度.22.67.5︒或72︒【分析】结合折叠及直角三角形斜边中线等于斜边一半的性质可得COA COA BAO ∠=∠'=∠,设COA COA BAO x ∠=∠'=∠=︒,然后利用三角形外角和等腰三角形的性质表示出2BCO x ∠=︒,902AOBx ∠'=︒-︒,90OBD x ∠=︒-︒,3BDO AOD BAO x ∠=∠+∠=︒,从而利用分类讨论思想解题.【详解】解:90POQ ∠=︒,C 为AB 的中点,OC AC BC ∴==,COA BAO ∴∠=∠,OBC BOC ∠=∠,又由折叠性质可得COA COA ∠=∠',COA COA BAO ∴∠=∠'=∠,设COA COA BAO x ∠=∠'=∠=︒,则2BCO x ∠=︒,902AOBx ∠'=︒-︒,90OBD x ∠=︒-︒,3BDO AOD BAO x ∠=∠+∠=︒,∥当OB OD =时,ABO BDO ∠=∠,903x x ∴︒-︒=︒,解得22.5x =︒,9022.567.5OBD ∴∠=︒-︒=︒;∥当BD OD =时,OBD A OB ∠=∠',90902x x ∴︒-︒=︒-︒,方程无解,∴此情况不存在;∥当OB DB =时,BDO A OB ∠=∠',3902x x ∴︒=︒-︒,解得:18x =︒,901872OBD ∴∠=︒-︒=︒;综上,OBD ∠的度数为67.5︒或72︒,故答案为:67.5︒或72︒.【点拨】此题考查折叠及直角三角形斜边中线等于斜边一半的性质,三角形外角和等腰三角形的性质,难度一般.23.【分析】利用基本作图得到∥FCB =∥B ,则FC =FB ,再利用勾股定理计算出CF =5,则AB =8,然后利用勾股定理可计算出BC 的长.【详解】解:由作法得∥FCB =∥B ,∥FC =FB ,在Rt ∥ACF 中,∥∥A =90°,AC =4,AF =3,∥CF 5,∥BF =5,∥AB =AF +BF =8,在Rt ∥ABC 中,BC故答案为【点拨】本题考查了作图﹣基本作图:解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质作图,逐步操作即可.24.2+【分析】根据线段垂直平分线的性质得到DB =DC ,根据三角形的外角性质得到∥ADC =90°,根据含30°角的直角三角形的性质求出AD ,根据勾股定理求出DC ,进而求出AB .【详解】解:∥DE是BC的垂直平分线,∥DB=DC,∥∥DCB=∥B=45°,∥∥ADC=∥DCB+∥B=90°,∥∥A=60°,∥∥ACD=30°,AC=2,∥AD=12由勾股定理得:DC∥DB=DC=∥AB=AD+DB=2+故答案为:2+【点拨】本题主要考查了三角形外角性质,线段垂直平分线的性质,直角三角形的性质,勾股定理,熟练掌握相关知识点是解题的关键.25.见解析【分析】先在∥O的内部作∥DAB=∥O,再过B点作AD的垂线,垂足为C点.【详解】解:如图,Rt∥ABC为所作.【点拨】本题考查了作图-复杂作图:解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.26.(1)作图见解析;(2)证明见解析【分析】(1)正确地利用尺规作出AE即可;(2)利用平行线的性质和角平分线的性质即可证明求解.【详解】解:(1)如图所示,以A为圆心,以任意长为半径画弧,分别交直线AC于M,直线AD于N,连接MN,分别以M、N为圆心,以大于MN的一半为半径画弧,两弧交于E,连接AE 即为所求;(2)∥AE∥BC,∥∥C=∥CAE,∥B=∥EAD,∥AE是∥CAD的角平分线,∥∥CAE=∥EAD,∥∥B=∥C,∥AB=AC.【点拨】本题主要考查了尺规作已知角的角平分线,平行线的性质,等腰三角形的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解.。
单元测试(四) 图形的初步认识与三角形(时间:45分钟满分:100分)一、选择题(每小题4分,共32分)1.若∠α=32°,则∠α的补角为( C )A.58° B.68° C.148° D.168°2.(2016·长沙)下列各图中,∠1与∠2互为余角的是( B )3.(2016·毕节)到三角形三个顶点的距离都相等的点是这个三角形的( D )A.三条高的交点B.三条角平分线的交点C.三条中线的交点D.三条边的垂直平分线的交点4.如图,字母B所代表的正方形的面积是( B )A.12 B.144 C.13 D.1945.(2016·河北)如图,△ABC中,∠A=78°,AB=4,AC=6.将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是( C )6.如图,△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB于点E、O、F,则图中全等三角形的对数是( D )A.1对 B.2对 C.3对 D.4对7.将两个含30°和45°的直角三角板如图放置,则∠α的度数是( B )A.10° B.15° C.20° D.25°8.(2016·武汉)平面直角坐标系中,已知A(2,2)、B(4,0).若在坐标轴上取点C,使△ABC为等腰三角形,则满足条件的点C的个数是( A )A.5 B.6 C.7 D.8二、填空题(每小题4分,共24分)9.如图,在△ABC中,∠ACB=90°,CD∥AB,∠ACD=40°,则∠B的度数为50°.10.如图所示,小明同学利用一个锐角是30°的三角板测量一棵树的高度,测量时如图所示放置三角板,已知他与树之间的水平距离BE 为5 m ,小明的眼睛距地面的距离AB 为1.5 m ,那么这棵树高是4.39m(可用计算器,精确到0.01).11.若a 、b 、c 为三角形的三边,且a ,b 满足a 2-9+(b -2)2=0,则第三边c 的取值范围是1<c<5. 12.(2016·南京)如图,AB 、CD 相交于点O ,OC =2,OD =3,AC ∥BD ,EF 是△ODB 的中位线,且EF =2,则AC 的长为83.13.如图,在△ABC 中,BF 平分∠ABC,AF ⊥BF 于点F ,D 为AB 的中点,连接DF 延长交AC 于点E.若AB =10,BC =16,则线段EF 的长为3.14.(2016·临沂)一般地,当α、β为任意角时,sin (α+β)与sin (α-β)的值可以用下面的公式求得:sin (α+β)=s in α·cos β+cos α·sin β;sin (α-β)=sin α·cos β-cos α·sin β.例如sin90°=sin(60°+30°)=sin60°·cos30°+cos60°·sin30°=32×32+12×12=1.类似地,可以求得4三、解答题(共44分)15.(10分)已知:如图,△ABC 中,AD =DB ,∠1=∠2.求证:△ABC∽△EAD.证明:∵AD =DB , ∴∠B =∠BAD.∵∠BDA =∠1+∠C=∠2+∠ADE,∠1=∠2, ∴∠C =∠ADE. ∴△ABC ∽△EAD.16.(10分)如图,在△ABC 中,AB =AC.(1)作∠BAC 的平分线,交BC 于点D(尺规作图,保留痕迹);(2)在AD 的延长线上任取一点E ,连接BE 、CE.求证:△BDE≌△CDE.解:(1)如图.(2)证明:∵AB=AC ,AD 平分∠BAC, ∴BD =CD ,AD ⊥BC. ∴∠BDE =∠CDE=90°. 在△BDE 和△CDE 中, ⎩⎪⎨⎪⎧BD =CD ,∠BDE =∠CDE,DE =DE ,∴△BDE ≌△CDE.17.(12分)如图,以△ABC 的三边为边分别作等边△ACD、△ABE、△BCF,则下列结论:①△EBF ≌△DFC ;②四边形AEFD 为平行四边形;③当AB =AC ,∠BAC =120°时,四边形AEFD 是正方形.其中正确的结论是哪几个?并说明理由.解:正确的结论有:①②.理由:①∵△BCF 和△ACD 为等边三角形, ∴∠FCB =60°,∠DCA =60°. ∴∠FCB -∠FCA=∠DCA-∠FCA, 即∠ACB=∠DCF. 在△ABC 和△DFC 中, ⎩⎪⎨⎪⎧BC =FC ,∠ACB =∠DCF,AC =DC ,∴△ABC ≌△DFC(SAS).∴AB =DF.同理可证:AC =EF. 又∵AB=AE =BE ,AD =DC =AC , ∴BE =FD =AE ,EF =DC =AD. 可知在△EBF 和△DFC 中,⎩⎪⎨⎪⎧BE =FD ,BF =FC ,EF =DC ,∴△EBF ≌△DFC(SSS).②由EF =AD ,AE =DF 可知四边形AEFD 为平行四边形.18.(12分)如图所示,港口B 位于港口O 正西方向120 km 处,小岛C 位于港口O 北偏西60°的方向.一艘游船从港口O 出发,沿OA 方向(北偏西30°)以v km/h 的速度驶离港口O.同时一艘快艇从港口B 出发,沿北偏东30°的方向以60 km/h 的速度驶向小岛C ,在小岛C 用1 h 加装补给物资后,立即按照原来的速度给游船送去.(1)快艇从港口B 到小岛C 需要多长时间?(2)若快艇从小岛C 到与游船相遇恰好用时1 h ,求v 的值及相遇处与港口O 的距离.解:(1)∵∠BOC=30°,∠CBO =60°, ∴∠BCO =90°.∴BC =OB·cos60°=120×12=60(km).∴快艇从港口B 到小岛C 需要的时间为6060=1(小时).答:快艇从港口B 到小岛C 需要1小时. (2)作CD⊥OA,设相交处为点E ,连接CE.∴OC =OB·cos30°=60 3 km ,CD =12OC =30 3 km ,OD =OC·cos30°=90 km.∴DE =90-3v(km). ∵CE =60 km ,∴CD 2+DE 2=CE 2,即(303)2+(90-3v)2=602. 解得v =20或v =40.当v =20 km/h 时,OE =3×20=60(km); 当v =40 km/h 时,OE =3×40=120(km).答:v 的值为20 km/h 或40 km/h ,相遇处与港口O 的距离分别为60 km 或120 km.。
专题04几何初步与三角形5年中考真题一、单选题1.【2018年】下列图形具有稳定性的是()A.B.C.D.2.【2021年】如图,已知四条线段a,b,c,d中的一条与挡板另一侧的线段m在同一直线上,请借助直尺判断该线段是()A.a B.bC.c D.d3.【2020年】如图,在平面内作已知直线m的垂线,可作垂线的条数有()A.0条B.1条C.2条D.无数条4.【2022年】平面内,将长分别为1,5,1,1,d的线段,顺次首尾相接组成凸五边形(如图),则d可能是()A.1B.2C.7D.85.【2018年】如图,快艇从P处向正北航行到A处时,向左转50°航行到B处,再向右转80°继续航行,此时的航行方向为()A .北偏东30°B .北偏东80°C .北偏西30°D .北偏西50°6.【2020年】如图,从笔直的公路l 旁一点P 出发,向西走6km 到达l ;从P 出发向北走6km 也到达l .下列说法错误..的是()A .从点P 向北偏西45°走3km 到达lB .公路l 的走向是南偏西45°C .公路l 的走向是北偏东45°D .从点P 向北走3km 后,再向西走3km 到达l7.【2022年】要得知作业纸上两相交直线AB ,CD 所夹锐角的大小,发现其交点不在作业纸内,无法直接测量.两同学提供了如下间接测量方案(如图1和图2):对于方案Ⅰ、Ⅱ,说法正确的是()A .Ⅰ可行、Ⅱ不可行B .Ⅰ不可行、Ⅱ可行C .Ⅰ、Ⅱ都可行D .Ⅰ、Ⅱ都不可行8.【2021年】定理:三角形的一个外角等于与它不相邻的两个内角的和.已知:如图,ACD ∠是ABC 的外角.求证:ACD A B ∠=∠+∠.下列说法正确的是()A.证法1还需证明其他形状的三角形,该定理的证明才完整B.证法1用严谨的推理证明了该定理C.证法2用特殊到一般法证明了该定理D.证法2只要测量够一百个三角形进行验证,就能证明该定理9.【2019年】下面是投影屏上出示的抢答题,需要回答横线上符号代表的内容则回答正确的是()∠B.@代表同位角A.◎代表FEC∠D.※代表ABC.▲代表EFC10.【2022年】题目:“如图,∠B=45°,BC=2,在射线BM上取一点A,设AC=d,若对于d的一个数值,只能作出唯一一个△ABC,求d的取值范围.”对于其答案,甲答:2d≥,乙答:d=1.6,丙答:d=,则正确的是()A.只有甲答的对B.甲、丙答案合在一起才完整C.甲、乙答案合在一起才完整D.三人答案合在一起才完整11.【2018年】已知:如图,点P在线段AB外,且PA=PB,求证:点P在线段AB的垂直平分线上,在证明该结论时,需添加辅助线,则作法不正确的是()A.作∠APB的平分线PC交AB于点CB.过点P作PC⊥AB于点C且AC=BCC.取AB中点C,连接PCD.过点P作PC⊥AB,垂足为C12.【2020年】如图1,已知ABC∠,用尺规作它的角平分线.如图2,步骤如下,第一步:以B为圆心,以a为半径画弧,分别交射线BA,BC于点D,E;第二步:分别以D,E为圆心,以b为半径画弧,两弧在ABC∠内部交于点P;第三步:画射线BP.射线BP即为所求.下列正确的是()A.a,b均无限制B.0a>,12b DE>的长C.a有最小限制,b无限制D.0a≥,12b DE<的长13.【2018年】尺规作图要求:Ⅰ、过直线外一点作这条直线的垂线;Ⅱ、作线段的垂直平分线;Ⅲ、过直线上一点作这条直线的垂线;Ⅳ、作角的平分线.如图是按上述要求排乱顺序的尺规作图:则正确的配对是()A.①﹣Ⅳ,②﹣Ⅱ,③﹣Ⅰ,④﹣ⅢB.①﹣Ⅳ,②﹣Ⅲ,③﹣Ⅱ,④﹣ⅠC.①﹣Ⅱ,②﹣Ⅳ,③﹣Ⅲ,④﹣ⅠD.①﹣Ⅳ,②﹣Ⅰ,③﹣Ⅱ,④﹣Ⅲ14.【2020年】如图是用三块正方形纸片以顶点相连的方式设计的“毕达哥拉斯”图案.现有五种正方形纸片,面积分别是1,2,3,4,5,选取其中三块(可重复选取)按图的方式组成图案,使所围成的三角形是面积最大..的直角三角形,则选取的三块纸片的面积分别是()A.1,4,5B.2,3,5C.3,4,5D.2,2,415.【2022年】如图,将△ABC折叠,使AC边落在AB边上,展开后得到折痕l,则l是△ABC的()A.中线B.中位线C.高线D.角平分线16.【2022年】如图,直线l ,m 相交于点O .P 为这两直线外一点,且 2.8OP =.若点P 关于直线l ,m 的对称点分别是点1P ,2P ,则1P ,2P 之间的距离可能..是()A .0B .5C .6D .717.【2021年】图1是装了液体的高脚杯示意图(数据如图),用去一部分液体后如图2所示,此时液面AB =()A .1cmB .2cmC .3cmD .4cm二、填空题18.【2021年】下图是可调躺椅示意图(数据如图),AE 与BD 的交点为C ,且A ∠,B Ð,E ∠保持不变.为了舒适,需调整D ∠的大小,使110EFD ∠=︒,则图中D ∠应___________(填“增加”或“减少”)___________度.19.【2022年】如图是钉板示意图,每相邻4个钉点是边长为1个单位长的小正方形顶点,钉点A ,B 的连线与钉点C ,D 的连线交于点E ,则(1)AB 与CD 是否垂直?______(填“是”或“否”);(2)AE =______.20.【2019年】勘测队按实际需要构建了平面直角坐标系,并标示了A ,B ,C 三地的坐标,数据如图(单位:km ).笔直铁路经过A ,B 两地.(1)A ,B 间的距离为______km ;(2)计划修一条从C 到铁路AB l ,并在l 上建一个维修站D ,使D 到A ,C 的距离相等,则C ,D 间的距离为______km .三、解答题21.【2019年】已知:整式()()22212A n n -=+,整式0B >.尝试:化简整式A .发现:2A B =,求整式B .联想:由上可知,222212B n n +=(﹣)(),当n >1时2,1,2,n n B -为直角三角形的三边长,如图.填写下表中B 的值:直角三角形三边21n ﹣2n B 勾股数组Ⅰ/8勾股数组Ⅱ35/22.【2020年】如图1和图2,在ABC ∆中,AB AC =,8BC =,3tan 4C =.点K 在AC 边上,点M ,N 分别在AB ,BC 上,且2AM CN ==.点P 从点M 出发沿折线MB BN -匀速移动,到达点N 时停止;而点Q 在AC 边上随P 移动,且始终保持APQ B ∠=∠.(1)当点P 在BC 上时,求点P 与点A 的最短距离;(2)若点P 在MB 上,且PQ 将ABC ∆的面积分成上下4:5两部分时,求MP 的长;(3)设点P 移动的路程为x ,当03≤≤及39x ≤≤时,分别求点P 到直线AC 的距离(用含x 的式子表示);(4)在点P 处设计并安装一扫描器,按定角APQ ∠扫描APQ ∆区域(含边界),扫描器随点P 从M 到B 再到N 共用时36秒.若94AK =,请直接..写出点K 被扫描到的总时长.23.【2021年】在一平面内,线段20AB =,线段10BC CD DA ===,将这四条线段顺次首尾相接.把AB 固定,让AD 绕点A 从AB 开始逆时针旋转角()0αα>︒到某一位置时,BC ,CD 将会跟随出现到相应的位置.(1)论证如图1,当//AD BC 时,设AB 与CD 交于点O ,求证:10AO =;(2)发现当旋转角60α=︒时,ADC ∠的度数可能是多少?(3)尝试取线段CD 的中点M ,当点M 与点B 距离最大时,求点M 到AB 的距离;(4)拓展①如图2,设点D 与B 的距离为d ,若BCD ∠的平分线所在直线交AB 于点P ,直接..写出BP 的长(用含d 的式子表示);α的余弦值.②当点C在AB下方,且AD与CD垂直时,直接..写出1年模拟新题一、单选题1.(2022·河北邯郸·二模)用“垂线段最短”来解释的现象是()A.B.C.D.2.(2022·河北张家口·一模)如图,对于四条线段a,b,c,d,请借助直尺或圆规判断长度最大的为()A.a B.b C.c D.d∠的一边OB经过的点是()3.(2022·河北邯郸·一模)如图,AOBA .P 点B .Q 点C .M 点D .N 点4.(2022·河北石家庄·三模)如图是两条平行线,则表示这两条平行线间距离的线段有()A .0条B .1条C .2条D .无数条5.(2022·河北·石家庄市第四十一中学模拟预测)如图,在平整的桌面上画一条直线l ,将三边都不相等的三角形纸片ABC 平放在桌面上,使AC 边与l 对齐,此时ABC 的内心是点P ;将纸片绕点C 顺时针旋转,使点B 落在l 上的点B '处,点A 落在点A '处,得到A B C ''V 的内心点P '.下列结论正确的是()A .PP '与l 平行,PC 与PB ''平行B .PP '与l 平行,PC 与P B ''不平行C .PP '与l 不平行,PC 与P B ''平行D .PP '与l 不平行,PC 与P B ''不平行6.(2022·河北·模拟预测)如图,已知直线AE ∥BD ,且∠C =15°,∠1=110°,则∠2的度数是()A .45°B .55°C .65°D .75°7.(2022·河北唐山·三模)如图,点O 为ABC 的内心,60B ︒∠=,BC AB ≠,点M ,N 分别为AB ,BC 上的点,且OM ON =.甲、乙、丙三人有如下判断:甲:120MON ∠=︒;乙:四边形OMBN 的面积为定值;丙:当MN BC ⊥时,MON △的周长有最小值.则下列说法正确的是()A .只有甲正确B .只有乙错误C .乙、丙都正确D .只有丙错误8.(2022·河北邯郸·三模)下列尺规作图.能得到∠ADC =2∠B 的是()A .B .C .D .9.(2022·河北保定·模拟预测)如图,在ABC 中,AB AC =,以点A 为圆心,适当长为半径画弧,分别交AB ,AC 于点M ,N ,再分别以点M ,N 为圆心,大于12MN 长为半径画弧,两弧交于点P ,作射线AP ,交BC 于点D ,连接PB ,PC .给出下列说法:①PB PC =;②AD 垂直平分BC ;③BC 平分ABP ∠;④PB AB =.其中正确的有()A .①②B .②③C .③④D .②④10.(2022·河北保定·三模)下列尺规作图,能确定AD 是ABC 的中线的是()A.B.C.D.11.(2022·河北石家庄·三模)已知点A和直线MN,过点A用尺规作出直线MN的垂线,下列作法中错误的是()A.B.C.D.二、填空题12.(2022·河北唐山·一模)A、B、C、D四个车站的位置如图所示.(1)C、D两站的距离为_____;(2)若a=3,C为AD的中点,b=______.13.(2022·河北邢台·一模)为增强学生体质,某学校将“抖空竹”引入阳光体育一小时活动.图1是一位同学抖空竹时的一个瞬间,数学老师把它抽象成图2的数学问题:已知AB∥CD,∠EAB=80°,∠ECD=110°.求∠AEC的度数.小明在解决过程中,过E点作EF∥CD,则可以得到EF∥AB,其理由是_____,根据这个思路可得∠AEC=_____°.14.(2022·河北张家口·一模)如图,Rt ABC 和Rt DCE 是一副含有30°、45︒角相互重叠的三角板,且直角顶点重合,若两直角重叠形成的角为63︒,则ACE ∠=__________︒,图中α∠的度数为__________︒;15.(2022·河北保定·一模)将一副三角尺如图所示叠放在一起,若8cm AB =,则(1)AC =________;(2)阴影部分的面积是________2cm .16.(2022·河北·石家庄市第四十一中学模拟预测)如图,ABC 中,AB AC =,30B ∠=︒,底边上的高1AD =,E 是AB 中点.P 是DC 上一点,连接PE ,将PE 绕点E 逆时针旋转60︒交DA 的延长线于点F .(1)若40AFE ∠=︒,则PED ∠=________︒;(2)若P 为DC 的中点,则AF =________.17.(2022·河北邯郸·二模)如图,在ABC 中,90,2,4ABC AB BC ∠=︒==,将ABC 绕点C 顺时针旋转90︒得到EDC △,连接AE .(1)CAE ∠=__________;(2)若F 点为AE 的中点,则BF =____________.18.(2022·河北承德·一模)一块直角三角板ABC 如图所示放置,90ACB ∠=︒,12cm BC =,8cm AC =,测得BC 边在平面的中心投影11B C 长为24cm ,则11A B 长为________cm ,111A B C △的面积是________2cm .19.(2022·河北承德·一模)如图,如果边长为1的正六边形ABCDEF 绕着顶点A 顺时针旋转60︒后与正六边形AGHMNP 重合.(1)则BD 的长是________;(2)点E 在整个旋转过程中,所经过的路径长为________(结果保留π).20.(2022·河北秦皇岛·一模)如图,在等边三角形ABC 中,点D 、点E 分别在BC ,AC 上,且∠ADE =60°,(1)写出和∠CDE 相等的角:______;(2)若AB =3,BD =1,则CE 长为______.21.(2022·河北·石家庄市第二十八中学一模)如图是数学兴趣小组研究某种在同一平面进行摆动的机械装置的示意图.支架ABC 是BC 在地面上的等边三角形,摆动臂AD 可绕点A 旋转,摆动臂DM 可绕点D 旋转.已知BC =5分米,AD =3分米,DM =1分米.(1)当A ,D ,M 三点在同一直线上时,AM 的长为________分米;(2)当AD ⊥AB 时,S △ACM 的最大值是________平方分米.三、解答题22.(2022·河北·平泉市教育局教研室二模)如图,BD BC =,点E 在BC 上,且BE AC =,DE AB =.(1)求证:ABC EDB ≌;(2)判断AC 和BD 的位置关系,并说明理由.23.(2022·河北保定·三模)如图,点D 在等边ABC 的外部,E 为BC 边上的一点,AD CD =,DE 交AC 于点F ,AB DE ∥.(1)判断CEF △的形状,并说明理由;(2)若10BC =,4CF =,求DE 的长.24.(2022·河北保定·模拟预测)将两个三角形纸板ABC 和DBE 按图所示的方式摆放,连接AD ,DC ,CE .已知DBA CBE ∠=∠,BDE BAC ∠=∠,且6AC DE ==.(1)求证:ABC DBE ≌;(2)若6DA DC ==,且EDB CDB ∠=∠.①求BED ∠的度数;②若EC //AB ,直接写出DEC S 的值.25.(2022·河北·石家庄市第四十一中学模拟预测)如图,在ABC 中,5AB AC ==,8BC =,点D 在BC 边上,以每秒2个单位的速度从点B 向点C 运动,ADE B ∠=∠,DE 交AC 于点E .设运动时间为t .(1)当DE AB ∥时,求证:DE EC =;(2)判断线段AD 和AE 的数量关系,并证明;(3)求AE 的最小值;(4)若DCE 为直角三角形,直接写出t 的值.26.(2022·河北唐山·二模)如图1,在等腰直角三角形ABC 中,∠BAC =90°,点E ,F 分别为AB ,AC 的中点,H 为线段EF 上一动点(不与点E ,F 重合),将线段AH 绕点A 逆时针方向旋转90°得到AG ,连接GC ,HB .(1)证明:△AHB ≌△AGC ;(2)如图2,连接GF ,HG ,HG 交AF 于点Q .①证明:在点H 的运动过程中,总有∠HFG =90°;②若AG =QG ,AB =AC =4,求EH 的长度.27.(2022·河北保定·二模)如图,AOB 中,6OA OB ==,将AOB 绕点O 逆时针旋转得到COD △.OC 与AB 交于点G ,CD 分别交OB 、AB 于点E 、F .(1)A ∠与D ∠的数量关系是:A ∠________D ∠;(2)求证:AOG DOE △≌△;(3)当A ,O ,D 三点共线时,恰好OB CD ⊥,求此时CD 的长.28.(2022·河北保定·二模)两个完全相同的直角三角板按如图1所示方式放置,30DFE ACB ∠=∠=︒,直角顶点A 和D 重合,4AB =,连接BE ,CF .(1)论证:求证:~ABE ACF .(2)探索:如图2,M 、N 为两个三角板斜边上的两动点,且NE BM =,120EAB ∠=︒,当MN 最小时,求AM 的长.(3)拓展:将两个三角板按图3所示方式放置,直角顶点D 在BC 上,两三角板的直角边分别交于P 、Q 两点,当DPQ V 与ABC 相似时,求CD 的长.29.(2022·河北邯郸·二模)如图,点E 是ABC 的边BC 上一点,DAB DEB CAE ∠∠∠==,AD AB =,AB DE 、相交于点F .(1)求证:ADE ABC ≌;(2)若70C ∠= .①当AE BE =时,求DAE ∠的度数;②当ABC 的外心在其内部时,直接写出B Ð的取值范围.30.(2022·河北·石家庄市第二十八中学二模)如图(1)和图(2),在同一平面内,线段10AB =+线段10BC CD DE EA ====,将这五条线段顺次首尾相接.把AB 固定,点D 在AB 上可以左右移动,让AE 绕点A 从AB 开始逆时针旋转角α到某一位置时,BC ,CD 将会跟随到AB 的上方或下方.(1)如图(2),当点C ,D ,E 在同一条直线上时,求证:AD BD =;(2)当α最大时,求cos α;(3)连接CE,则①CE长度的最小值为;α=︒时,求出CE长度的所有可能值.②当旋转角60。
三角形一、选择题1.在直角三角形中,若勾为3,股为4,则弦为()A. 5B. 6C. 7D. 8【答案】A【解析】:∵在直角三角形中,勾为3,股为4,∴弦为故答案为:A.【分析】根据在直角三角形中,勾是最短的直角边,股是长的直角边,弦是斜边,知道勾和股利用勾股定理,即可得出答案。
2.在▱ABCD中,对角线AC,BD相交于点O,AC=8,BD=10,那么BC的取值X围是()A.8<BC<10B.2<BC<18C.1<BC<8D.1<BC<9【答案】D【解析】:如图∵▱ABCD,AC=8,BD=10,∴OB=BD=5,OC=AC=4∴5-4<BC<5+4,即1<BC<9故答案为:D【分析】根据平行四边形的性质求出OB、OC的长,再根据三角形三边关系定理,建立不等式组,求解即可。
3.如图所示,∠A=50°,∠B=20°,∠D=30°,则∠BCD的度数为()A. 80°B. 100°C. 120°D. 140°【答案】B【解析】如图,延长BC交AD于点E,∵∠BCD=∠D+∠DEC,∠DEC=∠A+∠B,∴∠BCD=∠A+∠B+∠D,∵∠A=50°,∠B=20°,∠D=30°,∴∠BCD=50°+20°+30°=100°,故答案为:B.【分析】延长BC交AD 于点E,根据三角形的一个外角等于和它不相邻的两个内角的和可得∠BCD=∠D+∠DEC,∠DEC=∠A+∠B,所以∠BCD=∠A+∠B+∠D,由已知可得∠BCD=50°+20°+30°=100°。
4.如图,BE∥AF,点D是AB上一点,且DC⊥BE于点C,若∠A=35°,则∠ADC的度数()A. 105°B. 115°C. 125°D. 135°【答案】C【解析】:∵BE∥AF,∴∠B=∠A=35°.∵DC⊥BE,∴∠DCB=90°,∴∠ADC=90°+35°=125°.故答案为:C.【分析】由平行线的性质可得∠B=∠A=35°,根据三角形的一个外角等于和它不相邻的两个内角的和可得∠ADC=90°+35°=125°。
中考数学总复习《三角形》专题训练(附带答案)学校:___________班级:___________姓名:___________考号:___________一、解答题:1.如图,在矩形ABCD中BE⊥AC,DF⊥AC垂足分别为E、F.求证:AF=CE.2.如图,CD是五边形ABCDE的一边,若AM垂直平分CD,垂足为M,且______,______,则______.给出下列信息:①AM平分∠BAE②AB=AE③BC=DE.请从中选择适当信息,将对应的序号填到横线上方,使之构成真命题,补全图形,并加以证明.3.如图,B是AC的中点,点D、E在AC同侧AE=BD,BE=CD.(1)求证:△ABE≌△BCD;(2)连接DE,求证:四边形BCDE为平行四边形.4.如图,AC和BD相交于点O,OA=OC,OB=OD.(1)求证:∠A=∠C;(2)求证:AB//CD.5.如图A、D、B、F在一条直线上DE//CB,BC=DE,AD=BF.(1)求证:△ABC≌△FDE;(2)连接AE、CF,求证四边形AEFC为平行四边形.6.如图,在▱ABCD中,点E、F在对角线BD上,且BE=DF.求证:(1)△ABE≌△CDF;(2)四边形AECF是平行四边形.7.已知:如图,点D为线段BC上一点BD=AC,∠E=∠ABC,DE//AC.求证:DE=BC.8.已知:如图,点D为线段BC上一点BD=AC,∠E=∠ABC,DE//AC.求证:DE=BC.9.如图,在Rt△ABC中∠C=90°.(1)尺规作图:作⊙O,使得圆心O在边AB上,⊙O过点B且与边AC相切于点D(请保留作图痕迹,标明相应的字母,不写作法);(2)在(1)的条件下若∠ABC=60°AB=4求⊙O与△ABC重叠部分的面积.10.如图点D E分别在AB AC上∠ADC=∠AEB=90°BE CD相交于点O OB=OC.求证:∠1=∠2.小虎同学的证明过程如下:证明:∵∠ADC=∠AEB=90°∴∠DOB+∠B=∠EOC+∠C=90°.∵∠DOB=∠EOC∴∠B=∠C.……第一步又OA=OA OB=OC∴△ABO≌△ACO.……第二步∴∠1=∠2.……第三步(1)小虎同学的证明过程中第______步出现错误;(2)请写出正确的证明过程.11.如图在▱ABCD中BE DG分别平分∠ABC∠ADC交AC于点E G.(1)求证:BE//DG BE=DG;(2)过点E作EF⊥AB垂足为F.若▱ABCD的周长为56EF=6求△ABC的面积.12.在四边形ABCD中O是边BC上的一点.若△OAB≌△OCD则点O叫做该四边形的“等形点”.(1)正方形______“等形点”(填“存在”或“不存在”);(2)如图在四边形ABCD中边BC上的点O是四边形ABCD的“等形点”.已知CD=4√ 2OA=5 BC=12连接AC求AC的长;(3)在四边形EFGH中EH//FG.若边FG上的点O是四边形EFGH的“等形点”求OF的值.OG13.如图将矩形ABCD沿对角线AC折叠点B的对应点为点E AE与CD交于点F.(1)求证:△DAF≌△ECF;(2)若∠FCE=40°求∠CAB的度数.14.在△ABC中CD平分∠ACB交AB于点D AH是△ABC边BC上的高且∠ACB=70°∠ADC=80°求:(1)直接写出∠BAC=______.(2)求∠BAH的度数.15.如图点A在射线OX上OA=a.如果OA绕点O按逆时针方向旋转n°(0<n≤360)到OA′那么点A′的位置可以用(a,n°)表示.(1)按上述表示方法若a=3n=37则点A′的位置可以表示为______;(2)在(1)的条件下已知点B的位置用(3,74°)表示连接A′A A′B.求证:A′A=A′B.16.如图在△ABC中AB=2∠ACB=60°DC⊥BC DC=BC则AD的长的最大值为.17.如图B E C F是直线l上的四点AB=DE AC=DF BE=CF.(1)求证:△ABC≌△DEF;(2)点P Q分别是△ABC△DEF的内心.①用直尺和圆规作出点Q(保留作图痕迹不要求写作法);②连接PQ则PQ与BE的关系是______.18.如图在△ABC中∠BAC=90°AB=AC=12点P在边AB上D E分别为BC PC的中点连接DE.过点E作BC的垂线与BC AC分别交于F G两点.连接DG交PC于点H.(1)∠EDC的度数为______°;(2)连接PG求△APG的面积的最大值;(3)PE与DG存在怎样的位置关系与数量关系?请说明理由;(4)求CH的最大值.CE19.如图四边形ABCD为平行四边形延长AD到点E使DE=AD且BE⊥DC.(1)求证:四边形DBCE为菱形;(2)若△DBC是边长为2的等边三角形点P M N分别在线段BE BC CE上运动求PM+PN的最小值.20.(1)如图1在△ABC中∠ACB=2∠B CD平分∠ACB交AB于点D DE//AC交BC于点E.①若DE=1BD=32求BC的长;②试探究ABAD −BEDE是否为定值.如果是请求出这个定值;如果不是请说明理由.(2)如图2∠CBG和∠BCF是△ABC的2个外角∠BCF=2∠CBG CD平分∠BCF交AB的延长线于点D DE//AC交CB的延长线于点E.记△ACD的面积为S1△CDE的面积为S2△BDE的面积为S3.若S1⋅S3=916S22求cos∠CBD的值.参考答案和解析1.【答案】证明:∵四边形ABCD是矩形∴AB=CD AB//CD∴∠BAE=∠DCF.又BE⊥AC DF⊥AC∴∠AEB=∠CFD=90°.在△ABE与△CDF中{∠AEB=∠CFD ∠BAE=∠DCF AB=CD∴△ABE≌△CDF(AAS)∴AE=CF∴AE+EF=CF+EF即AF=CE.【解析】由全等三角形的判定定理AAS证得△ABE≌△CDF可得AE=CF即可解决问题.本题考查了全等三角形的判定与性质熟练掌握三角形全等的判定方法并准确识图是解题的关键.2.【答案】②③①证明:根据题意补全图形如图所示:连接AC AD∵AM垂直平分CD∴CM=DM AC=AD(线段垂直平分线上的点到线段两个端点的距离相等)在△ACM与△ADM中{AM=AM AC=AD CM=DM∴△ACM≌△ADM(SSS)∴∠CAM=∠DAM在△ABC与△AED中{AB=AE AC=AD BC=ED∴△ABC≌△AED(SSS)∴∠BAC=∠EAD又∵∠CAM=∠DAM∴∠BAC+∠CAM=∠EAD+∠DAM即∠BAM=∠EAM=12∠BAE∴AM平分∠BAE.【解析】根据题意补全图形连接AC AD根据线段垂直平分线的性质:线段垂直平分线上的点到线段两个端点的距离相等可得出AC=AD再求证三角形全等得出角相等求得∠BAM=∠EAM进而得出结论AM平分∠BAE.本题主要考查了线段垂直平分线的性质以及三角形全等的判定熟练掌握线段垂直平分线的性质是本题的解题关键.3.【答案】证明:(1)∵B是AC的中点∴AB=BC在△ABE与△BCD中{AE=BD BE=CD AB=BC,∴△ABE≌△BCD(SSS);(2)∵△ABE≌△BCD∴∠ABE=∠BCD∴BE//CD∵BE=CD∴四边形BCDE为平行四边形.【解析】(1)根据线段中点的定义得到AB=BC根据全等三角形的判定定理即可得到结论;(2)根据全等三角形的性质得到∠ABE=∠BCD根据平行线的判定定理得到BE//CD根据平行四边形的判定定理即可得到结论.本题考查了全等三角形的判定和性质平行四边形的判定熟练掌握全等三角形的判定和性质定理是解题的关键.4.【答案】证明:(1)在△AOB和△COD中{OA=OC∠AOB=∠COD OB=OD,∴△AOB≌△COD(SAS)∴∠A=∠C;(2)由(1)得∠A=∠C∴AB//CD.【解析】此题主要考查学生对全等三角形的判定和性质及平行线的判定的理解及运用.(1)由已知利用SAS判定△AOB≌△COD(SAS)全等三角形的对应角相等即∠A=∠C(2)利用内错角相等两直线平行即可推出AB//CD.5.【答案】证明:(1)∵AD=BF∴AD+DB=DB+BF∴AB=FD∵DE//CB∴∠ABC=∠FDE∵BC=DE∴△ABC≌△FDE(SAS)(2)如图:由(1)知△ABC≌△FDE∴∠CAB=∠EFD AC=EF∴AC//EF∴四边形ABCD为平行四边形.【解析】(1)由SAS可证△ABC≌△FDE;(2)结合(1)用一组对边平行且相等的四边形是平行四边形可解答.本题考查全等三角形判定与性质和平行四边形判定解题的关键是掌握全等三角形判定定理和平行四边形判定定理.6.【答案】证明:(1)∵四边形ABCD为平行四边形∴AB=CD AB//CD∴∠ABD=∠CDB在△ABE和△CDF中{AB=CD∠ABE=∠CDF BE=DF∴△ABE≌△CDF(SAS);(2)由(1)可知△ABE≌△CDF∴AE=CF∠AEB=∠CFD∴∠AEF=∠CFE∴AE//CF∵AE=CF AE//CF∴四边形AECF是平行四边形.【解析】本题考查的是平行四边形的判定和性质全等三角形的判定和性质掌握平行四边形的对边平行且相等一组对边平行且相等的四边形是平行四边形是解题的关键.(1)根据平行四边形的性质得到AB=CD AB//CD根据平行线的性质得到∠ABD=∠CDB利用SAS 证明△ABE≌△CDF;(2)根据全等三角形的性质得到AE=CF∠AEB=∠CFD推出∠AEF=∠CFE根据平行线的判定定理证明AE//CF再根据平行四边形的判定定理证明结论.7.【答案】证明:∵DE//AC∴∠EDB=∠C在△BDE和△ACB中{∠E=∠ABC ∠EDB=∠C BD=AC∴△BDE≌△ACB(AAS)∴DE=BC.【解析】由平行线的性质得∠EDB=∠C再证△BDE≌△ACB(AAS)即可得出结论.本题考查了全等三角形的判定与性质以及平行线的性质等知识熟练掌握全等三角形的判定与性质是解题的关键.8.【答案】证明:∵DE//AC∴∠EDB=∠C在△BDE和△ACB中{∠E=∠ABC ∠EDB=∠C BD=AC∴△BDE≌△ACB(AAS)∴DE=BC.【解析】由平行线的性质得∠EDB=∠C再证△BDE≌△ACB(AAS)即可得出结论.本题考查了全等三角形的判定与性质以及平行线的性质等知识熟练掌握全等三角形的判定与性质是解题的关键.9.【答案】解:(1)如图先作∠ABC的平分线交AC于点D再过D点作AC的垂线交AB于O点然后以O 点为圆心OB为半径作⊙O则⊙O为所作;(2)⊙O交BC于E点交AB于F点连接OE如图设⊙O的半径为r则OB=r∵AC为⊙O的切线∴OD⊥AC OD=r∵∠C=90°.∠ABC=60°∴∠A=30°∴OA=2r∵AB=4∴2r+r=4解得r=43∵OB=OE∠OBE=60°∴△OBE为等边三角形∴∠BOE=60°∴∠EOF=120°∴⊙O与△ABC重叠部分的面积=S扇形EOF +S△OBE=120×π×(43)2360+12·sin60°×(43)2=1627π+4√ 39.【解析】(1)如图先作∠ABC的平分线交AC于点D再作DO⊥AC交AB于O点则以O点为圆心OB 为半径的圆满足条件;(2)⊙O交BC于E点交AB于F点连接OE如图设⊙O的半径为r则OB=r根据切线的性质得到OD⊥AC再利用含30度角的直角三角形三边的关系得到OA=2r接着求出r=43然后根据扇形的面积公式利用⊙O与△ABC重叠部分的面积=S扇形EOF+S△OBE进行计算.本题考查了作图−复杂作图:解决此类题目的关键是熟悉基本几何图形的性质结合几何图形的基本性质把复杂作图拆解成基本作图逐步操作.也考查了切线的判定与性质和扇形面积的计算.10.【答案】(1)二;(2)证明:∵∠ADC=∠AEB=90°∴∠BDC=∠CEB=90°在△DOB和△EOC中{∠BDO=∠CEO ∠DOB=∠EOC OB=OC∴△DOB≌△EOC(AAS)∴OD=OE在Rt△ADO和Rt△AEO中{OD=OEOA=OA∴Rt△ADO≌Rt△AEO(HL)∴∠1=∠2.【解析】(1)解:小虎同学的证明过程中第二步出现错误故答案为:二;(1)根据全等三角形的判定定理判断;(2)证明△DOB≌△EOC根据全等三角形的性质得到OD=OE再证明Rt△ADO≌Rt△AEO得到∠1=∠2.本题考查的是全等三角形的判定和性质掌握三角形全等的判定定理是解题的关键.11.【答案】(1)证明:在▱ABCD中AD//BC∠ABC=∠ADC∴∠DAC=∠BCA AD=BC∵BE DG分别平分∠ABC∠ADC∴∠ADG=∠CBE∵∠DGE=∠DAC+∠ADG∠BEG=∠BCA+∠CBE ∴∠DGE=∠BEG∴BE//DG;在△ADG和△CBE中{∠DAG=∠BCE AD=CB∠ADG=∠CBE,∴△ADG≌△CBE(ASA)∴BE=DG;(2)解:过E点作EH⊥BC于H∵BE平分∠ABC EF⊥AB ∴EH=EF=6∵▱ABCD的周长为56∴AB+BC=28∴S△ABC=12AB⋅EF+12BC⋅EH=12EF(AB+BC)=12×6×28=84.【解析】本题主要考查平行四边形的性质角平分线的定义与性质三角形的面积全等三角形的判定与性质掌握平行四边形的性质是解题的关键.(1)根据平行四边形的性质可得∠DAC=∠BCA AD=BC由角平分线的定义及三角形外角的性质可得∠DGE=∠BEG进而可证明BE//DG;利用ASA证明△ADG≌△CBE可得BE=DG;(2)过E点作EH⊥BC于H由角平分线的性质可求解EH=EF=6根据平行四边形的性质可求解AB+ BC=28再利用三角形的面积公式计算可求解.12.【答案】解:(1)不存在;(2)作AH⊥BO于H∵边BC上的点O是四边形ABCD的“等形点”∴△OAB≌△OCD∴AB=CD=4√ 2OA=OC=5∵BC=12∴BO=7设OH=x则BH=7−x由勾股定理得(4√ 2)2−(7−x)2=52−x2解得x=3∴OH=3∴AH=4∴CH=8在Rt△CHA中AC=√ AH2+CH2=√ 42+82=4√ 5;(3)如图∵边FG上的点O是四边形EFGH的“等形点”∴△OEF≌△OGH∴∠EOF=∠HOG OE=OG∠OGH=∠OEF∵EH//FG∴∠HEO=∠EOF∠EHO=∠HOG∴∠HEO=∠EHO∴OE=OH∴OH=OG∴OE=OF∴OFOG=1.【解析】本题是新定义题主要考查了全等三角形的性质正方形的性质勾股定理平行线的性质等知识理解新定义并能熟练掌握全等三角形的性质是解题的关键.(1)根据“等形点”的定义可知△OAB≌△OCD则∠OAB=∠C=90°而O是边BC上的一点.从而得出正方形不存在“等形点”;(2)作AH⊥BO于H由△OAB≌△OCD得AB=CD=4√ 2OA=OC=5设OH=x则BH= 7−x由勾股定理得(4√ 2)2−(7−x)2=52−x2求出x的值再利用勾股定理求出AC的长即可;(3)根据“等形点”的定义可得△OEF≌△OGH则∠EOF=∠HOG OE=OG∠OGH=∠OEF再由平行线性质得OE=OH从而推出OE=OH=OG从而解决问题.13.【答案】解:(1)证明:已知矩形ABCD沿对角线AC折叠则AD=BC=EC∠D=∠B=∠E=90°在△DAF和△ECF中{∠DFA=∠EFC ∠D=∠EDA=EC∴△DAF≌△ECF(AAS);(2)∵△DAF≌△ECF∴∠DAF=∠ECF=40°∵四边形ABCD是矩形∴∠DAB=90°∴∠EAB=∠DAB−∠DAF=90°−40°=50°∵∠EAC=∠CAB∴∠CAB=25°.【解析】本题考查矩形的性质全等三角形的判定和性质翻折变换等知识解题的关键是正确寻找全等三角形解决问题属于中考常考题型.(1)根据AAS证明三角形全等即可;(2)利用全等三角形的性质求解即可.14.【答案】解:(1)65°;(2)由(1)知∠BAC=65°∵AH⊥BC∴∠AHC=90°∴∠HAC=90°−∠ACB=90°−70°=20°∴∠BAH=∠BAC−∠HAC=65°−20°=45°.【解析】解:(1)∵CD平分∠ACB∠ACB=70°∴∠ACD=12∠ACB=35°∵∠ADC=80°∴∠BAC=180°−∠ACD−∠ADC=180°−35°−80°=65°故答案为:65°;(2)见答案.(1)根据角平分线的性质可得∠ACD=35°再根据三角形的内角和是180°即可求解;(2)由直角三角形的两锐角互余即可求解∠HAC根据∠BAH=∠BAC−∠HAC即可得解.本题考查三角形内角和定理角平分线的定义三角形的高的性质等知识解题的关键是熟练掌握角形内角和定理角平分线的定义基本知识属于中考常考题型.15.【答案】解:(1)(3,37°);(2)证明:如图:∵A′(3,37°)B(3,74°)∴∠AOA′=37°∠AOB=74°OA=OB=3∴∠A′OB=∠AOB−∠AOA′=74°−37°=37°=∠AOA′在△AOA′和△BOA′中{OA=OB∠AOA′=∠BOA′OA′=OA′∴△AOA′≌△BOA′(SAS)∴A′A=A′B.【解析】【分析】本题考查全等三角形的判定与性质新定义题目旋转的性质理解题意理解新定义是解题的关键.(1)根据点的位置定义即可得出答案;(2)画出图形证明△AOA′≌△BOA′(SAS)即可由全等三角形的性质得出结论.【解答】(1)根据题意可得:若a=3n=37则点A′的位置可以表示为(3,37°);故答案为:(3,37°);16.【答案】√ 6+√ 2【解析】【分析】此题主要考查等腰直角三角形的性质含30°角的直角三角形的性质和非负数的性质作DG⊥AC交AC的延长线于G构造含30°角的直角三角形设DC=BC=x AC=y(x>0,y>0)则DG=12xCG=√ 32x根据勾股定理表示出AD2再利用(x−y)2⩾0得到xy⩽x2+y22代入根据当x=y时AD2有最大值求解【解答】解:如图作DG⊥AC交AC的延长线于G则∠G=90°∵DC⊥BC∴∠BCD=90°∵∠ACB=60°∴∠DCG=30°设DC=BC=x AC=y(x>0,y>0)则DG=12x CG=√ 32x在Rt△ADG中AD2=AG2+DG2=(y+√ 32x)2+(12x)2=x2+y2+√ 3xy∵(x−y)2⩾0∴xy⩽x2+y22∴AD2=x2+y2+√ 3xy⩽x2+y2+√ 3·x2+y22当x=y时AD2有最大值为x2+y2+√ 32(x2+y2)当x=y时即AC=BC时∵∠ACB=60°∴AC=BC=AB=2∴x=y=2∴AD2=x2+y2+√ 32(x2+y2)=4+4+√ 32×(4+4)=(√ 6+√ 2)2∴AD=√ 6+√ 217.【答案】(1)证明:∵BE=CF ∴BE+EC=CF+EC∴BC=EF在△ABC和△DEF中{AB=DE BC=EF AC=DF∴△ABC≌△DEF(SSS);(2)解:①如图点Q即为所求;②PQ//BE PQ=BE【解析】(2)②PQ与BE的关系是:PQ//BE PQ=BE理由如下:∵△ABC≌△DEF∴∠ABC=∠DEF∵点P Q分别是△ABC△DEF的内心∴BP平分∠ABC EQ平分∠DEF∴∠PBE=12∠ABC∠QEF=12∠DEF∴∠PBE=∠QEF∴PB//QE∵△ABC≌△DEF∴∠A=∠D在△ABG和△DEH中{∠ABG=∠DEH AB=DE∠A=∠D,∴△ABG≌△DEH(ASA)∴BG=EH∵点P Q分别是△ABC△DEF的内心∴BP=EQ∴四边形PQEB是平行四边形∴PQ//BE PQ=BE.故答案为:PQ//BE PQ=BE.(1)利用SSS即可证明△ABC≌△DEF;(2)①根据三角形的内心定义和角平分线的画法即可解决问题;②根据三角形的内心定义证明四边形PQEB是平行四边形即可解决问题.本题考查了作图−复杂作图全等三角形的判定与性质三角形内切圆与内心解决本题的关键是掌握内心定义.18.【答案】解:(1)45;(2)如图连接PG∵∠BAC=90°AB=AC=12∴∠ABC=∠ACB=45°BC=12√ 2设AP=x则BP=12−x∵DE=12BP∴DE=6− x2∵GF⊥BC∠EDC=45°∴∠EDC=∠DEF=45°∴DF=EF=√ 22DE=3√ 2−√ 24x∵点D是BC的中点∴BD=CD=6√ 2∴CF=CD−DF=3√ 2+√ 24x ∵GF⊥BC∠ACB=45°∴∠ACB=∠CGF=45°∴GF=FC∴GC=√ 2FC=6+ x2∴AG=AC−CG=6−x2∴S△APG=12·AP·AG=12x·(6−x2)=−14(x−6)2+9∴当x=6时△APG的面积的最大值为9;(3)PE⊥DG DG=PE理由如下:在△CEF和△GDF中{EF=DF∠CFE=∠GFD=90°CF=GF,∴△CEF≌△GDF(SAS)∴CE=GD∠DGF=∠ECF∵∠DGF+∠GDF=90°∴∠GDF+∠ECF=90°∴∠DHC=90°∴DG⊥PE∵点E是PC的中点∴PE=EC∴DG=PE;(4)如图以DG为斜边构造等腰直角△DOG作OJ⊥DG于J.∵∠ACB=45∘=12∠GOD则点C D G均在⊙O上设⊙O的半径为r则OC=OD=OG=r DG=√ 2r OJ=12DG=√ 22r由(3)得△CEF≌△GDF ∴DG=CE=√ 2r.∵CH⊥DG∴CH≤CO+OJ∴CH CE =CHDG≤CO+OJDG=r+√ 22r√ 2r=1+√ 22即CHCE 的最大值为1+√ 22.【解析】【分析】本题主要考查了等腰直角三角形圆的构造三角形的中位线定理全等三角形的性质及判定方法(1)由等腰三角形的性质可得∠ABC=∠ACB=45°由三角形中位线定理可得DE//AB可求解;(2)设AP=x由等腰直角三角形的性质和三角形中位线定理可求AG的长由三角形面积公式和二次函数的性质可求解;(3)由“SAS”可证△CEF≌△GDF可得CE=DG∠DGF=∠ECF可求解;(4)以DG为斜边构造等腰直角△DOG可得点C D G均在圆上然后利用全等三角形的性质得出CE=DG利用“垂线段最短”得出CH≤CO+OJ然后分别求出各线段长度最终得到CHCE的最大值.【解答】解:(1)∵∠BAC=90°AB=AC=12∴∠ABC=∠ACB=45°BC=12√ 2∵D E分别为BC PC的中点∴DE//AB DE=12BP∴∠EDC=∠ABC=45°故答案为:45;19.【答案】(1)证明:∵四边形ABCD是平行四边形∴AD//BC AD=BC∵DE=AD∴DE=BC∵E在AD的延长线上∴DE//BC∴四边形DBCE是平行四边形∵BE⊥DC∴四边形DBCE是菱形;(2)解:作N关于BE的对称点N′过D作DH⊥BC于H如图:由菱形的对称性知点N关于BE的对称点N′在DE上∴PM+PN=PM+PN′∴当P M N′共线时PM+PN′=MN′=PM+PN∵DE//BC∴MN′的最小值为平行线间的距离DH的长即PM+PN的最小值为DH的长在Rt△DBH中∠DBC=60°DB=2∴∠BDH=30°∴BH=1∴DH=√ 3∴PM+PN的最小值为√ 3.【解析】本题考查平行四边形性质和判定涉及菱形的判定等边三角形性质及应用对称变换等解题的关键是正确做出对称点.(1)先证明四边形DBCE是平行四边形再由BE⊥DC得四边形DBCE是菱形;(2)作N关于BE的对称点N′过D作DH⊥BC于H由菱形的对称性知点N关于BE的对称点N′在DE上可得PM+PN=PM+PN′即知MN′的最小值为平行线间的距离DH的长即PM+PN的最小值为DH 的长在Rt△DBH中可得DH=√ 3即可得出答案.20.【答案】解:(1)①∵CD平分∠ACB∴∠ACD=∠DCB=1∠ACB2∴∠ACD=∠DCB=∠B∴CD=BD=32∵DE//AC∴∠ACD=∠EDC∴∠EDC=∠DCB=∠B ∴CE=DE=1∴△CED∽△CDB∴CE CD =CDCB∴132=32CB解得BC=94;②∵DE//AC∴AB AD =BCCE同①可得CE=DE∴AB AD =BCDE∴AB AD −BEDE=BCDE−BEDE=CEDE=1∴AB AD −BEDE是定值定值为1;(2)∵DE//AC∴S1 S2=ACDE=BCBE∵S3 S2=BECE∴S1⋅S3S22=BCCE又∵S1⋅S3=916S22∴BC CE =916设BC=9x则CE=16x ∵CD平分∠BCF∴∠ECD=∠FCD=12∠BCF∴∠ECD=∠FCD=∠CBD ∴BD=CD∵DE//AC∴∠EDC=∠FCD∴∠EDC=∠CBD=∠ECD ∴CE=DE∵∠DCB=∠ECD∴△CDB∽△CED∴CD CE =CBCD∴CD2=CB⋅CE=144x2∴CD=12x过点D作DH⊥BC于点H ∵BD=CD=12x∴BH=12BC=92x∴cos∠CBD=BHBD =92x12x=38.【解析】本题考查了角平分线的定义相似三角形的判定与性质等腰三角形的性质平行线的性质锐角三角函数的定义熟练掌握相似三角形的判定与性质是解题的关键.(1)①证出∠ACD=∠DCB=∠B由等腰三角形的判定得出CD=BD=32求出CE=DE=1证明△CED∽△CDB由相似三角形的性质可求出BC的长;②由平行线分线段成比例定理得出ABAD =BCCE同①可得CE=DE,证出ABAD=BCDE则可得出答案;(2)证出S1⋅S3S22=BCCE由题意可得出BCCE=916设BC=9x则CE=6x,证明△CDB∽△CED由相似三角形的性质得出CDCE =CBCD,求出CD=12x,过点D作DH⊥BC于点H,则BH=12BC=92x,根据锐角三角函数的定义可得出答案.。
初三数学中考复习三角形专项复习练习含解析1. 如图,图中以AB为边的三角形的个数共有( B )A.1个B.2个C.3个D.4个2. 如图所示,∠BAC的对边是( C )A.BD B.DC C.BC D.AD3. 若△ABC三条边分别为m,n,p,且|m-n|+(n-p)2=0,则那个三角形为( B )A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形4. 如图,D为AC上一点,AD=DC,E为BC上一点,BE=EC,则下列说法不正确的是( D )A.DE是△BDC的中线B.BD是△ABC的中线C.D为AC中点,E为BC中点D.∠C的对边是DE5. 如图,在△ABC中,∠B=67°,∠C=33°,AD是△ABC的角平分线,则∠CAD的度数为( A )A.40°B.45°C.80°D.85°6. 如图,AC⊥BC,CD⊥AB,DE⊥BC,垂足分别为C,D,E.则下列说法不正确的是( C )A.AC是△ABC的高B.DE是△BCD的高C.DE是△ABE的高D.AD是△ACD的高7. 若△ABC和△DEF全等,A和E,B和D分别是对应顶点,则下列结论错误的是( A )A.BC=EF B.∠B=∠D C.∠C=∠F D.AC=EF 8.如图,在△ABC与△DEF中,给出以下六个条件:①AB=DE;②BC=EF;③AC=DF;④∠A=∠D;⑤∠B=∠E;⑥∠C=∠F.以其中三个条件作为已知,不能判定△ABC与△DEF全等的是( D )A.①②⑤B.①②③C.①④⑥D.②③④,第7题图),第8题图),第10题图)9.如图,△ABE和△ADC是△ABC分别沿着AB,AC边翻折180°形成的,若∠1∶∠2∶∠3=28∶5∶3,则∠α的度数为( A ) A.80°B.100°C.60°D.45°10.已知三角形两边的长分别是3和8,则此三角形的周长取值范畴是( C )A.3<C<8 B.5<C<11 C.16<C<22 D.11<C<1 611.如图,在△ABC中,E是BC上的一点,EC=2BE,点D是AC 的中点,设△ABC,△ADF,△BEF的面积分别为S△ABC,S△ADF,S △BEF,且S△ABC=12,则S△ADF-S△BEF等于( B )A.1 B.2 C.3 D.412.假如一个三角形中任意两个内角的和大于第三个内角,那个三角形是__锐角__三角形.13. 如图,已知△ABC的面积是36 cm2,BD=4 cm,DC=8 cm,则阴影部分的面积是__12__cm2.14. 如图,在△ABC中,∠B=∠C=50°,BD=CF,BE=CD,则∠EDF的度数是__50°__.15.如图,点A在线段ED上,AC=CD,BC=CE,∠1=∠2,假如AB=7,AD=5,那么AE=__2__.16. 你一定玩过跷跷板吧!如图是小明和小刚玩跷跷板的示意图,横板绕它的中点O上下转动,立柱OC与地面垂直.当一方着地时,另一方上升到最高点.问:在上下转动横板的过程中,两人上升的最大高度AA′,BB′的数量关系是___相等____.17. 等腰三角形的周长为20 cm,其中一边长为6 cm,则另两边长分别为_____6cm,8cm或7cm,7cm ____.18. 如图,在△ABC中,AD⊥BC,垂足为D,E为BD上的一点,E G∥AD,分别交AB和CA的延长线于点F,G,∠AFG=∠G.(1)试说明△ABD≌△ACD;(2)若∠B=40°,求∠G和∠FAG的大小.解:(1)由ASA可证△ABD≌△ACD(2)∠G=50°,∠FAG=80°19.如图,沿AC方向开山修路,为了加快施工进度,要在山的另一边同时施工,工人师傅在AC上取一点B,在小山外取一点D,连接BD,延长使DF=BD,过F点作AB的平行线段MF,连接MD并延长,在其延长线上取一点E,使DE=DM,在E点开工就能使A,C,E成一条直线,你明白其中的道理吗?解:∵BD=DF,DE=DM,∠BDE=∠FDM,∴△BDE≌△FDM,故∠BEM=∠DMF,∴BE∥MF,又∵AB∥MF,依照过直线外一点有且只有一条直线与已知直线平行,∴A,C,E在一条直线上20.以点A为顶点作两个等腰直角三角形(△ABC,△ADE),如图①所示放置,使得一直角边重合,连接BD,CE.(1)试说明:BD=CE;(2)延长BD交CE于点F,求∠BFC的度数;(3)若如图②放置,上面的结论还成立吗?请简单说明理由.解:(1)易得△ADB≌△AEC(SAS),∴BD=CE(2)∵△ADB≌△AEC,∴∠DBA=∠ECA,∴∠BFC=180°-∠AC E-∠CDF=180°-∠DBA-∠BDA=∠DAB=90°(3)同样成立,BD=CE且∠BFC=90°.理由∵△ABC,△ADE是等腰直角三角形,∴AB=AC,AD=AE,且∠BAC=∠EAD,∴∠BAD=∠C AE,∴△ADB≌△AEC,∴BD=CE,∠ABF=∠ACF,∴∠BFC=∠BA C=90°。
几何初步及三角形相关计算复习考点攻略考点一直线、射线、线段相关概念和性质1.直线的性质(1)两条直线相交.只有一个交点;(2)经过两点有且只有一条直线.即两点确定一条直线;(3)直线的基本事实:经过两点有且只有一条直线.2.线段的性质:两点确定一条直线.两点之间.线段最短.两点间线段的长度叫两点间的距离.3.线段的中点性质:若C是线段AB中点.则AC=BC=12AB;AB=2AC=2BC.4.两条直线的位置关系在同一平面内.两条直线只有两种位置关系:平行和相交.5.垂线的性质(1)两条直线相交所构成的四个角中有一个角是直角.则这两条直线互相垂直.其中一条直线叫做另一条直线的垂线;(2)①经过一点有且只有一条直线与已知直线垂直;②直线外一点与直线上各点连接的所有线段中.垂线段最短.6.点到直线的距离:从直线外一点向已知直线作垂线.这一点和垂足之间线段的长度叫做点到直线的距离.7. 角:有公共端点的两条射线组成的图形.8.角平分线(1)定义:在角的内部.以角的顶点为端点把这个角分成两个相等的角的射线(2)角平分线的性质:①若OC是∠AOB的平分线.则∠AOC=∠BOC=12∠AOB.∠AOB=2∠AOC =2∠BOC.②角平分线上的点到角两边的距离相等。
9.度、分、秒的运算方法1°=60′.1′=60″.1°=3600″.1周角=2平角=4直角=360°.10.余角和补角(1)余角:∠1+∠2=90°⇔∠1与∠2互为余角;(2)补角:∠1+∠2=180°⇔∠1与∠2互为补角.(3)性质:同角(或等角)的余角相等;同角(或等角)的补角相等.11.方向角和方位角在描述方位角时.一般应先说北或南.再说偏西或偏东多少度.而不说成东偏北(南)多少度或西偏北(南)多少度.当方向角在45°方向上时.又常常说成东南、东北、西南、西北方向.【例1】如图.在数轴上有A、B、C、D四个整数点(即各点均表示整数).且2AB=BC=3CD.若A、D两点表示的数分别为-5和6.且AC的中点为E.BD的中点为M.BC之间距点B的距离为13BC的点N.则该数轴的原点为A.点E B.点FC.点M D.点N【例2】如图.∠AOB=180°.∠BOC=80°.OD平分∠AOC.∠DOE=3∠COE.求∠BOE.【例3】如图.要修建一条公路.从A村沿北偏东75°方向到B村.从B村沿北偏西25°方向到C 村.若要保持公路CE与AB的方向一致.则∠ECB的度数为A.80°B.90°C.100°D.105°【例4】计算:18°30′=__________°考点二立体图形1.常见的立体图形有:球、柱体和锥体.圆柱和棱柱的区别:圆柱的底面是圆.棱柱的底面是多边形;圆柱的侧面是曲面.棱柱的侧面是四边形;圆锥和棱锥的区别:圆锥的底面是圆.侧面是曲面;棱锥的底面是多边形.侧面是三角形.2.点动成线.线动成面.面动成体.线没有粗细.点没有大小.3.设立体图形的面数为F.顶点数为V.棱数为E.则F+V-E=2.4.正方体的平面展开图有如下11种类型:【例5】如图是一个正方体包装盒的表面积展开图.若在其中的三个正方形A、B、C内分别填上适当的数.使得将这个表面展开图沿虚线折成正方体后.相对面上的两数互为相反数.则填在A、B、C内的三个数依次为A.0.-2.1 B.0.1.2C.1.0.-2 D.-2.0.1考点三三角形的基本概念(1)三角形的概念:由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。
第15讲三角形的基础知识1.(2015·宜昌)下列图形具有稳定性的是( D )A.正方形 B.矩形 C.平行四边形 D.直角三角形2.(2016·贵港)在△ABC中,若∠A=95°,∠B=40°,则∠C的度数为( C )A.35° B.40° C.45° D.50°3.(2016·岳阳)下列长度的三根小木棒能构成三角形的是( D )A.2 cm,3 cm,5 cm B.7 cm,4 cm,2 cmC.3 cm,4 cm,8 cm D.3 cm,3 cm,4 cm4.(2016·鄂州)如图所示,AB∥CD,EF⊥BD,垂足为E,∠1=50°,则∠2的度数为( B ) A.50° B.40° C.45° D.25°5.(2016·乐山)如图,CE是△ABC的外角∠ACD的平分线,若∠B=35°,∠ACE=60°,则∠A=( C ) A.35° B.95° C.85° D.75°6.(2015·绵阳)如图,在△ABC中,∠B、∠C的平分线BE、CD相交于点F,∠ABC=42°,∠A=60°,则∠BFC=( C )A.118° B.119° C.120° D.121°7.(2016·毕节)如图,直线a∥b,∠1=85°,∠2=35°,则∠3=( C )A.85° B.60° C.50° D.35°8.(2015·衡阳)如图所示,小明为了测量学校里一池塘的宽度AB,选取可以直达A、B两点的点O处,再分别取OA、OB的中点M、N,量得MN=20 m,则池塘的宽度AB为40m.9.(2016·淮安)已知一个等腰三角形的两边长分别为2和4,则该等腰三角形的周长是10.10.如图,在△ABC中,AD⊥BC,AE平分∠BAC,若∠1=30°,∠2=20°,求∠B的度数.解:∵AE平分∠BAC,∴∠1=∠CAE.又∵∠1=30°,∠2=20°,∴∠EAD=10°.∵AD⊥BC,∴∠EDA=90°.∴∠AED=90°-∠EAD=80°.∴∠B=∠AED-∠1=80°-30°=50°.11.如图,在△BCD中,BC=4,BD=5.(1)求CD的取值范围;(2)若AE∥BD,∠A=55°,∠BDE=125°,求∠C的度数.解:(1)∵在△BCD中,BC=4,BD=5,∴1<CD<9.(2)∵AE∥BD,∠BDE=125°,∴∠AEC=180°-125°=55°.又∵∠A=55°,∴∠C=180°-55°-55°=70°.12.(2016·盐城)若a,b,c为△ABC的三边长,且满足|a-4|+b-2=0,则c的值可以为( A ) A.5 B.6 C.7 D.813.(2016·内江)将一副直角三角板如图放置,使含30°角的三角板的直角边和含45°角的三角板的一条直角边在同一条直线上,则∠1的度数为( A )A.75° B.65° C.45° D.30°14.(2015·广州)如图,在四边形ABCD中,∠A=90°,AB=33,AD=3,点M、N分别是线段BC、AB 上的动点(含端点,但点M不与点B重合),点E、F分别是DM、MN的中点,则EF长度的最大值为3.15.(2016·黑龙江校级月考)如图,点D在△ABC边AB上且AD∶BD=2∶1,E是BC的中点,设S1为△ADF 的面积,S2为△CEF的面积,若S△ABC=24,则S1-S2=4.16.(2016·河北)如图,已知∠AOB=7°,一条光线从点A 出发后射向OB 边.若光线与OB 边垂直,则光线沿原路返回到点A ,此时∠A=90°-7°=83°.当∠A<83°时,光线射到OB 边上的点A 1后,经OB 反射到线段AO 上的点A 2,易知∠1=∠2.若A 1A 2⊥AO ,光线又会沿A 2→A 1→A 原路返回到点A ,此时∠A =76°. ……若光线从点A 发出后,经若干次反射能沿原路返回到点A ,则锐角∠A 的最小值=6°.17.(2016·大庆改编)如图,在△ABC 中,∠A =40°,D 点是∠ABC 和∠ACB 的平分线的交点,求∠BDC 的度数.解:在△ABC 中,∵∠A =40°,∴∠ABC +∠ACB=180°-∠A=140°. 又∵∠ABC 和∠ACB 的平分线交于点B ,∴∠DBC =12∠ABC,∠DCB =12∠ACB.则∠DBC+∠DC B =12(∠ABC+∠ACB)=12×140°=70°.∴在△BCD 中,∠BDC =180°-(∠DBC+∠DCB)=180°-70°=110°.18.如图,在△ABC 中,∠C =90°,∠CAB ,∠CBA 的平分线交于点D ,BD 的延长线交AC 于点E ,则∠ADE =45°.。
中考总复习:几何初步及三角形—巩固练习及答案【巩固练习】一、选择题1.如图,△ABC中,∠C=90°,AC=3,点P是边BC上的动点,则AP长不可能是( ).A.2.5 B.3 C.4 D.52.如图所示,图中线段和射线的条数为( ).A.三条,四条B.二条,六条C.三条,六条D.四条,四条3.下列四个图中,能用∠1、∠AOB、∠O三种方法表示同一个的是( ).4.一个三角形的三个内角中( ).A.至少有一个钝角B.至少有一个直角C.至多有一个锐角D.至少有两个锐角5.如果三角形的三边长分别为a、a﹣1、a+1,则a的取值范围是()A.a>0 B.a>2 C.a<2 D.0<a<26. 如图,某人不小心把一块三角形的玻璃打碎成三块,现在要到玻璃店去配一块完全一样的玻璃,那么正确的方法是( ).A.带①去B.带②去C.带③去D.带①和②去二、填空题7.钟表在3点40分时,它的时针和分针所成的角是.8.一个角的余角比它的补角还多,则这个角等于_______°.9.两个角,它们的比是3:2,其差为36°,则这两个角的关系是________.10.直角三角形的两个锐角的平分线所成的锐角为______.11.如图所示,∠A=50°,∠B=40°,∠C=30°,则∠BDC=________.12.若三角形的两边长分别是2和7,则第三边长c的取值范围是_______.三、解答题13.如图,已知AB∥CD,∠B=65°,CM平分∠BCE,∠MCN=90°,求∠DCN的度数.14.如图,线段AB上的点数与线段的总数有如下关系:如果线段上有3个点时,线段共有3条;如果上有4个点时,线段共有6条;如果线段上有5个点时,线段共有10条;⑴当线段上有6个点时,线段共有多少条?⑵当线段上有n个点时,线段共有多少条?(用含n的代数式表示)⑶当n=100时,线段共有多少条?15.如图,AE、OB、OC平分∠BAC、∠ABC、∠ACB,OD⊥BC,求证:∠1=∠2.16.已知△ABC三边长都是整数且互不相等,它的周长为12,当BC为最大边时,求∠A的度数.【答案与解析】一、选择题1.【答案】A.【解析】点到直线的线段中垂线段最短.2.【答案】C.【解析】每个点为端点的射线有两条.3.【答案】D.4.【答案】D.【解析】三角形内角和180°.5.【答案】B.【解析】根据三角形的三边关系,得a﹣1+a>a+1,解得a>2.故选B.6.【答案】D.二、填空题7.【答案】130 .【解析】提示: 3点40分时,它的时针和分针相距份,×30°=130°.故答案为:130.8.【答案】63°.【解析】设补角为x,则余角为x+1°,因为一个角的补角比余角多90°,所以x-(x+1°)=90°,即x=117°,即该角为63°.9.【答案】互补.【解析】设两个角为3x,2x,即3x-2x=36°,x=36°,则3x+2x=180°.10.【答案】45°.11.【答案】120°.【解析】做射线AD,即∠BDC=∠1+∠2=∠3+∠B+∠4+∠C=∠B+∠A+∠C=120°.12.【答案】5<c<9.【解析】三角形的两边长分别是2和7, 则第三边长c的取值范围是│2-7│<c<2+7,即5<c<9.三、解答题13.【答案与解析】32.5°.提示:利用角分线和平行线的性质可得.14.【答案与解析】(1)15,提示:n=3,3条;n=4,6条;n=5,10条;可推出n=6,有15条;(2),提示:通过总结n=3,4,5,6等几种特殊情况,可以归纳推得;(3)4950.提示:代入(2)中的公式可得.15.【答案与解析】∵AE、OB平分∠BAC、∠ABC,∴∠1=12(∠ABC+∠CAB)=12(180°-∠ACB)=90°-12∠ACB,又∵OC平分∠ACB,OD⊥BC,∴∠2=90°-∠OCB=90°-12∠ACB.即∠1=∠2.16.【答案与解析】解:根据题意,设BC、AC、AB边的长度分别是a、b、c,则a+b+c=12;∵BC为最大边,∴a最大,又∵b+c>a,∴a<6,∵△ABC三边长都是整数,∴a=5,又∵△ABC三边长互不相等,∴其他两边分别为3,4,∵32+42=52,∴△ABC是直角三角形,∴∠A=90°,即∠A的度数是90°.。
初中三角形专题必做40题1. 两条边的和与差1) 已知等腰三角形的底边和等腰边的差是10cm,等腰边的长度是14cm,请计算底边的长度。
2) 一个三角形的两条边的和是31cm,差是3cm,求这两条边的长度分别是多少?2. 两角的和与差1) 已知一个三角形的两个内角是75度和45度,求第三个角的大小。
2) 一个三角形的两个内角的和是110度,差是20度,求这两个角的度数分别是多少?3. 利用三角形的特性1) 已知一个三角形的两个角分别是40度和75度,求第三个角的大小,判断它属于什么类型的三角形。
2) 在一个等边三角形中,每个角的度数是多少?3) 一个三角形的两个角分别是50度和60度,求第三个角的度数,并判断它是否为锐角三角形。
4. 判断三角形的类型1) 已知一个三角形的三条边分别是3cm、4cm、5cm,请判断这个三角形的类型。
2) 一个三角形的两条边分别是10cm和12cm,夹角是75度,请判断这个三角形的类型。
5. 根据给定条件计算三角形的面积1) 已知一个等边三角形的边长是8cm,求其面积。
2) 一个直角三角形的两个直角边分别是5cm和12cm,请计算其面积。
3) 在一个三角形中,已知两边分别是6cm和8cm,夹角是30度,请计算其面积。
6. 根据面积和边长计算三角形的高1) 已知一个等腰直角三角形的面积是24cm²,求其斜边的长度。
2) 在一个三角形中,已知底为10cm,高为8cm,请计算其面积。
7. 根据三角形的面积计算某一边的长度1) 在一个三角形中,已知底为16cm,高为10cm,请计算其面积。
2) 在一个等腰三角形中,底边的长度是12cm,高为8cm,求其面积。
8. 特殊三角形的性质1) 一个等边三角形的高与边长的关系是多少?2) 已知一个等腰三角形的底边是6cm,腰长是8cm,请计算其面积。
3) 在一个等腰直角三角形中,直角边的长度是10cm,请计算其斜边的长度。
通过以上40道题目的练习,你可以对初中阶段的三角形专题有更深入的了解,掌握三角形的基本概念、性质以及计算方法。
第四章几何初步与三角形第一节线段、角、相交线与平行线姓名:_________班级:___________ 用时: _______ 分钟基础训堀1 . (2020 •武威中考)若一个角为65°,则它的补角的度数为()A. 25° B . 35° C . 115° D . 125°(2020 •邵阳中考)如图所示,直线AB, CD相交于点O,已知/ AOD= 160°,则/ BOC的大小为()3 .如图所示,点P到直线I的距离是()的路线()D . A T C T M HB5 . (2020 •眉山中考改编)下列命题为真命题的是()A. 两条直线被一组平行线所截,所得的对应线段成比例B. 若AW BM,则点M为线段AB的中点C. 至蛹的两边的距离相等的点在角的平分线上D. 经过一点,有且只有一条直线与这条直线平行6 . ( 2020 •广州中考)如图,直线AD, BE被直线BF和AC所截,则/I的同位角和/5的内错角分别是()A. 20°A.线段PA的长度C.线段PC的长度 D .线段PD的长度4 •如图所示,某同学的家在A处,星期日她到书店去买书,想尽快赶到书店B,请你帮助她选择一条最近B . 60° C7. (2020 •北京中考)如图所示的网格是正方形网格,/ BAC _______ /D AE.(填“>”“ = ”或“v”)I ------ T ----- 1------ r ----- r ------ r -----拔离训练11. (2020 •泸州中考)如图,直线a // b ,直线c 分别交a , b 于点A , C ,Z BAC 的平分线交直线b 于点D, 若/ 1 = 50°, U/2的度数是()A.Z 4,/ 2C.Z 5,/ 4 ./ 2,/410 . (2020 •重庆中考 A 卷)如图,直线.AB// CD BC 平分/ ABD / 1 = 54° ,求/2 的度数.8.等分线,则/ AOC 的度数是 9 .12. (2020 •赤峰中考)已知AB// CD 直线 EF分别交AB, CD 于点G, H,Z EGB= 25°,将一个含有60°角A. 30°C. 40° 13 . (2020 •盐城中考)将一个含有 45°角的直角三角板摆放在矩形上,如图所示,若/ 1= 40°,则/215 .如图1, E 是直线 AB, CD 内部一点,AB// CD 连接 EA ED.(1) 探究猜想:① 若/ A = 30°,/ D = 40°,则/ AED 等于多少度?② 若/ A = 20°,/ D = 60°,则/ AED 等于多少度?③ 猜想图1中/AED / EAB / EDC 的关系并证明你的结论.(2) 拓展应用:如图2,射线FE 与矩形ABCD 的边AB 交于点E ,与边CD 交于点F ,①②③④分别是被射线 FE 隔开的4个 区域(不含边界),其中区域③④位于直线 AB 上方,P 是位于以上4个区域上的点,猜想:/ PEB / PFC / EPF 的关系(不要求证明).A. 50° B . 70° 的直角三角尺如图放置(60 °角的顶点与 .45°14 . (2019 -原创题)如图,将一副含有 45°和30°的两个三角板叠放在一起,使直角的顶点重合于点 O,则/ AOC-Z DOB 的度数为 ______________.110° )16 .阅读下面的材料【材料一】异面直线(1) 定义:不同在任何一个平面内的两直线叫做异面直线.(2) 特点:既不相交,也不平行.⑶理解:①“不同在任何一个平面内”,指这两条直线永不具备确定平面的条件,因此,异面直线既不相交,也不平行,要注意把握异面直线的不共面性.②“不同在任……”也可以理解为“任何一个平面都不可能同时经过这两条直线”.③不能把异面直线误解为分别在不同平面内的两条直线为异面直线•也就是说,在两个不同平面内的直线,它们既可以是平行直线,也可以是相交直线.例如:在长方体ABCD-ABCD中,棱A i D所在直线与棱AB所在直线是异面直线,棱A i D所在直线与棱BC 所在直线就不是异面直线.【材料二】我们知道“由平行公理,进一步可以得到如下结论:如果两条直线都与第三条直线平行,那么这两条直线也平行.”其实,这个结论不仅在平面内成立,在空间内仍然成立.利用材料中的信息,解答下列问题:(1)在长方体ABCD-ABGD中,与棱AA所在直线成异面直线的是()A. 棱A D所在直线B. 棱BC所在直线C. 棱C C所在直线D. 棱B B所在直线⑵在空间内,两条直线的位置关系有 ___________ 、__- ______ 、 _______ .(重合除外)⑶如图,在长方体ABCD-AB i C D中,已知E, F分别为BC, AB的中点.求证:EF//AQ .参考答案【基础训练】1. C2.D3.B4.B5.A6.B7.> 8.80 °9.15。
中考数学总复习《几何图形初步》专项测试题-带参考答案(考试时间:60分钟总分:100分)一、选择题(共8题,共40分)1.已知A,B两地的位置如图所示,且∠BAC=150∘,那么下列语句正确的是( )A.A地在B地的北偏东60∘方向B.A地在B地的北偏东30∘方向C.B地在A地的北偏东60∘方向D.B地在A地的北偏东30∘方向2.如果∠1与∠2互补,∠2与∠3互余,则∠1与∠3的关系是( )A.∠1=∠3B.∠1=180∘−∠3C.∠1=90∘+∠3D.以上都不对3.如果A,B,C三点在同一直线上,且线段AB=6cm,BC=4cm若M,N分别为AB,BC的中点,那么M,N两点之间的距离为( )A.5cm B.1cm C.5或1cm D.无法确定4.如图,已知线段AB=10cm,M是AB中点,点N在AB上NB=2cm,那么线段MN的长为( )A.5cm B.4cm C.3cm D.2cm5.若将一个无盖的正方体的表面沿某些棱剪开,展开成为一个平面图形,则共剪开了( )条棱.A.4B.5C.6D.76.小刚家在学校的北偏东30∘方向,距离学校2000米,则学校在小刚家的位置是( )A.北偏东30∘,距离小刚家2000米B.南偏西60∘,距离小刚家2000米C.南偏西30∘,距离小刚家2000米D.北偏东60∘,距离小刚家2000米7.如图,直线AB,CD相交于点O,OA平分∠EOC,∠EOC:∠EOD=2:3,则∠BOD= ( )A.30∘B.36∘C.45∘D.72∘8.如图,观察图形,下列结论中不正确的是( )A.直线BA和直线AB是同一条直线B.图中有5条线段C.AB+BD>ADD.射线AC和射线AD是同一条射线二、填空题(共5题,共15分)9.已知射线OC在∠AOB的内部,则∠COB∠AOB.(填“<”或“>”)10.某长方体中,有一个公共顶点的三条棱的长度之比是5:8:10,最小的一个面的面积是240平方厘米,则最大的一个面的面积是平方厘米.11.上午8:30钟表的时针和分针构成角的度数是.12.甲看乙的方向是北偏东40∘,那么乙看甲的方向是.13.一个圆柱形水池的底面半径为4m,池深1.2m.在池的内壁与底面抹上水泥,抹水泥部分的面积是m2.三、解答题(共3题,共45分)14.如图所示,A、B、C三棵树在同一直线上,量得树A与树B的距离为4m,树B与树C的距离为3m,小亮正好在A、C两树的正中间O处,请你计算一下小亮距离树B多远?15.如图,延长线段AB到点C,使AB=5BC,D为AC的中点DB=6,求线段AC的长.16.如图∠AOB=33°,∠BOC=48°,∠COD=23°,OE平分∠AOD,求∠AOE 的度数.参考答案1. 【答案】C2. 【答案】C3. 【答案】C4. 【答案】C5. 【答案】A6. 【答案】C7. 【答案】B8. 【答案】B9. 【答案】<10. 【答案】48011. 【答案】75∘12. 【答案】南偏西40∘13. 【答案】25.6π14.【答案】解:AC=AB+BC=7.设A,C两点的中点为O,即AO= 12AC=3.5,则OB=AB﹣AO=4﹣3.5=0.5.答:小亮与树B的距离为0.5m.15.【答案】解:设BC=x,则AB=5x,AC=6x∵D为AC的中点∴DC=6x÷2=3x 则DB=DC-BC=3x-x=2x=6解得:x=3则AC=6x=6×3=1816.【答案】解:∵∠AOB=33°,∠BOC=48°,∠COD=23°∴∠AOD=∠AOB+∠BOC+∠COD=33°+48°+23°=104°∵OE平分∠AOD∴∠AOE=12∠AOD=12×104°=52°。
中考数学20道经典几何题1.已知三角形ABC,AB=AC,∠A=36°,求BC与AB的比值。
2.直角三角形ABC中,∠C=90°,AC=3,BC=4,求斜边AB上的高。
3.四边形ABCD是平行四边形,对角线AC、BD相交于点O,若AB=5,AC=8,BD=6,求平行四边形ABCD的面积。
4.三角形ABC中,∠A=90°,D为BC中点,E、F分别为AB、AC上的点,且DE⊥DF,求证:BE²+CF²=EF²。
5.圆O的半径为5,弦AB=8,求圆心O到弦AB的距离。
6.等腰梯形ABCD中,AD∥BC,AB=CD,∠B=60°,AD=3,BC=7,求梯形ABCD的周长。
7.三角形ABC中,∠C=90°,∠A=30°,BC=3,求三角形ABC的外接圆半径。
8.正方形ABCD的边长为4,E是BC中点,F是CD上一点,且CF=1,求∠AEF的度数。
9.三角形ABC是等边三角形,D是AC中点,E在BC延长线上,CE=CD,求证:BD=DE。
10.矩形ABCD中,AB=6,BC=8,点P在AD上,且AP=2,求点P到对角线BD的距离。
11.三角形ABC中,AB=AC,D是BC中点,DE⊥AB于E,DF⊥AC于F,若AB=5,DE=3,求DF的值。
12.菱形ABCD的对角线AC=6,BD=8,求菱形ABCD的边长。
13.三角形ABC中,∠B=90°,AB=3,BC=4,以BC为直径作圆O,交AC于D,求AD的长。
14.等腰三角形ABC中,AB=AC,∠A=120°,AB=4,求三角形ABC的面积。
15.三角形ABC中,∠C=90°,AC=4,BC=3,以AC为一边向三角形外作等腰直角三角形ACD,∠ACD=90°,求BD的长。
16.圆O的直径AB=10,弦AC=6,∠BAC的平分线交圆O于D,求CD的长。
中考数学复习《图形基础与三角形》专项测试卷(带答案)时间:45分钟满分:100分学校:___________班级:___________姓名:___________考号:___________4.1线段、角、相交线与平行线(含尺规作图和命题与定理) 1.(2023·高青县期中)如图,AB是一段高铁行驶路线图,图中字母表示的5个点表示5个车站,在这段路线上往返行车,需印制多少种车票( )第1题图A.10 B.11 C.18 D.202.(2023·铜仁市模拟)已知A,B,C为直线l上的三点,线段AB=9 cmBC=1 cm,那么A,C两点间的距离是( )A.10 cm B.8 cmC.10 cm或8 cm D.以上说法都不对3.(2023·深圳)如图为商场某品牌椅子的侧面图,∠DEF=120°,DE与地面平行,∠ABD=50°,则∠ACB=( )第3题图A.70°B.65°C.60°D.50°4.(2023·长沙)如图,直线m∥直线n,点A在直线n上,点B在直线m上,连接AB,过点A作AC⊥AB,交直线m于点C.若∠1=40°,则∠2的度数为( )第4题图A.30° B.40° C.50° D.60°5.(2023·菏泽)一把直尺和一个含30°角的直角三角板按如图方式放置,若∠1=20°,则∠2=( )第5题图A.30°B.40° C.50°D.60°6.(2023·齐齐哈尔)如图,直线l1∥l2,分别与直线l交于点A,B,把一块含30°角的三角尺按如图所示的位置摆放,若∠1=45°,则∠2的度数是( )第6题图A.135°B.105°C.95°D.75°7.(2023·荆州)如图所示的“箭头”图形中AB∥CD,∠B=∠D=80°,∠E=∠F=47°,则图中∠G的度数是( )A .80°B .76°C .66°D .56°8.(2023·宜昌)如图,小颖按如图方式操作直尺和含30°角的三角尺,依次画出了直线a ,b ,c.如果∠1=70°,则∠2的度数为( )第8题图A .110°B .70°C .40°D .30°9.(2023·山西)如图,一束平行于主光轴的光线经凸透镜折射后,其折射光线与一束经过光心O 的光线相交于点P ,点F 为焦点.若∠1=155°,∠2=30°,则∠3的度数为( )第9题图A .45°B .50°C .55°D .60°10.(2023·福建)阅读下列作图步骤:①在OA 和OB 上分别截取OC ,OD ,使OC =OD ;②分别以C ,D 为圆心,以大于12CD 的长为半径作弧,两弧在∠AOB 内交于点M ; ③作射线OM ,连接CM ,DM ,如图所示.根据以上作图,一定可以推得的结论是( )A.∠1=∠2且CM=DMB.∠1=∠3且CM=DMC.∠1=∠2且OD=DMD.∠2=∠3且OD=DM11.(2023·绥化)下列命题中叙述正确的是( )A.若方差s甲2>s乙2,则甲组数据的波动较小B.直线外一点到这条直线的垂线段,叫做点到直线的距离C.三角形三条中线的交点叫做三角形的内心D.角的内部到角的两边的距离相等的点在角的平分线上12.(2022·栾城区期末)如图,图①中有1个角,图②中有3个不同角,图③中有6个不同角,…,按此规律下去,图⑥中有不同角的个数为.第12题图13.(2023·威海)某些灯具的设计原理与抛物线有关.如图,从点O照射到抛物线上的光线OA,OB等反射后都沿着与POQ平行的方向射出.若∠AOB=150°,∠OBD=90°,则∠OAC=°.第13题图14.(2023·台州)用一张等宽的纸条折成如图所示的图案,若∠1=20°,则∠2的度数为 .第14题图15.(2023·遂宁)如图,在▱ABCD 中BD 为对角线,分别以点A ,B 为圆心,以大于12AB 的长为半径画弧,两弧相交于点M ,N ,作直线MN 交AD 于点E ,交AB 于点F ,若AD⊥BD,BD =4,BC =8,则AE 的长为 .第15题图16.(2023·锦州)如图,在Rt △ABC 中∠ACB =90°,∠ABC =30°,AC =4,按下列步骤作图:①在AC 和AB 上分别截取AD ,AE ,使AD =AE ;②分别以点D 和点E 为圆心,以大于12DE 的长为半径作弧,两弧在∠BAC 内交于点M ;③作射线AM 交BC 于点F.若点P 是线段AF 上的一个动点,连接CP ,则CP +12AP 的最小值是 .第16题图17.(2023·陕西)如图,已知锐角△ABC,∠B =48°,请用尺规作图法,在△ABC内部求作一点P,使PB=PC,且∠PBC=24°.(保留作图痕迹,不写作法)第17题图参考答案1.(2023·高青县期中)如图,AB是一段高铁行驶路线图,图中字母表示的5个点表示5个车站,在这段路线上往返行车,需印制多少种车票( D)第1题图A.10 B.11 C.18 D.202.(2023·铜仁市模拟)已知A,B,C为直线l上的三点,线段AB=9 cmBC=1 cm,那么A,C两点间的距离是( C)A.10 cm B.8 cmC.10 cm或8 cm D.以上说法都不对3.(2023·深圳)如图为商场某品牌椅子的侧面图,∠DEF=120°,DE与地面平行,∠ABD=50°,则∠ACB=( A)第3题图A.70°B.65°C.60°D.50°4.(2023·长沙)如图,直线m∥直线n,点A在直线n上,点B在直线m上,连接AB,过点A作AC⊥AB,交直线m于点C.若∠1=40°,则∠2的度数为( C)第4题图A.30° B.40° C.50° D.60°5.(2023·菏泽)一把直尺和一个含30°角的直角三角板按如图方式放置,若∠1=20°,则∠2=( B)第5题图A.30°B.40° C.50°D.60°6.(2023·齐齐哈尔)如图,直线l1∥l2,分别与直线l交于点A,B,把一块含30°角的三角尺按如图所示的位置摆放,若∠1=45°,则∠2的度数是( B)第6题图A.135°B.105°C.95°D.75°7.(2023·荆州)如图所示的“箭头”图形中AB∥CD,∠B=∠D=80°,∠E=∠F=47°,则图中∠G的度数是( C)第7题图A .80°B .76°C .66°D .56°8.(2023·宜昌)如图,小颖按如图方式操作直尺和含30°角的三角尺,依次画出了直线a ,b ,c.如果∠1=70°,则∠2的度数为( C )第8题图A .110°B .70°C .40°D .30°9.(2023·山西)如图,一束平行于主光轴的光线经凸透镜折射后,其折射光线与一束经过光心O 的光线相交于点P ,点F 为焦点.若∠1=155°,∠2=30°,则∠3的度数为( C )第9题图A .45°B .50°C .55°D .60°10.(2023·福建)阅读下列作图步骤:①在OA 和OB 上分别截取OC ,OD ,使OC =OD ;②分别以C ,D 为圆心,以大于12CD 的长为半径作弧,两弧在∠AOB 内交于点M ; ③作射线OM ,连接CM ,DM ,如图所示.第10题图根据以上作图,一定可以推得的结论是( A)A.∠1=∠2且CM=DMB.∠1=∠3且CM=DMC.∠1=∠2且OD=DMD.∠2=∠3且OD=DM11.(2023·绥化)下列命题中叙述正确的是( D)A.若方差s甲2>s乙2,则甲组数据的波动较小B.直线外一点到这条直线的垂线段,叫做点到直线的距离C.三角形三条中线的交点叫做三角形的内心D.角的内部到角的两边的距离相等的点在角的平分线上12.(2022·栾城区期末)如图,图①中有1个角,图②中有3个不同角,图③中有6个不同角,…,按此规律下去,图⑥中有不同角的个数为21.第12题图13.(2023·威海)某些灯具的设计原理与抛物线有关.如图,从点O照射到抛物线上的光线OA,OB等反射后都沿着与POQ平行的方向射出.若∠AOB=150°,∠OBD=90°,则∠OAC=60°.第13题图14.(2023·台州)用一张等宽的纸条折成如图所示的图案,若∠1=20°,则∠2的度数为 140°.第14题图15.(2023·遂宁)如图,在▱ABCD 中BD 为对角线,分别以点A ,B 为圆心,以大于12AB 的长为半径画弧,两弧相交于点M ,N ,作直线MN 交AD 于点E ,交AB 于点F ,若AD⊥BD,BD =4,BC =8,则AE 的长为5.第15题图16.(2023·锦州)如图,在Rt △ABC 中∠ACB =90°,∠ABC =30°,AC =4,按下列步骤作图:①在AC 和AB 上分别截取AD ,AE ,使AD =AE ;②分别以点D 和点E 为圆心,以大于12DE 的长为半径作弧,两弧在∠BAC 内交于点M ;③作射线AM 交BC 于点F.若点P 是线段AF 上的一个动点,连接CP ,则CP +12AP 的最小值是23.第16题图17.(2023·陕西)如图,已知锐角△ABC,∠B=48°,请用尺规作图法,在△ABC 内部求作一点P,使PB=PC,且∠PBC=24°.(保留作图痕迹,不写作法)第17题图解:如图,点P即为所求.第17题图第11 页共11 页。
【若缺失公式、图片现象属于系统读取不成功,文档内容齐全完整,请放心下载。
】中考总复习:几何初步及三角形—巩固练习(提高)【巩固练习】一、选择题1.如图所示,下列说法不正确的是( ).A.点B到AC的垂线段是线段AB B.点C到AB的垂线段是线段ACC.线段AD是点D到BC的垂线段 D.线段BD是点B到AD的垂线段2.如图,标有角号的7个角中共有____对内错角,____对同位角,____对同旁内角.( )A.4、2、4B.4、3、4C.3、2、4D.4、2、33.把一张长方形的纸片按下图所示的方式折叠,EM、FM为折痕,折叠后的C点落在B′M或B′M的延长线上,则∠EMF的度数是( ).A.85°B.90°C.95°D.100°4.如图,在△ABC中,已知点D,E,F分别为边BC,AD,CE 的中点,且S△ABC=4cm2,则阴影面积等于( ).A.2cm2B.1cm2C.cm2D.cm25.(2014秋•金昌期末)钟表4点30分时,时针与分针所成的角的度数为()A.45°B.30° C.60° D.75°6. △ABC中,AB=AC=,BC=6,则腰长的取值范围是().A. B. C. D.二、填空题7.如图,AD∥BC,BD平分∠ABC,且∠A=110°,则∠D=________.8.(2014春•兴业县期末)如图,已知AB∥CD∥EF,则∠x、∠y、∠z三者之间的关系是.9.已知a、b、c是△ABC的三边,化简|a+b―c|+|b―a―c|―|c+b―a|=____________.10.已知在△ABC中,∠ABC和∠ACB三等分线分别交于点D、E,若∠A=n°,则∠BDC=___, ∠BEC=___.11.在△ABC中,若∠A+∠B=∠C,则此三角形为_____三角形;若∠A+∠B <∠C,则此三角形是_____三角形.12.如图所示,∠ABC与∠ACB的内角平分线交于点O,∠ABC 的内角平分线与∠ACB的外角平分线交于点D,∠ABC与∠ACB的相邻外角平分线交于点E,且∠A=60°,则∠BOC=______,∠D=______,∠E=_______.三、解答题13.(2015春•山亭区期末)如图,AD∥BC,∠BAC=70°,DE⊥AC于点E,∠D=20°.(1)求∠B的度数,并判断△ABC的形状;(2)若延长线段DE恰好过点B,试说明DB是∠ABC的平分线.14.平面内的两条直线有相交和平行两种位置关系.(1)如图a,若AB∥CD,点P在AB、CD外部,则有∠B=∠BOD,又因∠BOD是△POD的外角,故∠BOD=∠BPD +∠D,得∠BPD=∠B-∠D.将点P移到AB、CD内部,如图b,以上结论是否成立?若成立,说明理由;若不成立,则∠BPD、∠B、∠D之间有何数量关系?请证明你的结论;(2)在图b中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图c,则∠BPD﹑∠B﹑∠D﹑∠BQD之间有何数量关系?(不需证明);(3)根据(2)的结论求图d中∠A+∠B+∠C+∠D+∠E+∠F的度数.15.已知:如图,D、E是△ABC内的两点.求证:AB+AC>BD+DE+EC.16.如图,求∠A+∠B+∠C+∠D+∠E的度数.【答案与解析】一、选择题1.【答案】C.【解析】重点考查垂线段的定义.2.【答案】A.3.【答案】B.【解析】因为折叠,所以∠1=∠2,∠3=∠4,又因为∠1=∠2+∠3+∠4=180°,所以∠EMF=∠2+∠3 =90°.4.【答案】B.【解析】∵D,E分别为边BC,AD的中点,∴S△ABD= S△ADC =2cm2 ,S△ABE= S△AEC =1cm2∴S△BEC=2cm2又因为F分别为边CE 的中点,所以S△BEF= S△BCF =1cm2.5.【答案】C.【解析】∵4点30分时,时针指向4与5之间,分针指向6,钟表12个数字,每相邻两个数字之间的夹角为30°,∴4点30分时分针与时针的夹角是2×30°﹣15°=45度.故选A.6.【答案】B.【解析】∵2x>6,∴x>3.二、填空题7.【答案】35°.8.【答案】x=180°+z﹣y.【解析】∵CD∥EF,∴∠CEF=180°﹣y,∵AB∥EF,∴∠x=∠AEF=∠z+∠CEF,即x=180°+z﹣y.故答案为:x=180°+z﹣y.9.【答案】3a―b―c.【解析】∵a、b、c是△ABC的三边,∴a+b>c,a+c>b,c+b>a。
几何初步与三角形习题精选
一、选择题
1.已知∠A=55°,则它的余角是()
A.25°B.35°
C.45°D.55°
2.下列生活、生产现象中,可以用基本事实“两点之间,线段最短”来解释的是()
A.用两个钉子就可以把木条固定在墙上
B.如果把A,B两地间弯曲的河道改直,那么就能缩短原来河道的长度
C.植树时只要确定两个坑的位置,就能确定同一行的树坑所在的直线
D.利用圆规可以比较两条线段的大小关系
3.已知一个三角形的两边长分别为8和2,则这个三角形的第三边长可能是()
A.4 B.6
C.8 D.10
4.如图,把一个直角三角尺的直角顶点放在直尺的一边上,若∠1=50°,则∠2=()
A.20°B.30°
C.40°D.50°
5.下列命题中:
①如果a>b,那么a2>b2;
②一组对边平行,另一组对边相等的四边形是平行四边形;
③从圆外一点可以引圆的两条切线,它们的切线长相等;
④关于x的一元二次方程ax2+2x+1=0有实数根,则a的取值范围是a≤1.
其中真命题的个数是()
A.1 B.2 C.3 D.4
6.如图,已知点B,E,C,F在同一条直线上,BE=CF,∠B=∠DEF,请你添加一个合适的条件,使△ABC≌△DEF,其中不正确的条件是()
A .A
B =DE B .A
C =DF C .∠A =∠D
D .∠ACB =∠F
7.已知直线a ∥b ,将一块含45°角的直角三角板(∠C =90°)按如图所示的位置摆放,若∠1=55°,则∠2的度数为( )
A .80°
B .70°
C .85°
D .75°
8.小桐把一副直角三角尺按如图所示的方式摆放在一起,其中∠E =90°,∠C =90°,∠A =45°,∠D =30°,则∠1+∠2等于( )
A .150°
B .180°
C .210°
D .270°
9.如图,在△ABC 中,∠BAC =90°,AD ⊥BC ,垂足为D ,E 是边BC 的中点,AD =ED =3,则BC 的长为( )
A .3 2
B .3 3
C .6
D .6 2
10.如图,已知△ABC 的三个顶点均在格点上,则cos A 的值为( )
A.3
3
B.55
C.233
D.255
11.如果两个相似三角形对应边的比为4∶5,那么它们对应中线的比是( )
A .2∶ 5
B .2∶5
C .4∶5
D .16∶25
12.如图,在△ABC 中,AC =8,∠ABC =60°,∠C =45°,AD ⊥BC ,垂足为D ,∠ABC 的平分线交AD 于点E ,则AE 的长为( )
A.4
3 2 B .2 2 C.8
3
2
D .3 2
13.如图,为了测量某建筑物MN 的高度,在平地上A 处测得建筑物顶端M 的仰角为30°,向N 点方向前进16 m 到达B 处,在B 处测得建筑物顶端M 的仰角为45°,则建筑物MN 的高度等于( )
A .8(3+1)m
B .8(3-1)m
C .16(3+1)m
D .16(3-1)m
14.如图,在矩形ABCD 中,E 是AD 边的中点,BE ⊥AC ,垂足为F ,连接DF ,下列四个结论:①△AEF ∽△CAB ;②tan ∠CAD =2;③DF =DC ;④CF =2AF.正确的是( )
A .①②③
B .②③④
C .①③④
D .①②④
二、填空题
15.已知α,β均为锐角,且满足|sin α-1
2
|+(tan β-1)2=0,则α+β=________.
16.如图,AD ∥BE ∥CF ,直线l 1,l 2与这三条平行线分别交于点A ,B ,C 和点D ,E ,F ,AB BC =2
3,DE =
6,则EF =________.
17.如图,在△ABC中,AB=AC,∠BAC=36°,DE是线段AC的垂直平分线,若BE=a,AE=b,则用含a,b的代数式表示△ABC的周长为________.
18.已知△ABC为等边三角形,BD为中线,延长BC至E,使CE=CD=1,连接DE,则DE=________.
19.如图,一只蚂蚁沿着棱长为2的正方体表面从点A出发,经过3个面爬到点B,如果它运动的路径是最短的,则AC的长为________.
20.如图,一艘轮船自西向东航行,航行到A处测得小岛C位于北偏东60°方向上,继续向东航行10海里到达点B处,测得小岛C在轮船的北偏东15°方向上,此时轮船与小岛C的距离为________海里.(结果保留根号)
参考答案
1.B 2.B 3.C 4.C 5.A 6.B 7.A 8.C 9.D 10.D 11.C 12.C 13.A 14.C
15.75° 16.9 17.2a +3b 18.3 19.210
3
20.52。