分立元件OTL功放资料剖析
- 格式:doc
- 大小:3.28 MB
- 文档页数:15
详解分立元器件OTL功率放大器电路图2-46所示是分立元器件构成的OTL功率放大器。
OTL功率放大器采用互补推挽输出级电路。
OTL功率放大器种类较多,这里以OTL音频功率放大器为例,详细介绍这种放大器的工作原理。
图2-46 分立元器件构成的OTL 功率放大器电路中,VT1构成推动级放大器;VT2和VT3构成互补推挽输出式放大器,VT2是NPN型三极管,VT3是PNP型三极管。
直流电路分析电路中,推动级与功放输出级之间采用直接耦合电路,所以两级放大器之间的直流电路相互影响。
这一放大器的直流电路比较复杂,分成以下几个部分分析。
1.电路启动分析接通直流工作电源瞬间,+V经R2和R3给VT2基极提供偏置电压,使VT2发射极有直流电压,这一电压经R4和R1分压后加到VT1基极,给VT1提供静态直流偏置电压,VT1导通。
VT1导通后,其集电极(C点)电压下降,也就是VT3基极电压下降,当放大器输出端A点电压大于C点电压时,VT3也处于导通状态,这样电路中的3只三极管均进入导通状态,电路完成启动过程。
2.静态电路分析接通直流电源瞬间,很快放大器进入稳定的静态,此时A点电压等于直流电源电压+V的一半,如果+V等于12V,放大器输出端(A点)的直流电压等于6V。
这是OTL功率放大器的一大特征,了解和记住这一点对检修OTL功率放大器很有用,如果测量A点电压不等于+V的一半,说明OTL功率放大器已经出现故障。
3.VT2和VT3直流电压供电电路分析对直流电流而言,VT2和VT3是串联的,所以只有+V的一半加到了每只三极管的集电极与发射极之间,而不是+V的全部。
功率放大器中,电路的直流工作电压大小直接关系到放大器的输出功率大小,+V愈大放大器的输出功率愈大。
所以,对于OTL功率放大器而言,由于每只三极管的有效工作电压只有+V的一半,要求有更大的直流工作电压+V才能有较大的输出功率,这是OTL功率放大器电路的一个不足之处。
otl功放电路OTL功放电路概述OTL功放电路(Output Transformerless Amplifier)是一种无输出变压器的功放电路,它的优点是能够提供高品质的音频输出,同时避免了传统功放中输出变压器所带来的不利影响。
OTL功放电路的基本原理OTL功放电路中没有输出变压器,因此需要使用一些特殊的设计技巧来实现高质量的音频输出。
其基本原理是将输出管直接连接到负载上,通过反馈控制使得输出管工作在类AB状态下。
具体来说,OTL功放电路可以分为两个部分:输入级和输出级。
输入级主要用于对输入信号进行处理和放大,而输出级则用于将信号送入扬声器或其他负载上。
在输出级中,常见的设计方案是采用多个并联的晶体管或真空管,并通过反馈控制使得每个管子都工作在类AB状态下。
这样可以有效地提高效率和线性度,并且避免了由于单个管子过载而引起的失真问题。
OTL功放电路与传统功放电路相比有什么优点?1. 无需使用复杂昂贵的输出变压器传统功放中需要使用大型、昂贵、重量较大的输出变压器,而OTL功放电路则不需要使用这种变压器。
这样可以降低成本、减少体积和重量,同时也避免了输出变压器所带来的不利影响。
2. 提供更高质量的音频输出由于OTL功放电路中没有输出变压器,因此信号传输更为直接,能够提供更高质量的音频输出。
同时,通过反馈控制可以有效地降低失真和噪声。
3. 更好的稳定性和可靠性由于OTL功放电路中没有输出变压器,因此不会出现输出变压器所带来的磁场干扰等问题。
同时,采用多个并联管子的设计方案也能够提高稳定性和可靠性。
OTL功放电路有哪些缺点?1. 大功率难度较大由于OTL功放电路中没有输出变压器,因此需要使用多个并联管子来实现大功率输出。
这样会增加设计难度,并且也会增加成本和复杂度。
2. 不适合驱动低阻抗负载由于OTL功放电路中没有输出变压器,因此其驱动能力受到限制。
特别是对于低阻抗负载,OTL功放电路的驱动能力更为有限。
6KD6是将普通束射四极管或五极功率电子管改为三极管接法的OTL功放,利用了电子管帘栅极在相同栅压下可以输出较大电流的特点。
原来由于相对的屏极内阻较大,限制了工作电流,但改成三极管接法以后,帘栅极的电压与屏极电压处于同等电位,屏极内阻大幅度下降,加强了屏极承受较大电流的能力,因此能在低阻抗负载下输出较大功率。
对于普通功率电子管改成三极管接法的OTL功放来说,并不是所有功率管均能采用,必须选用屏极电压范围较大的束射四极管或五极功率电子管,如6KD6、6L6、6P3P、6146等。
同时,功放级还必须采用多只功率管并联的方式,在8Ω低阻抗负载时,每声道采用6只功率管并联才能符合低阻抗负载的要求,并且输出功率仅为30W左右。
本OTL功放的输入级由高放大系数电子管6J2担任,可将输入的音频信号进行较大幅度提升,单级电压增益可达30dB以上。
经放大后的信号电压采用直接耦合的方式传输至倒相级。
倒相级由高屏压双三极管6SN7担任,屏极电压取值为340V。
由该管组成屏阴分割式倒相电路,屏极与阴极的负载电阻均取值为33kΩ。
这样,在输出端即可取得一对幅值相等、相位相反的推动信号电压。
OTL功放级采用SEPP并联推挽电路,可选用6KD6、6L6、6P3P等屏压范围大的功放管,并将其改为三极管接法。
采用6只功放管并联的输出方式,使输出阻抗达到8~16Ω。
功放级电源为正负双电源形式,取值为±230V。
功放管栅极负压应根据不同功率管特性决定,上边管与下边管通过各自的分压网络并通过调控电位器后获得。
分立元件OTL功放资料要点什么是OTL功放?OTL全称为Output Transformer Less,也就是无输出变压器功放。
传统的功放中,输出级别的功率管和输出端的负载(扬声器等)之间往往需要连接一个输出变压器。
然而,这种输出变压器虽然能够实现功率匹配,但同时也带来了许多问题,比如变压器会影响音频的纯度和彩度,对传输质量造成影响;变压器的结构庞大,重量较重,限制了功放的体积和重量;变压器的直流漏磁问题也会对功放造成磁传导噪声的麻烦。
OTL功放正是因此而生,在无变压器的条件下实现了更原始更优质的音频输出。
OTL功放通过保证输出级的负载稳定,消除了输出变压器对音频品质的影响。
同时,它还可以实现更简便的电路设计和更直接的在线性区操作。
OTL功放常用元器件在OTL功放中,最常见的几种元器件包括若干基本的分立器件、集成电路、电源模组和输出器件,下面我们逐一进行介绍。
分立元件分立元件包括二极管、电容器、电阻器等基本元件。
在电源电路中,它们可以用于过滤稳压、平滑电源,同时对于前级和中级放大电路而言,它们还可以埋下音色调音甚至管音的伏笔。
集成电路集成电路可以极大的提高OTL功放的性能,其中尤其以操作放大器、运放等常见集成模块著名。
它们可以更快更精准的实现放大和传输效果。
不过,也要注意,集成电路通常只针对某种场合进行了设计,在使用中还是需要因地制宜,综合考虑整体方案的实用性和可靠性。
电源模组电源模组通常用于稳压、反相器、逻辑门等子板的构建,它也是OTL功放必不可少的部分。
由于功放电流大、负载变化较迅速,因此电源模组要求快速响应,且要考虑容量、大小、质量等多方面因素。
输出器件输出器件也是OTL功放的关键组成部分,常用的有MOSFET、MJL4281A/J286等。
它们兼顾了输出功率、效率和可靠性等因素,并通过其自身的特点,消除掉传统输出变压器中可能带来的失真、异转等损失。
OTC功放电路设计要点OTL功放的电路设计并非易如反掌,而要融合多种知识点及相应实践方法。
场景描述OTL电路的主要特点有是采用单电源供电方式, 输出端直流电位为电源电压的一半;输出端与负载之间采用大容量电容耦合,扬声器一端接地,具有恒压输出特性。
本任务流程如图3-1-1所示。
一、实训工具及器材准备完本钱次实训任务所需工具及器材见表3-1-1。
〔一〕电路原理的熟悉图3-1-1 任务流程图典型OTL 音频功率放大器组装与维修1、电路特点图3-1-2简易OTL功放电路原理图本功放电路构造简单,元件易购,本钱低廉,原理典型,非常适合初学者组装学习。
电路包括:A.电压放大器:将输入的微小音乐信号加以放大,通常采用共射级放大,图中以VT1、VT2为核心组成的放大电路完成电压放大功能。
B.功率放大:功率放大级电路是用来提高电路的工作效率,通常共射级放大的输出电流很小,所以通过功放局部来推动喇叭。
图中以VT3、VT4为核心组成的电路完成功率放大功能。
C.偏压装置:偏压装置为功率三极管提供正向偏压,使功率放大级电路工作于AB类放大状态,防止产生交越失真。
图中VD5和R8为功放提供偏压,其中VD5具有负温特性,用以补偿功放管因温度升高引起电流增大。
改变R8的阻值可以改变功放管的静态电流。
D.负反响电路:利用负反响的特性,控制整个放大电路的增益,提高电路稳定性。
其中R4为放大器提供交直流负反响,R5、C4对反响的交流信号起分流作用,改变R4与R5的比值可以改变放大器的增益。
2、电路原理和各元件的作用音量控制:由RP电位器调节,根据串联电路的分压原理知,当旋转电位器时获取的输入电压将发生改变,从而改变了音量的大小。
第一级共射极放大器:由R1、R2、R3、R4、R5、C3、C4、VT1组成。
R1、R2为VT1提供偏置电压,改变二者的比值可以改变功放输出点的电压〔正常要求为电源电压的一半〕。
C3为输入隔直耦合电容。
R3是VT1的负载电阻,VT1和VT2是直流耦合,通过C3输入的信号经VT1放大后,直接送到VT2进展放大。
otl功率放大电路OTL功率放大电路摘要:OTL功率放大电路(Output Transformerless Power Amplifier)是一种常用于音频放大器设计中的电路。
与传统的功率放大电路相比,OTL功率放大电路不需要使用输出变压器,因此具有结构简单、成本低廉等优点。
本文将介绍OTL功率放大电路的基本原理、电路结构与应用特点,并对其性能进行评估。
1. 引言OTL功率放大电路是一种在音频放大器设计中常用的电路,其主要特点是不需要使用输出变压器,因此具有结构简单、成本低廉等优点。
在音响设备、电视、收音机等领域广泛应用。
本文将详细介绍OTL功率放大电路的原理和设计要点。
2. OTL功率放大电路的原理OTL功率放大电路的基本原理是利用晶体管的功率放大特性,将音频信号放大到足够大的电压和电流,以驱动扬声器工作。
传统的功率放大电路通常使用输出变压器实现电压与电流的升压与降压变换,而OTL功率放大电路则使用晶体管的特性直接进行功率放大。
这样的设计不仅简化了电路结构,而且提高了效率和稳定性。
3. OTL功率放大电路的电路结构OTL功率放大电路的典型电路结构包括输入级、放大级和输出级。
输入级用来将输入电源转化为准备放大的信号;放大级用来放大信号到足够大的电压和电流;输出级将放大后的信号输出到扬声器。
其中,放大级是OTL功率放大电路的核心,其设计和选用的晶体管对性能有很大影响。
常见的OTL功率放大电路有单端式和双端式两种。
单端式OTL功率放大电路使用单个晶体管进行放大,结构简单,适合于小功率放大;双端式OTL功率放大电路使用两个晶体管相互驱动,能够提供较大的功率输出。
4. OTL功率放大电路的设计要点在设计OTL功率放大电路时,需要注意以下几个要点:4.1 晶体管的选用:晶体管是OTL功率放大电路的核心元件,其性能对电路的稳定性和放大效果有重要影响。
选用时应考虑参数包括工作频率、功率承受能力、线性度等。
4.2 回路设计:合适的回路设计可以提高OTL功率放大电路的稳定性和音质。
OTL分立元件功放,OTL power amplifier
关键字:OTL分立元件功放
一、电路说明
Q1是激励放大管,它给功率放大输出级以足够的推动信号;R1、RP2是Q1的偏置电阻;R3、D1、RP3串联在Q1集电极电路上,为Q3提供偏置,使其静态时处于微导通状态,以消除交越失真;C3为消振电容,用于消除电路可能产生的自激;Q2、Q3是互补对称推挽功率放大管,组成功率放大输出级;C2、R4组成“自举电路”,R4为限流电阻。
二、电路调试
接上3-6V直流电源,调节RP2,使Q2、Q3中点电压为1/2电源电压;调节RP3,使功放输出级静态电流为5-8mA;反复调节RP2、RP3使其两个参数均达到上述值。
三、元件清单
位号名称规格数量R1 电阻 4.7K 1
R2、R4 电阻100 2
R3 电阻470 1
RP1 音量电位器2K 1
RP2 可调电阻20K 1
RP3 可调电阻1K 1
C1 电解电容 4.7uF 1
C2、C4、C5、C6 电解电容100uF 4
C3 瓷片电容101 1
Q1、Q3 NPN型三极管9013 2
Q2 PNP型三极管9012 1
D1 二极管1N4148 1
X1、X2、X3 接线座2位 3
PCB板40X55MM 1
四、电路原理图。
典型OTL音频功率放大器组装与维修场景描述OTL电路的主要特点有是采用单电源供电方式, 输出端直流电位为电源电压的一半;输出端与负载之间采用大容量电容耦合,扬声器一端接地,具有恒压输出特性。
本任务流程如图3-1-1所示。
图3-1-1任务流程图一、实训工具及器材准备完成本次实训任务所需工具及器材见表3-1-1。
表3-1-1拆装与检修动圈式扬声器实训工具及器材准备二、简易OTL音频功率放大器组装(一)电路原理的熟悉图3-1-2简易OTL功放电路原理图1、电路特点本功放电路结构简单,元件易购,成本低廉,原理典型,非常适合初学者组装学习。
电路包括:A.电压放大器:将输入的微小音乐信号加以放大,通常采用共射级放大,图中以VT1、VT2为核心组成的放大电路完成电压放大功能。
B.功率放大:功率放大级电路是用来提高电路的工作效率,通常共射级放大的输出电流很小,所以通过功放部分来推动喇叭。
图中以VT3、VT4为核心组成的电路完成功率放大功能。
C.偏压装置:偏压装置为功率三极管提供正向偏压,使功率放大级电路工作于AB类放大状态,防止产生交越失真。
图中VD5和R8为功放提供偏压,其中VD5具有负温特性,用以补偿功放管因温度升高引起电流增大。
改变R8的阻值可以改变功放管的静态电流。
D.负反馈电路:利用负反馈的特性,控制整个放大电路的增益,提高电路稳定性。
其中R4为放大器提供交直流负反馈,R5、C4对反馈的交流信号起分流作用,改变R4与R5的比值可以改变放大器的增益。
2、电路原理和各元件的作用音量控制:由RP电位器调节,根据串联电路的分压原理知,当旋转电位器时获取的输入电压将发生改变,从而改变了音量的大小。
第一级共射极放大器:由R1、R2、R3、R4、R5、C3、C4、VT1组成。
R1、R2为VT1提供偏置电压,改变二者的比值可以改变功放输出点的电压(正常要求为电源电压的一半)。
C3为输入隔直耦合电容。
R3是VT1的负载电阻,VT1和VT2是直流耦合,通过C3输入的信号经VT1放大后,直接送到VT2进行放大。
直流耦合就等于直接耦合,所以,信号传输没有损耗,电路工作效率很高。
C4、R4、R5组成负反馈电路,对于直流而言,C4表现出无穷大的阻抗,这可以使直流工作点非常稳定。
对交流来说,C4相当于短路,R4和R5的比值决定了放大倍数。
R5为零欧姆时,增益最大,灵敏度极高。
我们一般可以根据实际情况在10-100欧姆中取值。
第二级共射极放大:以VT2为核心构成的放大电路。
VT2是推动级放大管。
输入信号经过VT1、VT2两级放大后,具备了驱动VT3、VT4(输出级)的能力。
本功放电路只有三级,主要由第一二级(VT1、VT2)决定最大放大倍数,第三级(VT3、VT4)决定最大电流的驱动能力,想要电路放大倍数大,VT1、VT2要选放大倍数大的三极管,想要带负载能力强,VT3、VT4应该用大功率大电流的三极管,当然,放大倍数也不能太小。
C6是中和电容,起高频负反馈作用,该电容主要是为了减小高频的增益,当高频过强时,听起来会感觉声音尖、剌耳,当高频增益太强时,甚至出现高频寄生振荡,严重影响功放电路效率和音质。
该电容一般取值在47-4700PF之间,要求不严时也可以取消。
VT3、VT4这对末级互补输出对管在工作时会发出较大的热量。
改变R8可以改变VT3、VT4的工作电流,随着温度的升高,VT3、VT4的电流还会自动变大,电流变大就会更加发热,更加发热就会电流更加变大,这是一个恶性循环,所以,要求严格时,R8应该使用负温度系数的热敏电阻,并且紧挨着VT3、VT4感受温度来补偿VT3、VT4的电流变化。
R8和VD5、R6和R7、VT3的CE极三部分共同组成VT3、VT4的偏置电路,保证VT3、VT4在无信号时输出中点电压。
R8和VD5千万不能开路,否则VT3、VT4会有很大的基极电流,导致VT3、VT4的集电极电流剧增,立即发热烧坏。
但是,R8和VD5的分压也不能太低,否则,在小信号时会听出明显的截止失真(和交越失真相同)。
这种失真只在小信号时才有明显的反应。
在高档功放电路中,VD5和R8会用其它元件代替,同时还会引入温度补偿。
R6、R7主要是给VT3、VT4提供基极偏置电流。
当信号正半周时,VT3基极电压会上升,R6、R7两端的电压会变小,将不能给VT3提供足够大的基极电流。
由于C5自举电容的出现,信号正半周时会将C5的正极电压也“举”高,这就可以通过R7给VT3提供较大的基极电流。
因此,R6、R7也是自举电路的一部分。
C5叫做自举电容,在信号的正半周,将R7供电电压举高,高于电源电压。
如果R7没有较高的供电电压,就会让VT3在信号正半周峰值时基极电流变小,电流输出能力急剧下降,造成信号顶部失真。
这种失真只会在大信号时才会发生。
C7是输出耦合电容。
有音频信号输入时,VT3、VT4的发射极电压会有大幅度变化的信号,这个信号中有一个直流分压存在,不能直接加到喇叭上,必须经过一个隔直流通交的电容隔开。
R9和C8组成输出高频补偿电路。
R9取值应在1-10欧之间,不能太小,否则,相当于高频对地短路了;也不能太大,否则,C8就起不到应有的作用。
C8是输出高频补偿电容。
喇叭属于电感性负载,对于高频信号来说,喇叭的等效阻抗要比低频高得多,同时高频信号更容易通过分布电容向四处传输,这很可能让电路产生高频信号正反馈,产生高频振荡或者高频寄生振荡,从而影响音质,甚至烧毁功放电路。
因此,C8可以让电路在高频时的输出阻抗也得以降低,防止信号非正常的反馈,使整个电路进入平衡稳定的工作状态。
实际应用中,该电容对音质影响较大,特别是在一些高档功放中(含集成电路功放),有的电路中如果没有这个电容,甚至完全无法工作。
该电容一般取值在104-204之间,并且一般都要串联一个1-10欧姆的电阻。
VD1-VD4组成桥式整流电路,当输入交流电的时候,完成整流功能,将交流电变成直流电。
当输入直流电的时候,其极性转化作用,无论输入直流电的正负极如何,都能将其转化为正确的供电电压,供电电压按该电路的参数应取7.5-9V,输入电压越高,功率越大,但功放管VT3、VT4发热越严重,其静态电流相应增大,需减小R8的阻值来调节静态工作电流。
一般供电不要超过12V,否则VT3、VT4很容易过载烧坏。
C1、C2组成滤波电路。
C1电源低频滤波电容,主要作用是滤除电源交流声,同时给交流信号提供电流回路,该电容的容量应该取得比较大,这样才有较好的效果。
C2是电源高频滤波电容,主要作用是滤除高频杂音,同时也可以给高频交流信号提供电流回路,让高音效果改善,也起防止产生高频振荡的作用。
该电容应选择涤纶电容等高频特性较好的电容,容量一般在473-474之间。
(二)电路材料的准备请参考元件清单进行表3-1-2 简易OTL功放元件清单(三)电路的装配下图分别为印板图、装配图和元件布局图,大家可参照安装,注意装配工艺。
三、OTL功放的调试图3-1-3简易OTL功放PCB与元件分布图第一步:调节功放级静态电流将电路板A点铜箔断开,在断开点接入万用表,使用5mA档检测电流,改变R8的值(可使用可调电阻代替),使电流不超过1mA,以略大于0最佳,过大则发热大,没有会产生交越失真。
三、OTL 功放的维修音频功率放大器由于工作在高电压,大信号状态下,故障发生率比较高。
其主要有完全无声、无信号声、声轻和噪声等故障。
1、完全无声故障完全无声故障是指音箱中无任何信号和噪声。
检测方法:首先,通过视听确定为完全无声故障,此时对功放电路而言,首先测量有无直流工作电压,如没有直流工作电压,则要用电压检测法检测电压供给电路及电源电路。
若有直流工作电压,再测功放电路输出端直流电压,如有异常现象,说明有可能是功放电路损坏。
故障原因及处理措施:第一,电源电路故障,导致功率放大器无直流工作电压,检查电源电路;第二,功放电路击穿,导致多次烧坏保险丝或使保护电路动作,更换集成功放电路,第三,功放电路开路,更换或修复;第四,功放输出回路开路,如输出端耦合电路开路,可更换电容。
第二步:调节功放输出端直流电压将万用表黑表笔接地,红表笔接输出耦合电容C7正端,调整R1的阻值,使功放输出端静态直流电压为电源电压的1/2。
如果该点电压不为电源电压的1/2,在大功率时将提前出现失真,使不失真输出功率减小。
第三步:调节电路增益将功放板接上扬声器和电源,为功放电路输入音乐信号,电源可使用9V 叠层电池提供。
改变R4和R5的比值,感受一下功放电路的放大倍数有何变化。
图3-1-4 OTL 功放的调试2、无信号声故障无信号声故障是指扬声器中无信号声,但有噪声或电流声,这说明功放电路直流工作电压基本正常,并且功放输出回路没有开路。
检测方法:通电后,开大音量电位器,干扰动片,音箱中无响声便说明故障出在功率放大器电路中。
这一故障可以表现为左右声道无声或只有一个声道无声。
对于左右声道无声故障,主要测量集成功放电路各引脚电压(重点是前级电路偏置引脚上电压),有异常时进行重点检查。
另外,用电压检查静噪声电路是否处于静噪声状态,对于前置电压放大级采用分立元器件构成的电路,还要用电压检查法检测这一放大级的直流工作电压是否正常。
对于只有一个声道无声故障,如是分立元气件放大器,可用干扰检查法缩小故障范围。
对于集成电路放大器,主要测左右声道对称作用引脚上的直流工作电压,进行对比,有异常时进行重点检查。
并且注意,输入回路元器件铜箔线路是否开路。
故障原因几处理措施:第一,集成功放电路损坏可更换新件;第二,静躁电路处于静躁状态,如静躁电容击穿或严重漏电,可更换电容;第三,放大管损坏,可更换新件;第四,前置电压放大级无直流工作电压,如退耦合电容击穿或严重漏电,看更换新件;第五,输入回路耦合电容,电阻开路,更换新件;第六,输入回路铜箔线路开裂,重新焊好;第七,一个声道静躁管击穿。
3、声音轻故障声音轻故障的判断方法同前面介绍的无声故障判别方法一样,即在干扰音量电位器动片时,音箱中声音较轻,便说明故障出在功率放大器电路中。
这一故障也分成左右声道均和只有一个声道轻两种。
检测方法:对于左右声道功率均轻故障,首先测量功率放大器的直流工作电压是否偏低。
如果偏低,测功放电路的静态工作电流,若偏大说明功放电路损坏,如不偏大,说明电源电路有问题。
如集成功放电路很热(烫手),说明有高频自激或集成功放电路损坏。
对于只有一个声道的声轻故障,重点检查交流负反馈网络是否开路。
然后,测量集成功放电路各引脚的直流工作电压,进行左右声道对应作用引脚的电压对比,有异常现象时重点检查。
另外,一个声道静躁管不好(集电极、发射极之间的内阻很小)也有可能导致一个声道声音轻故障。
故障原因及处理措施:第一,直流工作电压低,查电源电路;第二,集成功放电路损坏,更换新件;第三,前置放大管性能不好,更换新件;第四,静躁管性能不好更换新件;第五,交流负反馈网络开路,重焊或更换;第六,前置偏置电压供给电路故障,如退藕电容漏电,更换新件。