哈工大理论力学 I 第8版_10_动量定理
- 格式:ppt
- 大小:1.32 MB
- 文档页数:6
yOyO第十章 质心运动定理 动量定理 习题解[习题10-1] 船A 、B 的重量别离为kN 4.2及kN 3.1,两船原处于静止间距m 6。
设船B 上有一人,重N 500,使劲拉动船A ,使两船靠拢。
若不计水的阻力,求当两船靠拢在一路时,船B 移动的距离。
解:以船A 、B 及人组成的物体系统为质点 系。
因为质点系在水平方向不受力。
即:0=∑ixF,设B 船向左移动了S 米, 则A 船向右移动了6-S 米。
由质点系的动量定理得:t v m m v m B B A A x F 0])([=--人+0])([=-人B B A A v m m v m + B B A A v m m v m )(人+= B B A A v m m v m )(人+=tsm m t s m B A)(6人+=- s m m s m B A )()6(人+=-s s )5.03.1()6(4.2+=-s s )5.03.1()6(4.2+=- s s 3)6(4=- )(43.3724m s ==[习题10-2] 电动机重1P ,放置在滑腻的水平面上,还有一匀质杆,长L 2,重2P ,一端与电动机机轴固结,并与机轴的轴线垂直,另一端则刚连一重3P 的物体,设机轴的角速度为ω(ω为常量),开始时杆处于铅垂位置而且系统静止。
试求电动机的水平运动。
rC 3C v →y解:以电动机、匀质杆和球组成的质点系为研究对象。
其受力与运动分析如图所示。
匀质杆作平面运动。
→→→+=1212C C C C v v v ωl v r C =212cos C x C v t l v -=ωω→→→+=1313C C C C v v v ωl v r C 23=13cos 2C x C v t l v -=ωω因为质点系在水平方向上不受力,所以0==∑ix x F F由动量定理得:t F v t l m v t l m v m x C C C =--+-+-0)]cos 2()cos ([111321ωωωω 00)]cos 2()cos ([111321=--+-+-C C C v t l m v t l m v m ωωωω 111132)cos 2()cos (C C C v m v t l m v t l m =-+-ωωωω 11113322cos 2cos C C C v m v m t l m v m t l m =-+-ωωωω 1)(cos 2cos 32132C v m m m t l m t l m ++=+ωωωωt m m m m m l v C ωωcos )(321321+++=At m m m m m l dtdx C ωωcos )(321321+++=tdt m m m m m l dx C ωωcos )(321321+++=tdt m m m m m l x C ωωcos )(321321⎰+++=)(cos )(321321t td m m m m m l x C ωω⎰+++=t m m m m m l x C ωsin )(321321+++=t P P P P P l x C ωsin )(321321+++=这就是电动机的水平运动方程。
理论力学(哈工大版)第十二章动量矩定理(全面版)资料第八章 动量矩定理8-1 质点系的动量矩(待强化) 一.动量矩的概念质点对点O 的动量矩:v m r v m m O ⨯=)( 质点对轴 z 的动量矩:)()(xy O z v m m v m m = 对着轴看:顺时针为负 逆时针为正质点对点O 的动量矩与对轴z 的动量矩之间的关系:[])( )(v m m v m m z z O = kg·m2/s 。
二.质点系的动量矩 质系对点O 动量矩:i i i i i OO v m r v m mL ⨯==∑∑)(质系对轴z 动量矩:[]z Oii zz L v m m L)(==∑三.质点系的动量矩的计算c c c mv r L L ⨯+=0质点系对任意定点O 的动量矩,等于质点系对质心的动量矩,与将质点系的动量集中于质心对于O 点动量矩的矢量和。
质点系对质心的绝对运动动量矩,等于质点系对随质心平动的参考系的相对运动动量矩。
结论:在计算质点系对于质心的动量矩时,用质点相对于惯性参考系的绝对速度vi ,或用质点相对于固结在质心上的平动参考系的相对速度vi `,所得结果是一样的。
四、刚体的动量矩 1.平动刚体C C C O O v m r v m m L ⨯==)( )(C z z v m m L =2.定轴转动刚体ωZ z J L =3.平面运动刚体C C C C C O m m L v O C L v r L +⨯=+⨯= ω⋅+=C C z z J v m m L )(平面运动刚体对垂直于质量对称平面的固定轴的动量矩,等于刚体随同质心作平动时质心的动量对该轴的动量矩与绕质心轴作转动时的动量矩之和。
8-2 动量矩定理(待强化) 一.质点的动量矩定理)()]([ , )(F m v m F r v r O O m dtdm dt d =⨯=⨯ 质点对任一固定点的动量矩对时间的导数,等于作用在质点上的力对同一点之矩。
第10章 动量定理主要内容10.1.1 质点系动量及冲量的计算质点的动量为v K m =质点系的动量为C i i m m v v K ∑=∑=式中m 为整个质点系的质量;对于刚体系常用i C i i m v k K ∑=∑=计算质点系的动量,式中v Ci 为第i 个刚体质心的速度。
常力的冲量t ⋅=F S力系的冲量⎰∑=∑=21d )(t t i i t t F S S或⎰⎰=∑=2121d )(d )(R t t t t i t t t t F F S10.1.2 质点系动量定理质点系动量定理建立了质点系动量对于时间的变化率与外力系的主矢量之间的关系,即)(d de i tF K ∑= (1)质点系动量的变化只决定于外力的主矢量而与内力无关。
(2)质点系动量守恒定律:当作用于质点系的外力系的主矢量0)(=∑e iF ,质点系动量守恒,即K =常矢量。
或外力系的主矢量在某一轴上的投影为零,则质点系的动量在此轴上的投影守恒,如0=∑x F ,则x K =常量。
10.1.3 质心运动定理质点系的质量与质心加速度的乘积等于外力系的主矢量。
即()())(d d d de i i i c m tM t F v v ∑=∑= 对于刚体系可表示为)(1Cie i ni m F a∑=∑=式中a Ci 表示第i 个刚体质心的加速度。
10.1.4 定常流体流经弯管时的动约束力定常流体流经弯管时,v C =常矢量,流出的质量与流入的质量相等。
若流体的流量为Q ,密度为ρ。
流体流经弯管时的附加动约束力为)(12Nv v F -=''Q ρ 式中v 2,v 1分别为出口处和入口处流体的速度矢量。
基本要求1. 能理解并熟练计算动量、冲量等基本物理量。
2. 会应用动量定理解决质点系动力学两类问题,特别是已知运动求未知约束力的情形。
当外力主矢量为零时,会应用动量守恒定理求运动的问题。
3. 会求解定常流体流经弯管时的附加动反力。
理论力学Ⅰ第 8 版课后习题答案目录:
第一章静力学公理和物体的受力分析
第二章平面力系
第三章空间力系
第四章摩擦
第五章点的运动学
第六章刚体的简单运动
第七章点的合成运动第
八章刚体的平面运动
第九章质点动力学的基本方程
第十章动量定理
第十一章动量矩定理
第十二章动能定理
第十三章达朗贝尔定理
第十四章虚位移定理
第一章
后面章节的课后答案请关注.微-.信.公众号:学糕
后面章节的课后答案请关注.微-.信.公众号:学糕
第二章
后面章节的课后答案请关注.微-.信.公众号:学糕
后面章节的课后答案请关注.微-.信.公众号:学糕
后面章节的课后答案请关注.微-.信.公众号:学糕
后面章节的课后答案请关注.微-.信.公众号:学糕
后面章节的课后答案请关注.微-.信.公众号:学糕
后面章节的课后答案请关注.微-.信.公众号:学糕
后面章节的课后答案请关注.微-.信.公众号:学糕。
哈尔滨工业大学理论力学教研室理论力学(I)第8版习题答案《理论力学(1 第8版)/“十二五”普通高等教育本科国家级规划教材》第1版至第7版受到广大教师和学生的欢迎。
第8版仍保持前7版理论严谨、逻辑清晰、由浅入深、宜于教学的风格体系,对部分内容进行了修改和修正,适当增加了综合性例题,并增删了一定数量的习题。
本书内容包括静力学(含静力学公理和物体的受力分析、平面力系、空间力系、摩擦),运动学(含点的运动学、刚体的简单运动、点的合成运动、刚体的平面运动),动力学(含质点动力学的基本方程、动量定理、动量矩定理、动能定理、达朗贝尔原理、虚位移原理)。
本书可作为高等学校工科机械、土建、水利、航空、航天等专业理论力学课程的教材,也可作为高职高理论力学(I)第8版哈尔滨工业大学理论力学教研室习题答案专、成人高校相应专业的自学和函授教材,亦可供有关工程技术人员参考。
本书配套的有《理论力学学习辅导》、《理论力学(I)第8版哈尔滨工业大学理论力学教研室习题答案理论力学思考题集》、《理论力学解题指导及习题集》(第3版)、《理论力学电子教案》、《理论力学网络课程》、《理论力学习题解答》、《理论力学网上作业与查询系统》等。
理论力学(I)第8版哈尔滨工业大学理论力学教研室课后答案前辅文静力学关注网页底部或者侧栏二维码回复理论力学(I)第8版答案免费获取答案引言第一章静力学公理哈尔滨工业大学理论力学教研室理论力学(I)第8版课后答案理论力学思考题集》、《理论力学解题指导及习题集》(第3版)、《理论力学电子教案》、《理论力学网络课程》、《理论力学习题解答》、《理论力学网上作业与查询系统》等。
理论力学(I)第8版哈尔滨工业大学理论力学教研室课后答案前辅文静力学引言第一章静力学公理和物体的受力分析第二章平面力系第三章空间力系第四章摩擦理论力学(I)第8版哈尔滨工业大学理论力学教研室习题答案§4-4 滚动摩阻的概念运动学引言第五章点的运动学*§5-5 点的速度和加速度在球坐标中的投影思考题习题第六章刚体的简单运动§6-1 刚体的平行移动§6-2 刚体绕定轴的转动§6-3 转动刚体内各点的速度和加速度§6-4 轮系的传动比§6-5 以矢量表示角速度和角加速度·以矢积表示点的速度和加速度思考题习题第七章点的合成运动第八章刚体的平面运动动力学引言第九章质点动力学的基本方程第十章动量定理第十一章动量矩定理第十二章动能定理第十三章达朗贝尔原理第十四章虚位移原理参考文献习题答案索引Synopsis哈尔滨工业大学理论力学教研室理论力学(I)第8版课后答案第十四章虚位移原理。
第 第10 10章 动量定理和 动量定理和动量矩定理动量矩定理第 第10 10章 动量定理和动量矩定理 □ 动量定理、动量矩定理 □ 质心运动定理 □ 讨论□ 质点系相对质心的动量矩定理□动量定理和动量矩定理的应用□ 动量、动量矩动量、动量矩★ 质点动量质点动量 质点的动量质点的动量 (momentum) —— 质点的 质量与质点速度的乘积,称为质点的动量质量与质点速度的乘积,称为质点的动量 = vp m = 动量具有矢量的全部特征,所以动量 是矢量,而且是定位矢量。
是矢量,而且是定位矢量。
所有质点动量的矢量和,称为 所有质点动量的矢量和,称为质点系的动 量 量,又称为 ,又称为动量系的主矢量 动量系的主矢量,简称为 ,简称为动量主矢 动量主矢。
= ii im v p å = ★ 质点系动量质点系动量 质点系运动时,系统中的所有质点在每一瞬时都具有各自的动量矢。
质点系中所有质点动量矢的集合,称为 的动量矢。
质点系中所有质点动量矢的集合,称为动量系。
动量系。
= ) , , , ( 2 2 1 1 nn m m m v v v p × × × = 根据质点系质心的位矢公式根据质点系质心的位矢公式 iii Cmm i i i C å = rr iii Cmm i i i C å = vv Cm v p =★ 冲量冲量 作用力与作用时间的乘积称为常力的冲量,用I 表示即 I = F t若作用力F 为变量,在微小时间间隔d t 内,F 的冲量称为元冲量。
即 d I = F d t力F 在作用时间t 内的冲量是矢量积分ò = ttd F I★ 质点动量矩 ★ 质点系动量矩□ 动量矩动量矩( v r v M mm O ´ = ) ( 质点对于点 质点对于点OO 的位矢与质点 动量叉乘,所得到的矢量称为 质点对于点 质点对于点O O 的动量矩。