新型智能交通信号控制系统(终)
- 格式:doc
- 大小:2.08 MB
- 文档页数:9
智能交通信号控制技术手册一、引言智能交通信号控制技术是现代城市交通管理的重要组成部分,通过应用计算机、通信、传感器等信息技术手段,实现对交通信号的自动控制和优化,提高城市交通系统的效率和安全性。
本手册旨在介绍智能交通信号控制技术的原理、应用和操作方法,为相关从业人员提供指导和参考。
二、智能交通信号控制技术的原理智能交通信号控制技术基于交通流理论和控制理论,通过对交通流量和信号灯状态的实时监测和分析,确定最优的信号控制策略。
主要原理包括:1.交通流量检测:利用传感器、摄像头等设备对交叉口车辆和行人流量进行实时监测,获取准确的交通数据。
2.信号状态优化:根据实时监测的交通数据,结合交通流理论和控制算法,确定最优的信号灯状态组合,以达到最大化交通效率的目标。
3.交通决策与控制:通过计算机和通信技术,实现交通信号灯的自动控制和协调。
根据实际情况进行决策,合理调整信号灯周期和绿灯时间,以适应不同时段和道路情况。
三、智能交通信号控制技术的应用智能交通信号控制技术广泛应用于城市交通管理、智能交通系统和智能交通设备等方面。
1.城市交通管理:通过智能交通信号控制技术,对城市道路交通进行智能调度,合理分配交通资源,缓解交通压力,提高交通运行效率。
2.智能交通系统:智能交通信号控制技术是智能交通系统的重要组成部分,通过与其他智能交通设备的联动,实现对交通流量、车辆行驶状态等信息的全面监控和分析。
3.智能交通设备:智能交通信号控制技术也应用于智能交通设备的研发和生产,如智能交通信号灯、智能交通检测设备等,提升设备的智能化水平,提高设备性能和可靠性。
四、智能交通信号控制技术的操作方法智能交通信号控制技术的操作包括以下几个步骤:1.系统设置与参数调整:根据实际道路情况,对智能交通信号控制系统进行设置和参数调整,包括交通流量监测区域、信号灯状态组合、延时时间等。
2.数据采集与分析:通过传感器、摄像头等设备对交通流量进行实时采集,并进行数据分析,获取交通流量、车速、拥堵情况等信息。
面向智能交通的智能交叉路口信号控制系统智能交通是现代城市发展的必然产物,而智能交叉路口信号控制系统则是实现智能交通的重要组成部分。
本文将从智能交叉路口信号控制系统的需求、技术原理、实现方法等方面进行详细介绍。
一、智能交叉路口信号控制系统的需求在传统的交通信号灯控制系统中,信号的相位、时长和配时方案都是固定的,无法根据实时交通情况进行调整。
这就导致了交叉路口拥堵、行车速度低下等问题。
因此,智能交叉路口信号控制系统的出现解决了这些问题。
智能交叉路口信号控制系统的主要需求包括以下几个方面:1. 实时响应能力:系统能够根据实时的交通状况,及时调整信号的相位和时长,以提高交通效率和减少拥堵。
2. 智能化决策能力:系统能够根据不同时间段、不同路段的交通流量,以及交叉口的道路网络结构和拓扑关系,智能化地进行信号配时决策。
3. 协调性和平衡性:系统能够实现不同道路上的信号互相协调,并在保证主干道通畅的同时,适度减少次干道的等待时间,提高交通流量。
4. 可扩展性和可靠性:系统能够灵活扩展,适应不同规模和类型的交通路口,并能够保证系统的稳定运行。
二、智能交叉路口信号控制系统的技术原理智能交叉路口信号控制系统的实现离不开以下几种关键技术:1. 实时交通数据采集与处理技术:通过交通视频监控、车辆感知技术等手段,实时采集交通流量、车速、车辆类型等数据,并进行处理和分析。
2. 交通流量预测技术:通过对历史数据和实时数据的分析,可以对未来一段时间内的交通流量进行预测,为信号配时决策提供依据。
3. 信号相位优化技术:通过优化信号相位的配时方案,使各个交叉口的信号互相配合,最大程度地提高交通流量和通行效率。
4. 通讯技术:将交通信号控制系统与中心控制中心进行连接,实现实时的数据传输、交互和协调。
5. 智能算法技术:利用人工智能、机器学习等技术,对交通数据进行分析和建模,实现信号配时决策的智能化。
三、智能交叉路口信号控制系统的实现方法智能交叉路口信号控制系统的实现方法主要有以下几种:1. 基于传统控制方法的优化:通过对现有控制算法进行改进和优化,来减少交通拥堵和提高交通效率。
1引言1.1 本课题的意义城市交通控制系统主要是用于城市交通数据监测、交通信号灯控制与交通疏导的计算机综合管理系统,它已经成为现代城市交通监控指挥系统中最重要的组成部分。
因此,如何利用先进的信息技术改造城市交通系统已成为城市交通管理者的共识[1]。
高效的交通灯智能控制系统是解决城市交通问题的关键。
随着经济的快速发展,城市中的车辆逐渐增多,交通拥挤和堵塞现象日趋严重,引起交通事故频发、环境污染加剧等一系列问题。
本设计采用单片机控制,实现交通信号灯的智能控制。
系统根据东西和南北两个方向的车辆情况,自动进行定时控制和智能控制方式的切换,当某一方向没有车辆时,系统会自动切换使另一方向车辆通行。
当两个方向都有车辆时,按照定时控制方式通行。
本设计与普通的交通信号控制系统相比,其优点是可根据路口情况的不同,对交通灯进行差异化控制,从而达到使道路更为通畅的目的,最大限度的缓解交通拥挤情况[2]。
交通信号控制系统是现代城市交通控制和疏导的主要手段。
而作为城市交通基本组成部分的平面交叉路口,其通行能力是解决城市交通问题的关键,而交通信号灯又是交叉路口必不可少的交通控制手段。
随着计算机技术和自动控制技术的发展,以及交通流理论的不断发展完善,交通运输组织与优化理论、技术的不断提高,国内外逐步形成了一批高水平有实效的城市道路交通控制系统[3]。
1.2 国内外发展状况交通信号控制系统是现代城市交通控制和疏导的主要手段。
而作为城市交通基本组成部分的平面交叉路口,其通行能力是解决城市交通问题的关键,而交通信号灯又是交叉路口必不可少的交通控制手段。
随着计算机技术和自动控制技术的发展,以及交通流理论的不断发展完善,交通运输组织与优化理论、技术的不断提高,国内外逐步形成了一批高水平有实效的城市道路交通控制系统[4]。
国外现状1 澳大利亚SCAT系统SCATS采取分层递阶式控制结构。
其控制中心备有一台监控计算机和一台管理计算机,通过串行数据通讯线路相连。
《新型交通信号控制系统施工方案(智能交通管理)》一、项目背景随着城市的快速发展和汽车保有量的不断增加,交通拥堵问题日益严重。
传统的交通信号控制系统已经难以满足现代交通管理的需求。
为了提高交通效率,改善交通状况,提升城市交通管理水平,决定实施新型交通信号控制系统项目。
新型交通信号控制系统采用先进的智能技术,能够实时监测交通流量,自动调整信号灯时间,实现交通信号的智能化控制。
该系统将大大提高道路通行能力,减少交通拥堵,降低交通事故发生率,为市民提供更加安全、便捷、高效的出行环境。
二、施工步骤1. 现场勘查- 组织专业技术人员对施工区域进行详细的现场勘查,了解道路状况、交通流量、周边环境等情况。
- 确定交通信号控制设备的安装位置、线路走向、基础施工要求等。
2. 基础施工- 根据设计要求,进行交通信号控制设备基础的施工。
基础施工包括挖掘、浇筑混凝土、预埋管线等工作。
- 确保基础的强度和稳定性,满足设备安装的要求。
3. 设备安装- 安装交通信号控制机、信号灯、倒计时器、车辆检测器等设备。
- 按照设备安装说明书进行正确安装,确保设备的牢固性和可靠性。
4. 线路敷设- 敷设交通信号控制设备之间的连接线路,包括电源线、信号线、通信线等。
- 线路敷设应符合相关标准和规范,确保线路的安全、可靠。
5. 系统调试- 对安装好的交通信号控制系统进行调试,包括设备调试、软件调试、系统联调等。
- 调试过程中,要对系统的各项功能进行测试,确保系统能够正常运行。
6. 验收交付- 组织相关部门对施工完成的交通信号控制系统进行验收。
- 验收合格后,将系统交付使用,并提供相关的技术资料和培训服务。
三、材料清单1. 交通信号控制机2. 信号灯(红、黄、绿)3. 倒计时器4. 车辆检测器5. 电缆、电线6. 管材7. 混凝土8. 基础预埋件9. 螺丝、螺母等紧固件10. 工具及设备(如起重机、电焊机、测试仪等)四、时间安排1. 现场勘查:[具体日期区间 1],共计[X]天。
智能交通信号灯控制系统的设计与实现随着城市交通的日益拥挤和人们对交通安全的不断关注,交通信号灯已成为城市道路上不可或缺的一部分。
而传统的交通信号灯控制方式无法满足城市交通的需要,因此出现了智能交通信号灯控制系统。
本文将介绍智能交通信号灯控制系统的设计与实现过程。
一、需求分析智能交通信号灯控制系统需要满足以下需求:1. 实时掌握道路交通情况,根据车辆流量、车速等因素进行智能控制。
2. 能够自适应道路状况,调整信号灯的绿灯保持时间和黄灯时间。
3. 具有预测性能,可以预测交通拥堵情况并进行相应的调节。
4. 支持多种车辆检测方式,包括摄像头、地感线圈等。
5. 具有良好的稳定性和可靠性,能够保证长时间稳定运行。
二、系统架构设计智能交通信号灯控制系统的架构由三部分组成:硬件平台、软件平台和通信平台。
1. 硬件平台硬件平台主要包括交通信号灯、车辆检测设备、控制器等。
交通信号灯可采用LED灯,具有能耗低、寿命长等优点;车辆检测设备可选用车辆识别仪、摄像头、地感线圈等方式进行车辆检测;控制器是系统的核心部分,负责信号灯的控制和车辆数据的分析。
2. 软件平台软件平台主要包括数据采集、算法运行、控制指令生成等功能。
数据采集模块负责采集车辆数据,经过算法运行模块对数据进行分析,生成控制指令并传输给控制器。
3. 通信平台通信平台主要是将硬件平台和软件平台进行连接,通信平台要求通信速度快、可靠性高。
可以采用以太网、WiFi等方式进行通信。
三、系统实现智能交通信号灯控制系统的实现过程可以分为以下几个步骤:1. 数据采集通过设置合理的车辆检测设备,对路口的车辆数据进行采集。
采集到的车辆数据包括车辆数量、车辆速度等。
2. 数据分析将采集到的车辆数据传输到软件平台进行分析,根据车辆流量、车速等因素进行智能控制,并生成相应的控制指令传输给控制器。
3. 控制器控制信号灯控制器根据生成的控制指令进行信号灯的控制。
通过调整信号灯绿灯保持时间和黄灯时间,达到使交通流畅的效果。
智能交通城市交通信号控制系统在现代城市的快节奏生活中,交通拥堵已成为一个普遍存在且令人头疼的问题。
为了有效地管理和优化城市交通流量,提高道路通行效率,保障交通安全,智能交通中的城市交通信号控制系统应运而生。
城市交通信号控制系统,简单来说,就是通过各种技术手段和策略,对道路交叉口的信号灯进行智能化控制,以实现交通流的合理分配和疏导。
它就像是城市交通的“指挥家”,根据实时的交通状况,灵活地调整信号灯的时长,确保车辆和行人能够安全、高效地通过路口。
一个完善的城市交通信号控制系统通常由多个部分组成。
首先是交通数据采集设备,如摄像头、地磁传感器、雷达等,它们分布在道路的各个关键位置,实时收集交通流量、车速、车辆排队长度等信息。
这些数据就像是系统的“眼睛”,为后续的决策提供了依据。
接下来是数据传输网络,负责将采集到的交通数据快速、准确地传输到控制中心。
控制中心是整个系统的“大脑”,里面运行着复杂的算法和软件,对接收的数据进行分析和处理,并根据预设的规则和策略生成信号灯控制指令。
然后是信号灯控制设备,它们接收控制中心的指令,对信号灯的时长进行调整。
此外,还有信息发布系统,将交通状况和信号灯的变化信息及时传递给驾驶员和行人,例如道路上的可变情报板、手机应用程序等。
那么,城市交通信号控制系统是如何工作的呢?以常见的定时控制模式为例,在交通流量相对稳定的时段,信号灯按照预先设定的固定时长进行切换。
但这种模式的缺点也很明显,如果交通流量发生了较大变化,就容易导致拥堵。
为了克服定时控制的不足,感应控制模式出现了。
它能够根据车辆到达路口的情况实时调整信号灯时长。
比如,当某个方向的车辆排队较长时,系统会自动延长该方向的绿灯时间,以尽快疏散车辆。
而在更先进的自适应控制模式中,系统不仅考虑当前的交通状况,还能对未来一段时间的交通流量进行预测,并据此动态调整信号灯时长。
这种模式需要更强大的数据处理能力和更精准的预测算法,但能够更好地适应复杂多变的交通环境。
智能交通信号灯控制系统原理随着城市化进程的加速和车辆数量的快速增长,交通拥堵问题日益突出。
为了提高交通效率和减少交通事故的发生,智能交通信号灯控制系统应运而生。
该系统利用先进的技术手段,基于交通流量和实时道路状况,对信号灯进行智能化控制,以实现交通信号的合理分配和调节。
智能交通信号灯控制系统基本原理如下:1. 数据采集:系统通过各种传感器和监测设备,如车辆检测器、摄像头、雷达等,实时采集交通流量、车辆速度、车辆类型等数据,并将其传输到中央控制中心进行处理。
2. 数据处理:中央控制中心对采集到的数据进行实时处理和分析。
通过算法和模型,对交通流量、道路拥堵程度等进行评估,并预测未来的交通状况。
3. 决策制定:基于数据处理的结果和预测,中央控制中心制定合理的信号灯控制策略。
考虑到不同道路的车流量、车速、优先级等因素,系统能够自动地调整信号灯的时长和节奏,以最优化地分配交通流量。
4. 信号灯控制:根据中央控制中心的信号灯控制策略,各个交通信号灯进行相应的调整。
通过网络连接,中央控制中心可以实时发送控制指令到各个信号灯设备,实现信号灯的智能控制。
5. 实时监测与调整:系统不仅能够实时监测交通状况和信号灯工作情况,还可以根据实时的数据反馈进行调整。
如果发现某个路口出现拥堵,系统会立刻做出响应,通过增加该路口的绿灯时长或调整其他信号灯的策略来缓解拥堵。
智能交通信号灯控制系统的优势在于其智能化和自适应性。
相比传统的定时控制方式,智能交通信号灯控制系统能够根据实际交通状况进行动态调整,提高交通流量的利用率和道路通行能力。
同时,系统还能够根据道路负载情况合理分配交通信号,减少交通事故的发生,提高交通安全性。
智能交通信号灯控制系统还可以与其他交通管理系统进行联动。
例如,可以与智能车辆系统进行通信,实现车辆与信号灯的互动,提前调整信号灯的状态,减少车辆的停车等待时间。
还可以与交通监控系统、交通指挥中心等进行数据共享和信息交互,实现整个交通网络的协调管理。
智能交通城市交通信号控制系统智能交通:城市交通信号控制系统的革命随着科技的快速发展和城市化进程的加速,智能交通系统成为了现代城市不可或缺的一部分。
其中,城市交通信号控制系统作为智能交通的核心组成部分,对于提高交通运行效率、减少交通拥堵、降低交通事故发生率等方面具有显著的影响。
传统的城市交通信号控制系统通常依赖于固定的时序方案,这种方案往往无法适应城市交通的动态变化,无法根据实时交通情况进行调整。
而智能交通信号控制系统则通过传感器、摄像头等设备获取实时交通信息,如车辆流量、行人流量、道路状况等,并通过计算机进行数据分析,从而实现对交通信号的智能控制。
智能交通信号控制系统的优势在于其能够实时感知交通情况,并根据实际情况调整信号灯的灯光时序,从而有效地缓解交通拥堵。
同时,通过对路口的监控,智能交通信号控制系统还能够及时发现交通事故,并迅速做出反应,减少交通事故的发生。
智能交通信号控制系统还能够根据不同时间段、不同天气情况等条件进行精细化控制,提高城市交通的整体运行效率。
然而,实现智能交通信号控制系统的广泛应用仍面临一些挑战。
系统的建设需要大量的资金投入,这对于一些财政紧张的城市来说是一个巨大的挑战。
系统的正常运行需要依赖于大量的传感器、摄像头等设备,这些设备的维护和更新也是一个重要的考虑因素。
对于数据的处理和决策的制定需要强大的计算机性能和高效的算法支持,这也是智能交通信号控制系统能否成功运行的关键因素之一。
智能交通信号控制系统是城市智能交通的重要组成部分,对于提高城市交通的运行效率、缓解交通拥堵、减少交通事故等方面具有显著的作用。
虽然实现这一系统的广泛应用仍面临一些挑战,但随着技术的不断进步和城市发展的需要,智能交通信号控制系统将会在未来的城市交通中发挥越来越重要的作用。
随着城市化进程的加速,城市交通问题日益突出,如交通拥堵、交通事故等。
为了解决这些问题,智能计算技术被广泛应用于城市交通信号控制系统中。
HiCon智能交通信号控制系统青岛海信网络科技股份有限公司2008年1月目录1海信交通信号控制系统介绍 (1)1.1系统概述 (1)1.2系统特点 (2)1.3H I C ON交通信号控制系统软件功能 (2)1.4HSC-100交通信号机 (4)1.4.1概述 (4)1.4.2 3.4.2信号机的生产和检测 (5)1.4.3信号机功能 (7)1.4.4信号机性能指标 (7)1海信交通信号控制系统介绍1.1系统概述“HiCon交通信号控制系统”是我公司开发的交通控制领域高端产品,该产品与国内著名高校强强联合,应用国际领先技术,结合国内复杂交通特征及国外城市交通特点研发,为同内外城市提供完备的交通管理与控制方案、自适应控制系统软件及系统兼容的信号机,我公司对该产品具备自主知识产权。
“HiCon交通信号控制系统”是包括HiCon交通信号控制系统中心软件、HSC系列交通信号机和CMT交通信号机配置与维护工具软件。
图1 海信交通信号控制系统结构图系统的结构图如上图所示,分为管理控制平台、中心控制级、通信级和路口控制级。
路口级交通信号机通过串行通信或以太网连接到控制中心,通信协议采用的是NTCIP。
路口信号机实时从路口采集交通流量、时间占有率、速度等信息,并实时上传到中心机级,存入实时和历史数据库,为路口的统计分析提供数据,提供辅助决策支持和交通信号设备维护与管理。
控制中心根据实时的检测信息对当前的交通状态进行合理决策,对所控制的路口信号配时参数进行实时优化,并将优化结果下达给信号机执行,目的在于减少车辆及行人等待时间,缓解城市交通拥堵,降低环境污染,实现对城市交通的最佳控制。
1.2系统特点(1)系统的应用范围广,可以用于城市的一般交叉口控制、也可以用于快速路、高速路的匝道、车道灯的控制,同时还能用于公交优先的控制。
(2)系统采用的是NTCIP通信协议,NTCIP作为美国乃至整个北美地区的智能交通系统的标准通信协议,体系完整,通用性与兼容性好。
智慧交通信号灯控制系统设计方案智慧交通信号灯控制系统设计方案一、项目背景及目标交通信号灯是城市道路交通的重要组成部分,它的合理控制能够提高交通效率、减少交通事故,保障道路交通的安全和顺畅。
智慧交通信号灯控制系统可以通过智能化的技术手段对交通信号灯进行优化和调整,从而提高信号灯控制的效果和精度。
本设计方案的目标是设计一个智慧交通信号灯控制系统,该系统能够实时监测交通流量和车辆状况,根据实际情况灵活调整信号灯的控制策略,提高交通流量和减少拥堵,确保道路交通的安全和顺畅。
二、系统架构及主要功能1. 系统架构智慧交通信号灯控制系统主要包括以下几个模块:(1) 信号灯控制模块:负责对信号灯状态进行控制和调整,根据实时的交通流量和车辆状况,灵活调整信号灯的时长和间隔。
(2) 数据采集模块:负责采集实时的交通流量数据、车辆状况数据和环境数据,为信号灯控制模块提供决策依据。
(3) 数据处理模块:对采集到的数据进行处理和分析,提取有用的信息,为信号灯控制模块提供决策依据。
(4) 通信模块:负责与交通监控中心、车辆导航系统等其他系统进行通信,接收和发送相关信息。
(5) 控制中心:对整个智慧交通信号灯控制系统进行监控和管理,包括调度信号灯、分析数据、制定控制策略等功能。
2. 主要功能(1) 实时监测交通流量和车辆状况:通过数据采集模块采集实时的交通数据和车辆数据,包括车辆数量、速度、密度等信息。
(2) 数据分析和处理:对采集到的数据进行处理和分析,提取有用的信息,包括交通流量的峰值、拥堵状况等。
(3) 信号灯控制策略优化:根据采集到的数据和分析结果,优化信号灯的控制策略,包括信号灯的时长、间隔等。
(4) 与其他系统的通信:与交通监控中心、车辆导航系统等其他系统进行通信,接收和发送相关信息。
(5) 控制中心管理:对整个智慧交通信号灯控制系统进行监控和管理,包括调度信号灯、分析数据、制定控制策略等功能。
三、关键技术和创新点1. 交通流量和车辆状况的实时监测技术:采用传感器和图像识别等技术实时监测交通流量和车辆状况,提高数据采集的准确性和精度。
智能交通信号控制系统一、信号控制的基本概念(一) 信号相位。
信号机在一个周期有若干个控制状态,每一种控制状态对某些方向的车辆或行人配给通行权,对各进口道不同方向所显示的不同灯色的组合,称为一个信号相位。
我国目前普遍采用的是两相位控制和多相位控制。
(二)信号周期。
是指信号灯各种灯色显示一个循环所用的时间,单位微秒。
信号周期又可分为最佳周期时间和最小周期时间。
(三)绿信比。
是指在一个周期内,有效绿灯时间与周期之比。
周期相同,各相位的绿信比可以不同。
(四)相位差。
是指系统控制中联动信号的一个参数。
它分为相对相位差和绝对相位差。
相对相位差是指在各交叉口的周期时间均相同的联动信号系统中,相邻两交叉口同相位的绿灯起始时间之差,用秒表示。
此相位差与周期时间之比,称为相对相位差比,用百分比表示。
在联动信号系统中选定一个标准路口,规定该路口的相位差为零,其他路口相对于标准路口的相位差,称为绝对相位差。
(五)绿灯间隔时间。
从失去通行权的上一个相位绿灯结束到得到通行权的下一个相位另一方向绿灯开始的时间,称为绿灯间隔时间。
在我国,绿灯间隔时间为黄灯加红灯或全红灯时间。
当自行车和行人流量较大时,由于自行车和行人速度较慢,为保证安全,需进行有效调整,可以适当增加绿灯间隔时间。
此外,信号控制的基本参数还有饱和流率、有效绿灯时间、信号损失时间、黄灯时间、交叉口的通行能力与饱和度等。
信号灯的分类:(一)交通信号灯,按用途可分为车辆交通信号灯、行人交通信号灯、方向交通信号灯和车道交通信号灯等。
(二)交通信号灯,按操作方式可分为定周期控制信号灯和感应式控制信号灯。
感应式控制信号灯又分为半感应控制和全感应控制两种。
(三)交通信号灯,按控制范围可分为单个交叉路口的交通控制、干道交通信号联动控制和区域交通信号控制系统,即“点控”、“线控”、“面控”三种。
另外,有点信号灯可以设计成信号灯色倒计时显示屏,或者黄灯闪烁屏以提高绿灯时间的利用率。
智能交通系统中的自适应交通信号控制技术详解近年来,随着城市化进程的加速,交通拥堵问题也日益突出。
为了应对交通拥堵,提高交通效率以及安全性,智能交通系统被广泛引入。
其中,自适应交通信号控制技术作为智能交通系统的核心之一,在交通管理中扮演着重要角色。
一、背景介绍在传统的交通信号控制系统中,信号灯的工作模式是按照预定的时间间隔进行切换。
然而,这种固定的时间间隔控制方式无法适应道路交通流量的实时变化,容易导致交通拥堵。
因此,自适应交通信号控制技术应运而生,能够根据实时交通情况和路口需求灵活调整信号灯的切换时间,从而实现交通流的优化。
二、基本原理自适应交通信号控制技术是利用传感器和控制器来实现交通信号灯的自动调整,以达到最佳交通流量分配的目的。
首先,通过交通流采集设备收集实时的交通流数据,例如车辆数量、车速、车道利用率等信息。
然后,将这些数据传输给控制器进行处理,控制器根据实时数据分析来决定信号灯的开放时间和关断时间。
最后,信号灯根据控制器的指令实现自动调整。
三、技术特点自适应交通信号控制技术具有以下几个特点:1. 实时性:自适应交通信号控制技术能够实时采集和分析交通数据,根据实时的交通状况进行信号灯的调整,以实现最佳的交通流量分配。
2. 灵活性:自适应交通信号控制技术能够根据交通需求进行灵活调整,例如可以根据不同时间段的交通流量变化来调整信号灯的切换时间。
3. 自适应性:自适应交通信号控制技术能够根据不同道路特点和交通状况进行自适应调整,从而适应不同的交通情况。
4. 节能环保:通过优化交通流量分配,自适应交通信号控制技术可以减少车辆的停车时间和行驶距离,从而减少交通排放和能源消耗。
四、应用案例目前,自适应交通信号控制技术已经在一些城市的道路交通管理中得到了广泛应用,取得了显著效果。
例如,在某市的某个十字路口,通过安装摄像头和地磁传感器等设备,实时监测车辆数量和车辆速度等信息,并传输给信号灯控制器。
控制器根据监测到的实时数据,精确计算出车辆通过的时间和信号灯的切换时间,从而最大限度地减少交通拥堵,提高交通效率。
《新型交通信号控制系统施工方案(智能交通管理)》一、项目背景随着城市的不断发展和交通流量的持续增加,传统的交通信号控制系统已经难以满足现代交通管理的需求。
为了提高交通效率、减少拥堵、提升交通安全,引入新型交通信号控制系统成为必然选择。
本项目旨在为[具体城市名称]安装新型交通信号控制系统,实现智能交通管理,提升城市交通的整体运行水平。
新型交通信号控制系统将采用先进的传感器技术、通信技术和数据分析算法,能够实时监测交通流量、优化信号配时、提高路口通行能力。
该系统还将具备远程监控和管理功能,方便交通管理部门及时调整信号方案,应对突发交通状况。
二、施工步骤1. 现场勘查组织专业技术人员对施工区域进行详细的现场勘查,了解路口的交通流量、道路布局、周边环境等情况。
确定交通信号灯杆、控制柜等设备的安装位置,以及电缆敷设的路径。
2. 基础施工(1)根据设计要求,在确定的位置进行信号灯杆和控制柜基础的施工。
基础采用混凝土浇筑,确保其强度和稳定性。
(2)在基础施工过程中,预留好电缆管道和接地装置。
3. 设备安装(1)信号灯杆安装:采用吊车将信号灯杆吊装到基础上,调整好垂直度后进行固定。
安装信号灯杆时,要确保其高度和角度符合设计要求。
(2)交通信号灯安装:将交通信号灯安装在信号灯杆上,连接好电缆。
信号灯的安装要牢固、位置准确,确保其可视性良好。
(3)控制柜安装:将控制柜安装在指定位置,连接好电源和通信线路。
控制柜的安装要便于操作和维护。
4. 电缆敷设(1)根据现场勘查确定的电缆敷设路径,进行电缆敷设。
电缆采用地下敷设方式,避免影响道路美观和交通。
(2)在电缆敷设过程中,要注意保护电缆,避免电缆受损。
同时,要做好电缆的标识,方便日后维护。
5. 系统调试(1)设备安装完成后,进行系统调试。
调试内容包括交通信号灯的亮度、颜色、闪烁频率等参数的调整,以及信号配时的优化。
(2)通过模拟交通流量,对新型交通信号控制系统进行测试,确保其能够正常运行,满足交通管理的需求。
1.1 概述交通信号控制系统是智能交通管理系统的重要子系统,其主要功能是自动协调和控制整个控制区域内交通信号灯的配时方案,均衡路网内交通流运行,使停车次数、延误时间及环境污染减至最小,充分发挥道路系统的交通效益。
必要时,可通过控制中心人工干预,直接控制路口信号机执行指定相位,强制疏导交通。
NATS 交通信号控制系统用于城市道路交通的控制与管理,可以提高车速、减少延误、减少交通事故、降低能耗和减轻环境污染。
从上个世纪八十年代中期以来,中国电子科技集团公司第二十八研究所就开始了NATS 系统和路口交通信号控制机的研制开辟。
该系统通过了国家鉴定验收,获得了国家重大科技攻关成果奖、公安部科技进步一等奖和国家科技进步三等奖。
NATS 交通信号控制系统特点:适合中国城市混合交通的特点,具有自行车控制功能;系统支持多种硬件平台(微机、工作站以及大、中、小型计算机),多种软件平台(WINDOWS 98/NT/2000/XP);支持多种外部设备(动态地图板、室内信息板、室外信息板、违章记录仪…);支持多种系统互联(电视监视系统、地理信息系统、车辆定位系统、违章捕捉系统、信息管理系统… );系统配置灵便、裁剪方便;支持远程控制和维护;支持多种通信方式 (光缆、电话线、GPRS/CDMA 无线通信、城域网… );系统人机界面友好,显示内容丰富,操作使用方便;与国外同类系统相比,具有很高的性能价格比。
1.2 系统结构1.2.1 NATS 交通信号控制系统采用三级分布式递阶基本控制结构:中心控制级, 区域控制级,路口控制级(参见下图)。
1.2.2区域监控台 动态地图板 室内信息板 违章捕捉仪数据通信控制机(光端机)光纤光端机路口信号机 (光端机) 路口信号机 (光端机)室外情报板 (光端机)室外情报板车 辆 检 测 器交 通 信 号 灯 车 辆 检 测 器 交通信号灯 … … 中心控制级区域控制级 1 区域控制级 2 区域控制级 N路口控制级 路口控制级 路口控制级 路口控制级 路口控制级 路口控制级其中:区域控制计算机监视、控制、协调整个系统的运行,可同时控制128 个外部设备,如果外部设备超过128 路,可采用多台区域控制计算机。
智能交通方案智慧交通信号控制智慧交通信号控制智能交通方案是指通过应用现代科技手段对城市交通进行管理和控制的一种方法。
其中,智慧交通信号控制作为一个重要的环节,使用先进的技术和算法,以实现交通流的优化、拥堵的缓解以及交通安全的提升。
本文将针对智慧交通信号控制进行论述。
一、智慧交通信号控制的背景与意义随着城市化进程的加快,交通拥堵成为人们生活中的烦恼之一。
传统的交通信号控制方式已难以满足城市交通管理的需求,需要引入智能化的技术手段来解决问题。
智慧交通信号控制通过算法和数据分析,可以根据实时的交通情况进行信号灯的优化调整,减少交通拥堵,提高交通效率和安全性。
二、智慧交通信号控制的技术与方法1. 传感器技术智慧交通信号控制需要获取准确的交通数据作为依据,传感器技术的应用成为实现这一目标的重要手段。
包括使用摄像头、雷达等传感器设备获取交通状况、车辆数目等信息,并将数据传输至交通控制中心进行处理和分析。
2. 信号灯优化算法智慧交通信号控制需依靠算法来优化信号灯的时序和配时方案。
常用的算法包括最短路径算法、遗传算法和模糊控制算法等。
这些算法能够根据交通数据和交通规则,动态调整信号灯的配时,以减少等待时间和行车阻塞,提高交通效率。
3. 数据分析与预测通过对历史交通数据的分析,将来的交通流量进行预测,可以帮助交通管理部门做出更有效的决策。
这些预测结果可以用于优化信号灯配时、路线规划等,以及制定相应的交通管制策略,从而提高整体的交通运行效率。
三、智慧交通信号控制的应用实践智慧交通信号控制已经在一些城市得到了实际应用,取得了较好的效果。
例如,在新加坡和深圳等地,智慧交通信号控制系统能够根据实时的交通数据,实现自适应的信号灯配时,以减少交通拥堵和车辆排放量。
此外,智慧交通信号控制还可以与其他智能交通设施相结合,形成更为完善的交通管理体系。
例如,与智能车辆和智能交通指示牌相结合,可以实现车辆之间的协同行驶和实时信息的传播,提高整体的交通运行效率和安全性。
智能交通信号控制系统设计与实现随着城市化不断发展,交通拥堵成为了一个日益严重的问题。
如何让交通更加流畅,让交通规划更加无缝,已经成为交通管理部门的重要课题。
智能交通信号控制系统作为一种新型的交通管理手段被广泛研究。
这篇文章将详细介绍智能交通信号控制系统的设计与实现。
1.系统架构智能交通信号控制系统主要由以下模块组成:1)传感器模块:包括交通流速传感器、环境监测传感器和车辆检测传感器等,用于采集车辆的信息,包括车辆密度、速度、流量等。
2)控制单元:主要由一个高性能的计算机和控制系统组成,用于调度各个路口的红绿灯时长以及车辆的通行方式等。
3)通信模块:主要负责各个控制单元之间的数据传输,以便进行系统协调。
2.系统的功能智能交通信号控制系统具有以下主要功能:1)优化交通管理:根据道路交通流量情况和不同时间段的交通状况,对红绿灯信号进行自适应调节,进而提升道路通行效率。
2)实时监测:通过传感器模块对交通车辆进行数据采集,及时分析路况情况,以便对交通流量进行智能调配。
实现交通流量实时监测,以便对路况变更做出及时反应。
3)提高安全系数:智能交通信号控制系统通过计算机控制信号灯,避免交通事故的发生。
4)节约资源:在不影响用户体验和车辆通行质量的情况下,进行节约资源的灯光调节,避免资源浪费。
3.系统的实现方法1)车辆检测系统:采用一系列车辆检测传感器,通过接收车辆探测器传回的数据,计算出路段中车辆的数量和速度,并进行实时的数据分析。
这些数据会分配到每个路口的交通控制器中,在合适的时间进行灯光控制。
2)智能交通控制器:主要负责交通信号的控制,保证不同交通路段的车流能够顺利通过。
其具体实现方法包括:a. 了解路况:对周边路况进行智能监测,将所有的信息都送入计算机终端处理。
b. 确定控制方法:通过计算机进行智能宏观控制,在降低拥堵程度的同时,避免交通事故的发生。
c. 调整时间:随着不同时间段的到来,路况的变化也会有所不同,智能交通系统可以实时地根据路况变化改变路口的信号灯时间,以便优化交通流量。
基于大数据的智能交通控制系统随着城市化进程不断加速,城市交通问题也日益凸显。
城市交通拥堵、交通事故频发、尾气污染等问题影响了人们的出行和健康,也制约了城市发展的步伐。
面对这些问题,智能交通控制系统成为了城市交通管理的一种重要手段。
智能交通控制系统是一种利用现代信息技术和大数据分析手段,对城市交通进行智能化管理和控制的系统。
它根据城市交通状况,自动调整交通信号灯的时间,优化道路通行流量,减少交通拥堵。
同时,它还可以实现交通数据的采集和分析,对交通事故进行预警和处理,提高城市交通的安全性和可靠性。
基于大数据的智能交通控制系统,是一种新型的智能交通控制系统。
它通过大数据分析,实现对城市交通整体状况的掌握和预测,能够更加精准地进行交通控制和管理。
下面,我们从数据采集、数据分析、交通控制三个方面,详细介绍基于大数据的智能交通控制系统的运作原理。
一、数据采集基于大数据的智能交通控制系统,需要获取大量的交通数据以支撑其功能。
这些数据包括交通流量、交通速度、车辆密度、交通事故等,需要由多种数据采集设备进行采集,包括车载设备、交通摄像头、传感器等。
车载设备是一种装置在车内的数据采集设备。
它可以通过GPS 位置信息、车速、方向等参数获取车辆行驶状态,并将这些数据传输到远程服务器。
交通摄像头可以捕捉车辆行驶路线、车速等信息,传感器则可以检测车辆状态、路面温度等。
二、数据分析交通数据的采集只是第一步,如何对这些数据进行分析和处理是更为关键的问题。
基于大数据的智能交通控制系统通过将交通数据进行整合、清洗、分析,形成交通状况的综合评估指标以支持城市交通管理和控制。
交通数据整合将来自不同数据源的数据整合在一起,消除重复数据,保证数据的准确性。
交通数据清洗则是对数据进行处理和筛选,去除无效数据和交通噪音数据。
最终,基于大数据的交通控制系统可以通过数据分析和模型预测,对城市交通状况进行评估、优化,并形成有效的控制策略。
三、交通控制基于大数据的智能交通控制系统通过上述数据采集和分析手段,实现对城市交通控制的精准化和智能化。
新型智能交通信号控制系统报名号:BS2011-B241设计者:GARDING指导教师:匿名摘要:本作品针对当前日益严重的交通拥堵问题,以EXP-89S51单片机为核心,设计出了一种新型智能交通信号控制系统,实现了对交通信号灯的实时智能控制。
该新型控制系统在控制方案上采用了我们自主设计的新型两级模糊控制方案,该方案是一种同时具有自适应控制、分级模糊控制、相位繁忙优先和准确显时等优势的控制方案,更适用于实际的交通情况,且已获国家实用新型专利和相关论文已在科技核心期刊《现代电子技术》上发表。
在软件设计上,采用了MATLAB和VB进行动态模拟,并与当前正在采用的几种控制方案进行了对比验证,验证了新方案的优越性。
在硬件设计上,我们采用了EXP-89S51单片机、SP-MDCE25A 交通灯模组、E-TRY通用板和倒计时LED数码管模块等,并搭建了较好的逼真的外围平台来对其实现更具真实性的实时控制。
该作品不论是在创新性、实用性、技术先进性,还是在可靠性、经济性上都具有很强的优势。
关键词:智能交通信号新型两级模糊控制 VB动态模拟 EXP-89S51单片机1、系统总体方案介绍1.1自主提出的新型智能交通信号控制的总控制系统原理我们自主提出的新型智能交通信号控制的总控制系统原理如图1所示:图1自主提出的新型智能交通信号控制的总控制系统原理图在该系统中,交叉口的交通参数经检测装置检测,将被测参数转换成统一的标准电信号,再经A/D转换器进行模数转换,转换后的数字量通过I/O接口电路送入新型两级模糊控制器再到控制台。
在新型两级模糊控制器和控制台内部,用软件对采集的数据进行处理和计算,然后经数字量输出通道输出。
输出的数字量通过D/A转换器转换成模拟量,再经驱动模块对交通情况进行控制,从而实现对交叉口的实时智能交通控制。
1.2 基于EXP-89S51单片机的新型智能交通信号控制系统的总控制系统设计本系统运用我们的新型两级模糊控制方案,采用了EXP-89S51来控制智能交通系统。
系统的整体结构框图如图2所示:图2 系统的整体结构框图本系统主要由电源、EXP-89S51单片机、E-TRY通用板和SP-MDCE25A交通灯模组构成。
SP-MDCE25A交通灯模组中包含红绿灯模块和倒计时LED数码管模块。
EXP-89S51单片机作为整个系统的主控板,采用了我们的新型两级模糊控制方案模拟真实交通灯的功能。
红、绿灯交替闪亮,倒计数显示时间,方向灯指示方向等。
2 实现原理——新型两级模糊控制方案的提出与优越性验证2.1交叉口交通平面几何设计与相位设计通过对当前城市交叉口交通平面几何设计和相位设计的具体情况进行深入调研并参考了大量文献后,确定出当前相对最优的一种交叉口交通平面几何设计方案如图3所示。
交叉路口分东、南、西、北四个通行方向,每个通行方向均有左转、直行和右转三股车流。
路口检测设备路口上的检测设备图3 典型的单交叉路口几何设计方案图针对当前存在的各种相位设计方案,从其交叉口利用率、安全性、人性化和实用性等方面综合分析对比后,确定出当前相对最优的相位设计方案如图4所示,即南北直行、南北左右转、东西直行和东西左右转,行人和非机动车可以在第1相位和第3相位开通时顺利通行。
本作品将以此为研究对象。
相位1 相位2 相位3 相位4图4 典型的单交叉路口的相位设计示意图2.2交通信号新型两级模糊控制思想新型两级模糊控制方案的整体控制图如图5所示,先通过车辆检测器检测出当前所有处于红灯相位的等待车辆数和各车流方向自上次绿灯以来的红灯持续时间,然后将检测出来的交通流数据传送到新型两级模糊控制器。
车辆检测器交通信号灯交通流确定绿灯延时模块新型两级模糊控制红灯相位选择模块图5 新型两级模糊控制系统整体控制框图第一模糊控制级接收到车辆检测器检测出的红灯相位等待车辆数和红灯持续时间后,经过该模糊控制级处理推出当前各红灯相位的繁忙度,从而可以确定出在当前绿灯相位跳转前一瞬间下一个该亮绿灯的等待相位。
同时,找出繁忙度最大的两个相位,并返回去得到这繁忙度最大的两个相位的交通流数据(即这两相位的相位等待车辆数)。
第二模糊控制级通过对繁忙度最大的两个相位的交通流数据处理后,推出下一个绿灯等待相位的绿灯时间,并将该绿灯时间传到交通显时信号灯上。
当等到上一绿灯相位亮完绿灯后立即让第一级模糊控制选出的绿灯等待相位显示绿灯,同时使其显示绿灯时间,其显示时间即为第二级模糊控制确定出的绿灯时间。
这样周而复始的运行,即可很好地对交通流进行实时智能控制了。
另外,我们还充分考虑到在实际交通信号控制中,控制方案应人性化且适用性强。
对此,我们对其红绿灯显时控制系统做了如下规定:显示绿灯的相位显示准确的绿灯运行时间;对于红灯相位,我们只对下一个绿灯相位就是它的红灯相位显示时间,且只在当前绿灯相位绿灯时间即将结束前瞬间(假定5s),使其显示准确的红灯倒计时间。
显示了红灯时间的相位即表示下一相位该它通行,而其他不显时间的红灯相位,表示需要多等待,下一相位不是它。
这样充分发挥了现有显时交通信号装置的优势,更易遵守,更具人性化,更适用于实际交通情况。
2.3新型两级模糊器的设计以第一级模糊控制器的设计为例做具体设计。
该模糊级为红灯相位选择模块,该模块为双输入单输出模糊控制,其两个输入为:当前处于红灯相位的等待(排队)车辆数(qr)和各车流方向自上次绿灯以来的红灯持续时间(tr),输出为各红灯相位的繁忙度 (Ur)。
qr的基本论域为[0,30],离散论域为{1,2,3,4,5,6,7,8,9,10,11,12,13,14},在离散论域上定义五个模糊子集{很短、短、中等、长、很长};tr的基本论域为[0,120],离散论域为{1,2,3,4,5,6,7,8,9,10,11,12},在离散论域上定义五个模糊子集{很短、短、中等、长、很长};Ur的基本论域为[0,6],离散论域为{1,2,3,4,5,6},在离散论域上定义五个模糊子集很{低、低、中等、高、很高}。
qr、tr、Ur模糊子集的隶属度函数如图6所示,模糊控制规则表见表1。
图6qr、tr、Ur隶属度函数表1 红灯相位选择模块的模糊控制规则相位繁忙度各相位排队长度很短短中等长很长红灯持续时间很短很低很低很低低中等短很低很低低中等高中等低中等中等高很高长中等高高很高很高很长偏高很高很高很高很高2.4 仿真研究为了验证新型两级模糊控制器的控制效果, 用MATLAB结合VB编写了新型两级模糊控制的仿真程序,并与当前广泛运用的感应控制和定时控制进行了比较。
假定路口各方向车辆到达交叉口是随机的且服从均匀分布,利用VB中的随机函数产生12个方向车流每秒钟到达的车辆数,到达率为0-0.4辆/秒,设某车流红灯转变为绿灯后车辆以1辆/s的速率离开等候的车队,以通过交叉口的平均车辆延误作为评价指标。
分别对新型模糊控制、感应控制和定时控制在不同的交通条件下各进行10次仿真比较,每次仿真时间均为1200s,10次仿真的平均结果如表2所示。
表2 仿真结果表交通运行时期新型模糊控制平均延误(s)感应控制平均延误(s)定时控制平均延误(s)交通低峰期25.7809 32.26587 39.94878交通中峰期35.30734 40.85476 45.79226交通高峰期42.03777 45.81263 47.87664整体控制效果34.37534 39.64442 44.53923从仿真结果表中可知,采用新型两级模糊控制方法从整体控制效果上看,在平均车辆延误上比感应控制方法提高了13.2908%,比定时控制方法提高了22.8201%,可见优势明显。
2.5 动态模拟演示为了使其更具可观性与实用性,更易于运用到交通现场,我们还对新型两级模糊控制进行了动态模拟演示。
其动态模拟演示图如图7所示。
图7 新型两级模糊控制方案的动态模拟演示图我们可以对交通参数进行随意设定从而实现不同情况下的动态模拟,在演示图中我们可以通过繁忙度知道下一绿灯相位应为何相位,通过当前相位可以知道正处于绿灯的相位,且由绿灯时间可知整个相位的总绿灯时间,由绿灯剩余时间可以准确的知道其剩余绿灯时间。
这样就使我们的新方案更具可观性与实用性。
对于实际交通流时,只需把检测到的实时数据输入,通过我们的新型两级模糊控制器就可以实现其实时在线控制了。
3. 硬件设计3.1、EXP-89S51特性简介EXP-89S51是北京精仪达盛科技有限公司研发生产的性价比很高的一款8位单片机。
它支持Keil C环境下的汇编、C;完全仿真P0、P1、P2口;可以设置单步全速断点运行方式;可以查阅变量RAM、xdata 等数据。
该器件采用高密度非易失性存储技术,其指令与工业标准的80C51 指令集兼容。
片内程序存储器允许重复在线编程。
通过把通用的8 位CPU 与可在线下载的Flash 集成在一个芯片上,EXP-89S51 便成为一个高效的微型计算机,为众多嵌入式控制应用系统提供高灵活、超有效的解决方案,可用于解决复杂的控制问题,且成本较低,是多种智能便携仪器的理想选择。
3.2、交通灯控制板模拟交通灯控制板布局示意图如图8所示。
图中的表示2位7段的LED数码管(用作倒计时显示),表示双色LED(用作红黄绿灯),表示小按键(用来模拟车流)。
这是针对一个典型的十字路口,分别用1、2、3、4表明四个流向的主车道,用L、S、R、P分别表示各主车道的左行车道、直行车道、右行车道以及人行横道。
图8 模拟交通灯控制板布局示意图3.3、倒计时LED数码管模块图9 倒计时LED数码管电路图数码管完成倒计时显示功能。
拿南北方向举例,数码管从绿灯的设置时间最大值往下显示,每秒钟减1,一直减到1。
然后又从红灯的设置时间最大值往下显示,每秒钟减1,一直减到1。
接下来又是显示绿灯时间。
如此循环。
系统共有4个两位的LED数码管,分别放置在模拟交通灯控制板上的四个路口。
因为四个方向的数码管应该显示同样的内容,所以我们可以把它们同样对待。
也就是说各个方向的数码管个位(把数码管第二位定义为个位,第一位定义为十位)用一根信号线去控制,十位用另一根信号线去控制。
这里采用动态显示,段选信号线为a-dp,位选信号为CS-4和CS-5。
3.4、红绿灯模块图10 红绿灯模块电路图红绿灯模块电路可以显示红色、绿色和黄色,可以用作红绿黄灯。
我们可以把16个LED 分成4个组,东西南北每个方向的灯为一组。
每组LED的数据线和倒计时数码管的段选线共用,通过CS-0到CS-3去选通。
每个方向4个灯,分别是左转弯灯、直行灯、右转弯灯和人行道灯。
这些红绿灯的动作过程和实际路口一致。
4、软件设计该系统软件采用模块式结构,主要分为两部分:第一部分为主程序,第二部分为倒计时LED数码管子程序、红绿灯显示子程序等。