高中物理动能定理的运用归纳及总结
- 格式:doc
- 大小:626.00 KB
- 文档页数:11
高一物理《运动和动能定理》知识点总结
一、动能的表达式
1.表达式:E k =12
m v 2. 2.单位:与功的单位相同,国际单位为焦耳,符号为J.
3.标矢性:动能是标量,只有大小,没有方向.
二、动能定理
1.内容:力在一个过程中对物体做的功,等于物体在这个过程中动能的变化.
2.表达式:W =12m v 22-12
m v 12.如果物体受到几个力的共同作用,W 即为合力做的功,它等于各个力做功的代数和.
3.动能定理既适用于恒力做功的情况,也适用于变力做功的情况;既适用于直线运动,也适用于曲线运动.
三.对动能定理的理解
(1)在一个过程中合外力对物体做的功或者外力对物体做的总功等于物体在这个过程中动能的变化.
(2)W 与ΔE k 的关系:合外力做功是物体动能变化的原因.
①合外力对物体做正功,即W >0,ΔE k >0,表明物体的动能增大;
②合外力对物体做负功,即W <0,ΔE k <0,表明物体的动能减小;
如果合外力对物体做功,物体动能发生变化,速度一定发生变化;而速度变化动能不一定变化,比如做匀速圆周运动的物体所受合外力不做功.
③如果合外力对物体不做功,则动能不变.
(3)物体动能的改变可由合外力做功来度量.。
高一物理《动能定理》知识点讲解
1. 动能的定义
动能是物体由于运动而具有的能量,它与物体的质量和速度有关。
动能的计算公式为:
动能 = 1/2 x 质量 x 速度的平方
其中,动能的单位是焦耳(J)或者牛顿米(N·m)。
2. 动能定理的内容
动能定理指出,物体的动能增量等于物体所受合外力做功的大小:
动能增量 = 所受合外力做功
动能定理反映了力学中能量守恒的基本原理,即能量可以相互转化,但总能量不变。
3. 动能定理的应用
动能定理可以用于解决物体在运动过程中的问题。
例如:
- 已知物体的初速度和受力情况,求物体在某一时刻的速度和位移。
- 已知物体的初速度和终速度,求物体受到的合外力做功和位移。
4. 注意事项
在应用动能定理时,需要注意以下几点:
- 与动能有关的力是合外力,而非作用力;
- 对于质量不变的物体,动能定理可以简化成:动能增量等于所受合外力做的功。
以上就是《动能定理》的知识点讲解。
掌握了这一定理,就可以更好地理解物体在运动过程中的能量转化情况,从而更好地解决相应的问题。
动能定理的应用【学习目标】1.进一步深化对动能定理的理解。
2.会用动能定理求解变力做功问题。
3.会用动能定理求解单物体或多物体单过程问题以及与其他运动形式的结合问题。
4.知道用动能定理解题的一般步骤。
【要点梳理】要点一、动能定理的推导要点诠释:1.推导过程:一个运动物体,在有外力对它做功时,动能会发生变化。
设一个质量为m 的物体,原来的速度是1v ,动能是21112k E mv =,在与运动方向相同的恒定外力F 的作用下,发生一段位移l ,速度增加到2v ,动能增加到22212k E mv =。
在这一过程中外力F 对物体所做的功W Fl =。
根据牛顿第二定律F ma =和运动学公式22212v v al -=得到22212v v l a -= 所以22222121()11222ma v v W Fl mv mv a -===- 或21k k W E E =-2.关于公式的几点说明(1)上面我们设外力方向与运动方向相同,导出了关系式21k k W E E =-,这时外力做正功,动能增加。
外力方向与运动方向相反时,上式同样适用,这时外力所做的功是负值,动能的变化也是负值;(2)外力对物体做负功,往往说成物体克服这个力做了功。
因此,对这种情形,也可以说物体克服阻力所做的功等于动能的减少;(3)如果物体不只受到一个力,而是受到几个力,上述结论仍旧正确。
只是外力所做的功是指各个力所做的功的代数和,即外力所做的总功。
3.动能定理的实质动能定理揭示了外力对物体所做的总功与物体动能变化之间的关系,即外力对物体做的总功,对应着物体动能的变化,变化的大小由做功的多少来量度。
动能定理的实质是反映其它形式的能通过做功而和动能转化之间的关系,只不过在这里其它形式的能并不一定出现,而是以各种性质的力所做的机械功(等式左边)的形式表现出来而已。
要点二、对动能定理的进一步理解要点诠释:1.动能定理的计算式为标量式,计算外力对物体做的总功时,应明确各个力所做功的正负,然后求其所有外力做功的代数和;求动能变化时,应明确动能没有负值,动能的变化为末动能减去初动能。
高中物理中的动能定理解析动能定理是物理学中的一个重要定律,它描述了物体的动能与力学工作的关系。
在高中物理学中,学生们通常会学习到这个定理,并通过实验和计算来验证它。
本文将对动能定理进行解析,探讨它的含义、应用以及相关的概念。
一、动能定理的含义动能定理是指物体的动能与作用在物体上的力之间的关系。
简单来说,它表明了物体的动能的增加量等于作用在物体上的力所做的功。
具体而言,动能定理可以用以下公式表示:动能的增加量 = 力所做的功其中,动能的增加量可以用物体的动能的变化量来表示,即动能的最终值减去动能的初始值。
力所做的功可以通过力的大小、物体的位移和力与位移之间的夹角来计算。
二、动能定理的应用动能定理在物理学中有着广泛的应用。
首先,它可以用来解释和计算物体的加速度。
根据牛顿第二定律,物体的加速度与作用在物体上的力成正比,而根据动能定理,物体的动能的增加量等于作用在物体上的力所做的功。
因此,我们可以通过测量物体的动能的变化量和力所做的功来计算物体的加速度。
其次,动能定理还可以用来解释和计算物体的速度。
根据动能定理,物体的动能的增加量等于作用在物体上的力所做的功。
当物体的质量不变时,动能的增加量与速度的增加量成正比。
因此,我们可以通过测量物体的动能的变化量和力所做的功来计算物体的速度。
此外,动能定理还可以用来解释和计算物体的位移。
根据动能定理,物体的动能的增加量等于作用在物体上的力所做的功。
当物体的质量不变时,动能的增加量与位移的平方成正比。
因此,我们可以通过测量物体的动能的变化量和力所做的功来计算物体的位移。
三、相关概念的解析在理解和应用动能定理时,还需要了解一些相关的概念。
首先是动能,它是物体由于运动而具有的能量。
动能可以用以下公式表示:动能 = 1/2 ×质量 ×速度的平方其中,质量是物体的质量,速度是物体的速度。
动能与物体的质量和速度的平方成正比,当物体的质量或速度增加时,动能也会增加。
【方法技巧】
1.动能定理的应用技巧
(1) 一个物体的动能变化ΔE k与合外力对物体所做的功W具有等量关系。
①若ΔE k>0,表示物体的动能增加,其增加量等于合外力对物体所做的正功。
②若ΔE k<0,表示物体的动能减少,其减少量等于合外力对物体所做的负功的绝对值。
③若ΔE k=0,表示物体的动能没有变化,合外力对物体所做的功等于零,反之亦然。
以上等量关系提供了求变力做功的一种简便方法。
(2) 动能定理中涉及的物理量有F、l、m、v、W、E k等,在处理含有上述物理量的力学
问题时,往往优先考虑使用动能定理。
动能定理可以由牛顿第二定律导出,但由于动能定理不涉及物体运动过程中的细节,只需要考虑整个过程中外力做的功和始末两个状态动能的变
化,并且动能和功都是标量,无方向性,故无论是直线运动还是曲线运动,也无论是恒力还
是变力,用动能定理求解都会特别方便。
2. 应用动能定理解题的基本思路
【题型应用】
一、应用动能定理判断动能的变化或做功的情况
合外力做的功等于物体动能的变化,合外力做正功,动能增加;合外力做负功,动能减
少;合外力不做功,动能不变。
反之亦然。
因此,可利用动能定理判断动能的变化或做功的
情况。
【典例1】有一质量为m的木块,从半径为r的圆弧曲面上的a点滑向b点,如图所示。
若由于摩擦使木块的运动速率保持不变,则以下叙述正确的是( )。
验证动能定理归纳总结动能定理是物理学中的一项基本定理,描述了物体运动时动能的变化与物体所受的力之间的关系。
本文将对动能定理进行验证,并通过归纳总结的方式进行分析。
一、动能定理的表述动能定理可以表述为:当一个物体受到合外力作用时,物体动能的变化等于物体所受合外力的功。
动能是描述物体运动状态的物理量,它与物体的质量和速度有关。
动能定理提供了动能与力之间相互关联的关系,可以从宏观的角度理解力对物体所做的功与物体动能的变化之间的联系。
二、验证动能定理的实验为了验证动能定理,我们可以进行简单的实验。
实验装置包括一个光滑的水平面,一块质量为m的物体和一段固定的距离。
实验步骤如下:1. 将物体放置在起点位置上,记录下物体的质量m和初始速度v0。
2. 施加一个已知的合外力F,使得物体开始运动。
3. 物体沿着水平面运动,经过一段距离d之后停下来。
4. 记录下物体运动过程中所受到的合外力F和终止时的速度v。
5. 根据动能定理,计算出初始动能和终止动能。
三、实验结果与分析根据动能定理,物体的动能变化等于物体所受合外力的功,即ΔK = W。
其中,ΔK表示动能的变化,W表示合外力对物体所做的功。
根据实验结果计算动能变化和合外力对物体所做的功,可以发现它们在数值上是相等的。
这验证了动能定理的正确性。
通过多次实验,我们可以得出如下的归纳总结:1. 当物体的质量m相同但速度不同时,动能的变化与速度成正比。
速度越大,动能的变化越大。
2. 当物体的速度v相同但质量不同时,动能的变化与质量成正比。
质量越大,动能的变化越大。
3. 当物体的质量m和速度v同时变化时,动能的变化与质量和速度的乘积成正比。
由此可见,动能定理为我们理解物体运动提供了一种重要的工具,它揭示了动能与力之间的关系。
在实际应用中,动能定理有助于我们分析物体的运动以及对物体所施加的力的影响。
四、应用与拓展动能定理不仅在物理学中具有重要意义,还在其他领域中得到了广泛应用。
【⾼中物理】动能定理的应⽤知识点总结,考前必过⼀遍!⼀、动能1、定义:物体由于运动⽽具有的能量叫做动能,⽤符号来表⽰。
⽐如运动的汽车、飞机,流动的河⽔、空⽓等,都具有动能。
2、公式:3、动能是⼀个标量,只有⼤⼩没有⽅向,其单位为焦⽿(J)。
4、动能是状态量,对应物体运动的某⼀个时刻。
5、动能具有相对性,对于不同的参考系⽽⾔,物体的运动速度具有不同的瞬时值,也就有不同的动能。
在研究物体的动能时,⼀般都是以地⾯为参考系。
⼆、动能定理动能定理的推导过程:设物体质量为m,初速度为,在与运动⽅向相同的恒⼒作⽤下发⽣⼀段位移s,速度增加到。
在这⼀过程中,⼒F所做的功。
根据⽜顿第⼆定律有,根据匀加速运动的公式,有,由此可得1、动能定理的内容:合外⼒对物体做的总功等于物体动能的改变量。
2、动能定理的物理意义:该定理提出了做功与物体动能改变量之间的定量关系。
3、动能定理的表达式:4、动能定理的理解:(1)是所有外⼒做功的代数和。
可以包含恒⼒功,也可以包含变⼒功;做功的各⼒可以是同时作⽤的,也可以是各⼒在不同阶段做功的和。
应注意分析各⼒做功的正、负。
(2)求各外⼒功时,必须确定各⼒做功所对应的位移段落,逐段累计,并注意重⼒、电场⼒做功与路径⽆关的特点。
(3)下述关系式提供了⼀种判断动能(速度)变化的⽅法。
(4)代⼊公式时,要注意书写格式和各功的正负号,所求的功⼀般都按正号代⼊,如,式中动能增量为物体的末动能减去初动能,不必考虑中间过程。
(5)利⽤动能定理解题时也有其局限性,有时不能利⽤其直接求出速度的⽅向,且只适⽤于单个质点或能看成质点的物体。
5、应⽤动能定理的解题步骤(1)选择过程(哪⼀个物体,由哪⼀位置到哪⼀位置)过程的选取要灵活,既可以选取物体运动的某⼀阶段为研究过程,也可以选取物体运动的全过程为研究过程。
(2)分析过程。
分析各⼒做功情况,求解合⼒所做的功。
如果在选取的研究过程中物体受⼒情况有变化,则⼀定要分段进⾏受⼒分析,求解各个⼒的做功情况。
一、整过程运用动能定理 (一)水平面问题1、一物体质量为2kg ,以4m/s 的速度在光滑水平面上向左滑行。
从某时刻起作用一向右的水平力,经过一段时间后,滑块的速度方向变为水平向右,大小为4m/s ,在这段时间,水平力做功为( )A. 0B. 8JC. 16JD. 32J2、 一个物体静止在不光滑的水平面上,已知m=1kg ,u=0.1,现用水平外力F=2N ,拉其运动5m 后立即撤去水平外力F ,求其还能滑 m (g 取2/10s m )【解析】对物块整个过程用动能定理得:()000=+-s s umg Fs解得:s=10m3、总质量为M 的列车,沿水平直线轨道匀速前进,其末节车厢质量为m ,中途脱节,司机发觉时,机车已行驶L 的距离,于是立即关闭油门,除去牵引力,如图所示。
设运动的阻力与质量成正比,机车的牵引力是恒定的。
当列车的两部分都停止时,它们的距离是多少?【解析】对车头,脱钩后的全过程用动能定理得:201)(21)(V m M gS m M k FL --=--对车尾,脱钩后用动能定理得:20221mV kmgS -=-而21S S S -=∆,由于原来列车是匀速前进的,所以F=kMg由以上方程解得mM MLS -=∆。
(二)竖直面问题(重力、摩擦力和阻力) 1、人从地面上,以一定的初速度v 将一个质量为m 的物体竖直向上抛出,上升的最大高度为h ,空中受的空气阻力大小恒力为f ,则人在此过程中对球所做的功为( )A. 2021mvB. fh mgh -C. fhmgh mv -+2021 D. fh mgh +V 02、一小球从高出地面H 米处,由静止自由下落,不计空气阻力,球落至地面后又深入沙坑h 米后停止,求沙坑对球的平均阻力是其重力的多少倍。
【解析】钢球从开始自由下落到落入沙中停止为研究过程 根据动能定理w 总=△E K 可得: W G +W f =0-0①重力做功W G =G (H+h )② 阻力做功W f =-fh ③由①②③解得:f=(1+hH )(三)斜面问题1、如图所示,斜面足够长,其倾角为α,质量为m 的滑块,距挡板P 为S 0,以初速度V 0沿斜面上滑,滑块与斜面间的动摩擦因数为μ,滑块所受摩擦力小于滑块沿斜面方向的重力分力,若滑块每次与挡板相碰均无机械能损失,求滑块在斜面上经过的总路程为多少?【解析】设其经过和总路程为L ,对全过程,由动能定理得:200210cos sin mv L ng mgS -=-αμα 得αμαcos 21sin mgS 200mg mv L +=2、一块木块以s m v /100=初速度沿平行斜面方向冲上一段长L=5m ,倾角为︒=30α的斜面,见图所示木块与斜面间的动摩擦因数2.0=μ,求木块冲出斜面后落地时的速率(空气阻力不计,2/10s m g =)。
【解析】:整个过程中重力等于没有做功 只有摩擦力作负功:2022121cos mv mv L umg -=⋅∂-解得: v=8.08分析:斜面是否足够长若够长且能滑落到地面:斜面的最小长度s :s ug g v )cos sin (220∂-∂=则落地速度:20221212cos mv mv L umg -=⋅∂-V 0 S 0α PAB Ch S 1 S 2α m3、如图所示,小滑块从斜面顶点A 由静止滑至水平部分C 点而停止。
已知斜面高为h ,滑块运动的整个水平距离为s ,设转角B 处无动能损失,斜面和水平部分与小滑块的动摩擦因数相同,求此动摩擦因数。
【解析】滑块从A 点滑到只有重力和摩擦力做功,设滑块质量为m ,动摩擦因数为u ,,水平部分长s 2,由动能定理得:cos cos 21-⋅-mgs s mg mgh μααμs=(四)圆弧1、如图所示,质量为m 的物体又循原路返回,2mv =2、如图所示,AB 和CD 为两个对称斜面,其上部足够长,下部分别与一个光滑圆弧面的两端相切,圆弧所对圆心角为1200,半径R=2m ,整个装置处在竖直平面上。
一个物体在离弧底E 的高度h=3m 处以速率v 0=4m/S 沿斜面向下运动,若物体与斜面间的动摩擦因数u=0.02,试求物体在斜面(不包括圆弧部分)上能走多长的路程?【解析】设物体在斜面上走过的路程为s ,经分析,物体在运动过程中只有重力和摩擦力对它做功,最后的状态是在B 、C 之间来回运动,则在全过程中,由动能定理得[]2002160cos )60cos 1(mv s mg u R h mg -=⋅⋅--- 代入数据,解得s=280m(五)圆周运动1、如图所示,质量为m 物体与转轴相距R ,物块随转台由静止开始运动,当转速增加到某值时,物块即将在转台上滑动,此时,转台已开始做匀速运动,在这一过程中,摩擦力对物体做的功为( )A.0B. mgR πμ2C. mgR μ2D. 2/mgR μRFωv 1=?2、一个质量为m 的小球拴在绳一端,另一端受大小为F1拉力作用,在水平面上作半径为R1的匀速圆周运动,如图所示,今将力的大小变为F2,使小球在半径为R2的轨道上运动,求此过程中拉力对小球所做的功。
【解析】:3、(1)如图所示,一根长为l 的细绳,一端固定于O 点,另一端拴一质量为m 的小球,当小球处于最低平衡位置时,给小球一定得初速度,要小球能在竖直平面作圆周运动并通过最高点P ,初速度至少应多大?(2)若将上题中绳换成杆呢?4、如图所示,AB 是倾角为θ的粗糙直轨道,BCD 是光滑的圆弧轨道,AB 恰好在B 点与圆弧相切,圆弧的半径为R .一个质量为m 的物体(可以看作质点)从直轨道上的P 点由静止释放,结果它能在两轨道间做往返运动.已知P 点与圆弧的圆心O 等高,物体与轨道AB 间的动摩擦因数为μ.求:(1)物体做往返运动的整个过程中在AB 轨道上通过的总路程;(2)最终当物体通过圆弧轨道最低点E 时,对圆弧轨道的压力;(3)为使物体能顺利到达圆弧轨道的最高点D ,释放点距B 点的距离L ′应满足什么条件.【解析】:(1)因为摩擦始终对物体做负功,所以物体最终在圆心角为2θ的圆弧上往复运动.对整体过程由动能定理得:mgR ·cos θ-μmg cos θ·s =0,所以总路程为s =R μ. (2)对B →E 过程mgR (1-cos θ)=12mv 2E①F N -mg =mv 2ER②由①②得对轨道压力:F N =(3-2cos θ)mg .(3)设物体刚好到D 点,则mg =mv 2DR③对全过程由动能定理得:mgL ′sin θ-μmg cos θ·L ′-mgR (1+cos θ)=12mv 2D ④由③④得应满足条件:L ′=3+2cos θ2(sin θ-μcos θ)·R .答案:(1)R μ (2)(3-2cos θ)mg (3)3+2cos θ2(sin θ-μcos θ)·R5、在水平向右的匀强电场中,有一质量为m .带正电的小球,用长为l 的绝缘细线悬挂于O 点,当小球在B 点静止时细线与竖直方向夹角为θ。
现给小球一个垂直悬线的初速度,使小球恰能在竖直平面做圆周运动。
试问(1)小球在做圆周运动的过程中,在那一个位置的速度最小?速度最小值是多少?(2)小球在B 点的初速度是多大?【解析】根据动能定理可得到:圆周运动的速度的最大值在平衡位置,即“物理最低点”。
速度的最小值在平衡位置的反方向上,即“物理最高点”。
最高点的最小速度是,g /是等效重力加速度。
(1)如图所示,设小球受到的电场力为F E 小球在B 点静止,则F E =电场力与重力的合力F 大小一定,方向沿AB小球从B 到A 运动,克服合力F 做功,由动能定理得:可见A 点克服阻力做功最多,速度最小。
A 点等效为竖直面圆周运动的最高点。
对A 点,根据牛顿定律得:所以A 点速度的最小值为6、如图所示,在方向竖直向下的匀强电场中,一绝缘轻细线一端固定于O 点,另一端系一带正电的小球在竖直平面做圆周运动.小球的电荷量为q,质量为m,绝缘细线长为L,电场的场强为E.若带电小球恰好能通过最高点A,则在A 点时小球的速度v 1为多大?小球运动到最低点B 时的速度v 2为多大?运动到B 点时细线对小球的拉力为多大?二、分过程运用动能定理1、一个物体以初速度v 竖直向上抛出,它落回原处时的速度为2v,设运动过程中阻力大小保持不变,则重力与阻力之比为( )A. 3:5B. 3:4C. 1:2D. 1:1 【解析】上升:221)(mv h f mg -=+- 下降:22121)(⎪⎭⎫⎝⎛-=-v m h f mg解得35=f mg 2、质量为m 的物体以速度v 竖直向上抛出,物体落回地面时,速度大小为3/4v ,设物体在运动中所受空气阻力大小不变,求: (1)物体运动中所受阻力大小;(2)若碰撞中无机械能损失,求物体运动的总路程。
【解析】整个运动过程重力做功为零:(1)上升:221)(mv h f mg -=+- 下降:24321)(⎪⎭⎫⎝⎛-=-v m h f mg故:mg f 257=(2)整个过程用动量定理,得:221mv fs -=- 故:gv s 14252=三、动能定理求变力做功问题1.、如图所示,质量为m 的小球用长L 的细线悬挂而静止在竖直位置。
在下列三种情况下,分别用水平拉力F 将小球拉到细线与竖直方向成θ角的位置。
在此过程中,拉力F 做的功各是多少?⑴用F 缓慢地拉;( ) ⑵F 为恒力;( )⑶若F 为恒力,而且拉到该位置时小球的速度刚好为零。
( ) 可供选择的答案有A.θcos FL B .θsin FL C .()θcos 1-FLD .()θcos 1-mgL2、假如在足球比赛中,某球员在对方禁区附近主罚定位球,并将球从球门右上角擦着横梁踢进球门.球门的高度为h ,足球飞入球门的速度为v ,足球的质量为m ,不计空气阻力和足球的大小,则该球员将足球踢出时对足球做的功W 为。
3.如图所示,AB 为1/4圆弧轨道,半径为0.8m ,BC 是水平轨道,长L=3m ,BC 处的摩擦系数为1/15,今有质量m=1kg 的物体,自A 点从静止起下滑到C 点刚好停止。
求物体在轨道AB 段所受的阻力对物体做的功。
4、如图4-12所示,质量为m 的物体静放在水平光滑的平台上,系在物体上的绳子跨过光滑的定滑轮由地面以速度v 0向右匀速走动的人拉着,设人从地面上且从平台的边缘开始向右行至绳和水平方向成30°角处,在此过程中人所做的功为:A.2021mv B.20mv C.2032mvD.2083mvAB CR5、(2012黄冈)如图所示,一个质量为m的圆环套在一根固定的水平直杆上,环与杆的动摩擦因数为μ,现给环一个向右的初速度v0,如果在运动过程中还受到一个方向始终竖直向上的力F的作用,已知力F的大小为F=kv(k为常数,v为环的运动速度),则环在整个运动过程中克服摩擦力所做的功(假设杆足够长)可能为( )A、221mvB、0C、22320221kgmmv+D、22320221kgmmv-6、如图所示,一劲度系数k=800N/m的轻弹簧两端各焊接着一个质量为m=12kg的物体。