大学生数学建模--综合评价模型
- 格式:ppt
- 大小:1.42 MB
- 文档页数:35
综合评价决策模型方法_数学建模决策模型方法是一个重要的工具,用于解决复杂的决策问题。
综合评价决策模型方法是一个基于多个指标或因素对决策方案进行评价的方法。
该方法在数学建模中常用于分析多个决策方案的优劣,帮助决策者做出最优决策。
首先,层次分析法是一种定性与定量相结合的分析方法,用来解决多个指标之间的相对重要性问题。
它通过建立层次结构,将问题分解为若干个层次,并对各层次进行权值的确定,从而得到最终的评价结果。
层次分析法主要包括建立层次结构模型、构造判断矩阵、计算权重和一致性检验等步骤。
其优点是结构明确、能够定量地评价各指标之间的重要性,但也存在权重确定的主观性较强的问题。
其次,灰色关联度法是一种基于灰色理论的模型,用于评价多个指标之间的关联程度。
它通过建立灰色关联度模型,将多个指标的值转化为灰色数列,进行关联度计算,从而得到各指标的权重。
灰色关联度法主要包括灰色关联度计算和权重确定两个步骤。
其优点是能够考虑指标之间的关联关系,但也存在对指标值的灵敏度较高的问题。
再次,熵权法是一种基于信息熵的权重确定方法,用于评价多个指标的重要性。
它通过计算各指标的熵值和权重,得到最终的评价结果。
熵权法主要包括计算指标熵值、计算指标熵权和综合计算这三个步骤。
其优点是能够客观地确定指标的权重,但也存在对指标值范围要求较高的问题。
最后,矩阵法是一种定量化的综合评价方法,用于评价多个决策方案的优劣。
它通过构造评价指标矩阵,对各决策方案的各指标进行评分,并计算出加权总分,从而对决策方案进行排序。
矩阵法主要包括构造评价指标矩阵、对矩阵进行归一化和计算加权总分这三个步骤。
其优点是方法简单、易于理解和使用,但也存在在权重确定上存在一定主观性的问题。
总的来说,综合评价决策模型方法在数学建模中起着重要的作用。
不同的方法有不同的优缺点,适用于不同的决策问题。
决策者在选择合适的方法时,需要根据实际情况和需求综合考虑。
承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。
如有违反竞赛规则的行为,我们将受到严肃处理。
我们参赛选择的题号是(从A/B/C/D中选择一项填写):我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):广东金融学院参赛队员(打印并签名) :1. 曾彬2. 曾庆达3. 陈佳玲指导教师或指导教师组负责人(打印并签名):日期: 2013 年8 月 22日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国评阅编号(由全国组委会评阅前进行编号):高校学生评教系统改进的研究摘要本文是研究关于高等学校学生评价教师的评价系统问题,用层次分析法确定了十项指标的权值,并给出了一个新的评教分数的计分模型-模糊综合评价模型。
本文亮点在于采用基于层次分析法的模糊数学模型。
首先,建立层次分析模型,充分考虑每个指标对综合评价的贡献,并把贡献按权值进行分配;通过层次分析法中的归一化处理,得到两两指标间的相对重要性的定量描述,从而解决不同指标间的差异。
其次建立模糊综合评教模型,输入一组专家(同学)的模糊评价,通过最大隶属度原则把模糊评价输出为综合评价。
最后本文在难易程度不同的课程下(在专业必修课,专业选修课,公共选修课下进行评价),得出同一教师的综合评价,发现其在不同课程下的综合评价均相同。
于是得出结论,该模型的确能解决不同课程难易程度带来的对总体评教的影响。
因为一个教师的综合教学质量并不应该在不同的课程下得到变化较大的评教。
数学建模中的常见模型数学建模综合评价模型是一种通过对各个评价指标进行量化,并将它们按照权重进行加权,最终得到一个综合评价值的方法。
这个模型可以应用于多指标决策问题,用于对被评价对象进行排名或分类。
常见的数学建模综合评价模型包括模糊综合评价模型、灰色关联分析模型、Topsis(理想解法)、线性加权综合评价模型、熵值法和秩和比法等。
模糊综合评价模型是一种基于模糊数学理论的方法,它将评价指标的模糊程度考虑在内,得到一个模糊评价结果。
该模型的步骤包括确定评价指标及其权重、构建模糊评价矩阵、进行模糊运算、得到模糊评价结果。
灰色关联分析模型是一种用于分析指标间关联性的方法,它可以帮助我们确定各个指标对被评价对象的影响程度。
该模型的步骤包括确定关联度计算方法、计算各个指标的关联度、得到综合关联度。
Topsis(理想解法)是一种基于距离的方法,它通过计算每个评价对象与理想解的距离,得到一个综合评价值。
该模型的步骤包括确定正负理想解、计算距离、得到综合评价值。
线性加权综合评价模型是一种常用的多指标决策方法,它将各个评价指标的权重与指标值线性组合起来,得到一个综合评价值。
该模型的优点是简单易操作,计算方便,可以对各个指标的重要性进行量化,并将其考虑在评价中。
但是,该模型的权重确定较为主观,且假设指标之间相互独立,不考虑相关性。
熵值法是一种基于信息熵理论的方法,它通过计算每个指标的熵值,得到一个综合评价值。
该模型的步骤包括计算指标的熵值、计算权重、得到综合评价值。
秩和比法是一种用于处理多指标决策问题的方法,它通过计算指标的秩和比,得到一个综合评价值。
该模型的步骤包括编秩、计算秩和比、得到综合评价值。
根据具体的评价需求和问题特点,我们可以选择合适的数学建模综合评价模型来进行评价。
每个模型都有其优点和缺点,需要根据具体情况进行选择和应用。
<span class="em">1</span><spanclass="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *2* *3* [数学建模——评价模型]()[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_sourc e":"vip_chatgpt_mon_search_pc_result","utm_medium":"di stribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_itemstyle="max-width: 100%"] [ .reference_list ]。
收费标准合理性的综合评价摘要本文主要研究不同类型学校、专业收费标准合理性的评价问题。
通过建立综合评价模型对收费标准合理性进行定量分析。
首先,通过对收费标准合理性评价指标的遴选,确定收费额占家庭年收入比例、收费额占生均培养成本比例、经费到位率(收费额、国家生均拨款与生均校自筹获赠额之和占生均培养成本比例)、收费额占生均未来年收入比例,作为收费标准合理性评价的一级指标,收费额占农村家庭年收入比例、收费额占城镇家庭年收入比例作为收费标准合理性评价的二级指标,据此建立收费标准合理性评价的层次递阶结构。
其次,基于建立的层次递阶结构,根据当前国情和分析者的认识,建立各级评价指标的判断矩阵,并求得各评价指标的权重。
再次,根据当前国情和分析者的认识,确定各评价指标所对应的评价值模型。
最后,采用线性加权法,将收费标准合理性评价指标所得评价值与相应的权重系数加权,其加权和作为判断收费标准合理性的综合评价值。
至此,收费标准合理性综合评价模型建立完成。
利用已建立的综合评价模型,在充分的数据收集及整理基础上,分别对四川省中央、地方属普通高等学校的收费标准合理性及四川省中央属理工、文史、艺术类专业的收费标准进行综合评价,所得结果为:一、四川省中央、地方属普通高等学校收费标准合理性综合评价值分别为:76.64、66.21,即四川省中央、地方属普通高等学校的收费标准均合理,但合理性程度一般。
其中,中央属普通高等学校的收费标准合理性高于地方属普通高等学校;二、四川省中央属普通高等学校理工、文史、艺术类专业收费标准合理性综合评价值分别为:76.71、81.28、44.65,即文史类专业收费标准合理性最高,理工类专业收费标准合理性次之,再次为艺术类专业;其中,理工类和文史类专业的收费标准合理性综合评价值Y都大于75,表明理工类和文史类专业的收费标准比较合理,而艺术类专业的收费标准合理性综合评价值Y仅为44.6527,分值过低,表明艺术类专业的收费标准合理性差;根据分类评价结果,并在对相关评价指标对综合评价值及其他指标评价值影响灵敏度分析的基础上,得出高等教育收费标准合理性相关结论(详见正文),并给出合理性报告。
综合评价模型综合评价模块在数学建模⽐赛和数据分析中,综合评价模型的出场率还是⽐较⾼的,实际应⽤也确实⽐较⼴泛。
下⾯是我在学习过程中对综合评价模型的总结。
1 综合评价的⽬的综合评价⽆外乎两种:对多个系统进⾏评价和对⼀个系统进⾏评价。
对多个系统进⾏评价的⽬的基本上有两种:这东西是谁的——分类;哪个好哪个差——⽐较、排序。
对⼀个系统进⾏评价的⽬的基本上就是看它达没达标、及不及格——实现程度。
对⼀个系统的精确评价往往对它进⾏进⼀步的预测起着决定性的参考作⽤。
因为如果我们需要对某⼀系统进⾏预测的话⼀个良好的评价系统也⾮常关键。
2 综合评价的基本要素综合评价模型中的五个基本要素:被评价对象、评价指标、权重系数、综合评价模型和评价者。
2.1被评价对象被评价对象就是综合评价问题中所研究的对象。
这⾥将被评价对象记为2.2评价指标评价指标的选取对系统的综合评价起着⾄关重要的作⽤。
可以说根据不同的评价指标评价出来的结论之间可能⼤相径庭。
评价指标的选取应该主要以下⼏个原则:1. 独⽴性。
尽量减少每⼀个评价指标之间的耦合关系,即每个评价指标中包含的绝⼤部分信息在其他评价指标中应该不存在。
⽐如评价两地之间的交通状况,如果选择了汽车的平均⾏驶速度和公路距离为评价指标后,就不要在选取汽车平均使⽤时间作为评价指标了。
因为它包含的信息在其他的评价指标中能反映出来。
2. 全⾯性。
所有评价指标包含的信息总和应该等于被评价模型的所有信息。
独⽴性和全⾯性可以类⽐古典概型中样本点和样本空间的概念。
3. 量⼦性。
如果⼀个评价指标可以使⽤两个或者多个评价指标表⽰,那么将评价指标的进⼀步细化有助于我们实现指标之间的解耦和对问题的分析。
再分析清楚问题之后,在构建评价模型的时候我们可以通过合适的算法将相关的评价指标进⾏聚合。
4. 可测性。
保证选择的评价指标能直接或者间接的测量也⾮常重要。
评价指标我们⽤.表⽰。
2.3权重系数不同的评价指标的不同重要程度我们可以使⽤权重系数进⾏表⽰。
数学建模模型常用的四大模型及对应算法原理总结四大模型对应算法原理及案例使用教程:一、优化模型线性规划线性回归是利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法,在线性回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。
如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系,则称为多元线性回归分析。
案例实操非线性规划如果目标函数或者约束条件中至少有一个是非线性函数时的最优化问题叫非线性规划问题,是求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。
建立非线性规划模型首先要选定适当的目标变量和决策变量,并建立起目标变量与决策变量之间的函数关系,即目标函数。
然后将各种限制条件加以抽象,得出决策变量应满足的一些等式或不等式,即约束条件。
整数规划整数规划分为两类:一类为纯整数规划,记为PIP,它要求问题中的全部变量都取整数;另一类是混合整数规划,记之为MIP,它的某些变量只能取整数,而其他变量则为连续变量。
整数规划的特殊情况是0-1规划,其变量只取0或者1。
多目标规划求解多目标规划的方法大体上有以下几种:一种是化多为少的方法,即把多目标化为比较容易求解的单目标,如主要目标法、线性加权法、理想点法等;另一种叫分层序列法,即把目标按其重要性给出一个序列,每次都在前一目标最优解集内求下一个目标最优解,直到求出共同的最优解。
目标规划目标规划是一种用来进行含有单目标和多目标的决策分析的数学规划方法,是线性规划的特殊类型。
目标规划的一般模型如下:设xj是目标规划的决策变量,共有m个约束条件是刚性约束,可能是等式约束,也可能是不等式约束。
设有l个柔性目标约束条件,其目标规划约束的偏差为d+, d-。
设有q个优先级别,分别为P1, P2, …, Pq。
在同一个优先级Pk中,有不同的权重,分别记为[插图], [插图](j=1,2, …, l)。
所谓指标就是用来评价系统的参量.例如,在校学生规模、教学质量、师资结构、科研水平等,就可以作为评价高等院校综合水平的主要指标.一般说来,任何—个指标都反映和刻画事物的—个侧面.从指标值的特征看,指标可以分为定性指标和定量指标.定性指标是用定性的语言作为指标描述值,定量指标是用具体数据作为指标值.例如,旅游景区质量等级有5A 、4A 、3A 、2A 和1A 之分,则旅游景区质量等级是定性指标;而景区年旅客接待量、门票收入等就是定量指标.从指标值的变化对评价目的的影响来看,可以将指标分为以下四类: (1)极大型指标(又称为效益型指标)是指标值越大越好的指标; (2)极小型指标(又称为成本型指标)是指标值越小越好的指标; (3)居中型指标是指标值既不是越大越好,也不是越小越好,而是适中为最好的指标; (4) 区间型指标是指标值取在某个区间内为最好的指标.例如,在评价企业的经济效益时,利润作为指标,其值越大,经济效益就越好,这就是效益型指标;而管理费用作为指标,其值越小,经济效益就越好,所以管理费用是成本型指标.再如建筑工程招标中,投标报价既不能太高又不能太低,其值的变化范围一般是(10%,5%)-+×标的价,超过此范围的都将被淘汰,因此投标报价为区间型指标.投标工期既不能太长又不能太短,就是居中型指标.在实际中,不论按什么方式对指标进行分类,不同类型的指标可以通过相应的数学方法进行相互转换8.2.4 评价指标的预处理方法一般情况下,在综合评价指标中,各指标值可能属于不同类型、不同单位或不同数量级,从而使得各指标之间存在着不可公度性,给综合评价带来了诸多不便.为了尽可能地反映实际情况,消除由于各项指标间的这些差别带来的影响,避免出现不合理的评价结果,就需要对评价指标进行一定的预处理,包括对指标的一致化处理和无量纲化处理.1.指标的一致化处理所谓一致化处理就是将评价指标的类型进行统一.一般来说,在评价指标体系中,可能会同时存在极大型指标、极小型指标、居中型指标和区间型指标,它们都具有不同的特点.如产量、利润、成绩等极大型指标是希望取值越大越好;而成本、费用、缺陷等极小型指标则是希望取值越小越好;对于室内温度、空气湿度等居中型指标是既不期望取值太大,也不期望取值太小,而是居中为好.若指标体系中存在不同类型的指标,必须在综合评价之前将评价指标的类型做一致化处理.例如,将各类指标都转化为极大型指标,或极小型指标.一般的做法是将非极大型指标转化为极大型指标.但是,在不同的指标权重确定方法和评价模型中,指标一致化处理也有差异.(1) 极小型指标化为极大型指标对极小型指标j x ,将其转化为极大型指标时,只需对指标j x 取倒数:1j jx x '=,或做平移变换:j j j x M x '=-,其中1 max{}j ij i nM x ≤≤=,即n 个评价对象第j 项指标值ij x 最大者.(2) 居中型指标化为极大型指标对居中型指标j x ,令1 max{}j ij i nM x ≤≤=,1 min{}j ij i nm x ≤≤=,取2(),;2 2(),.2j j j j j j j j j j j j j j jj j x m M m m x M m x M x M m x M M m -+⎧≤≤⎪-⎪'=⎨-+⎪≤≤⎪-⎩就可以将j x 转化为极大型指标.(3) 区间型指标化为极大型指标对区间型指标j x ,j x 是取值介于区间[,]j j a b 内时为最好,指标值离该区间越远就越差.令1 max{}j ij i nM x ≤≤=,1 min{}j ij i nm x ≤≤=, max{,},j j j j j c a m M b =--取1,;1, ; 1,.j jj j j j j j j j jj j j a x x a c x a x b x bx b c -⎧-<⎪⎪⎪'=≤≤⎨⎪-⎪->⎪⎩就可以将区间型指标j x 转化为极大型指标.类似地,通过适当的数学变换,也可以将极大型指标、居中型指标转化为极小型指标.2.指标的无量纲化处理所谓无量纲化,也称为指标的规范化,是通过数学变换来消除原始指标的单位及其数值数量级影响的过程.因此,就有指标的实际值和评价值之分.—般地,将指标无量纲化处理以后的值称为指标评价值.无量纲化过程就是将指标实际值转化为指标评价值的过程.对于n 个评价对象12,,,n S S S L ,每个评价对象有m 个指标,其观测值分别为(1,2,,;1,2,,)ij x i n j m ==L L .(1) 标准样本变换法 令* (1,1).ij jij jx x x i n j m s -=≤≤≤≤其中样本均值11n j ij i x x n ==∑,样本均方差j s =*ij x 称为标准观测值. 特点:样本均值为0,方差为1;区间不确定,处理后各指标的最大值、最小值不相同;对于指标值恒定(0j s =)的情况不适用;对于要求指标评价值*0ij x >的评价方法(如熵值法、几何加权平均法等)不适用.(2) 线性比例变换法 对于极大型指标,令*11 (max 0, 1, 1).max ij ij ij i niji nx x x i n j m x ≤≤≤≤=≠≤≤≤≤对极小型指标,令*1min (1,1).iji nijijx x i n j m x ≤≤=≤≤≤≤或*111 (max 0, 1, 1).max ij ijij i niji nx x x i n j m x ≤≤≤≤=-≠≤≤≤≤该方法的优点是这些变换方式是线性的,且变化前后的属性值成比例.但对任一指标来说,变换后的*1ij x =和*0ij x =不一定同时出现.特点:当0ij x ≥时,*[0,1]ij x ∈;计算简便,并保留了相对排序关系.(3) 向量归一化法 对于极大型指标,令* (1,1).ij x x i n j m =≤≤≤≤对于极小型指标,令*1,1).ij x x i n j m =≤≤≤≤优点:当0ij x ≥时,*[0,1]ijx ∈,即*21()1nij i x ==∑.该方法使*01ij x ≤≤,且变换前后正逆方向不变;缺点是它是非线性变换,变换后各指标的最大值和最小值不相同.(4) 极差变换法对于极大型指标,令*111min (1, 1).max min ij iji nijij iji ni nx x x i n j m x x ≤≤≤≤≤≤-=≤≤≤≤-对于极小型指标,令*111max (1, 1).max min ij iji nijij iji ni nx x x i m j n x x ≤≤≤≤≤≤-=≤≤≤≤-其优点为经过极差变换后,均有*01ij x ≤≤,且最优指标值*1ij x =,最劣指标值*0ij x =.该方法的缺点是变换前后的各指标值不成比例,对于指标值恒定(0j s =)的情况不适用.(5) 功效系数法 令*111min (1,1).max min ij iji nijij iji ni nx x x c d i n j m x x ≤≤≤≤≤≤-=+⨯≤≤≤≤-其中,c d 均为确定的常数.c 表示“平移量”,表示指标实际基础值,d 表示“旋转量”,即表示“放大”或“缩小”倍数,则*[,]ij x c c d ∈+.通常取60,40c d ==,即*111min 6040 (1,1).max min ij iji nijij iji ni nx x x i n j m x x ≤≤≤≤≤≤-=+⨯≤≤≤≤-则*ij x 实际基础值为60,最大值为100,即*[60,100]ij x ∈.特点:该方法可以看成更普遍意义下的一种极值处理法,取值范围确定,最小值为c ,最大值为c d +.3.定性指标的定量化在综合评价工作中,有些评价指标是定性指标,即只给出定性地描述,例如:质量很好、性能一般、可靠性高、态度恶劣等.对于这些指标,在进行综合评价时,必须先通过适当的方式进行赋值,使其量化.一般来说,对于指标最优值可赋值10.0,对于指标最劣值可赋值为0.0.对极大型和极小型定性指标常按以下方式赋值.(1) 极大型定性指标量化方法对于极大型定性指标而言,如果指标能够分为很低、低、一般、高和很高等五个等级,则可以分别取量化值为1.0,3.0,5.0,7.0和9.0,对应关系如图8-2所示.介于两个等级之间的可以取两个分值之间的适当数值作为量化值.图8-2 极大型定性指标量化方法(2) 极小型定性指标量化方法对于极小型定性指标而言,如果指标能够分为很高、高、一般、低和很低等五个等级,化值为1.0,3.0,5.0,7.0和9.0,对应关系如图8-3所示.介于两个等级之间的可以取两个分值之间的适当数值作为量化值.模糊综合评价方法在客观世界中,存在着许多不确定性现象,这种不确定性有两大类:一类是随机性现象,即事物对象是明确的,由于人们对事物的因果律掌握不够,使得相应结果具有不可预知性,例如晴天、下雨、下雪,这是明确的,但出现规律不确定;另一类是模糊性现象,即某些事物或概念的边界不清楚,使得事物的差异之间存在着中间过渡过程或过渡结果,例如年轻与年老、高与矮、美与丑等,这种不确定性现象不是人们的认识达不到客观实际所造成的,而是事物的一种内在结构的不确定属性,称为模糊性现象.模糊数学就是用数学方法研究和处理具有“模糊性”现象的一个数学分支.而模糊综合评价就是以模糊数学为基础,应用模糊关系合成的原理,将一些边界不清、不易定量的因素定量化,进行综合评价的一种方法. .隶属度函数的确定方法隶属度的思想是模糊数学的基本思想,确定符合实际的隶属函数是应用模糊数学方法建立数学模型的关键,然而这是至今尚未完全解决的问题.下面介绍几种常用的确定隶属函数的方法.⑴ 模糊统计法模糊统计法是利用概率统计思想确定隶属度函数的一种客观方法,是在模糊统计的基础上根据隶属度的客观存在性来确定的.下面以确定青年人的隶属函数为例来介绍其主要过程.① 以年龄为论域X ,在论域X 中取一固定样本点027x =.② 设*A 为论域X 上随机变动的普通集合,°A 是青年人在X 上以*A 为弹性边界的模糊集,对*A 的变动具有制约作用.其中°0x A ∈,或°0x A ∉,使得0x 对°A 的隶属关系具有不确定性.然后进行模糊统计试验,若n 次试验中覆盖0x 的次数为n m ,则称nm n为0x 对于°A 的隶属频率.由于当试验次数n 不断增大时,隶属频率趋于某一确定的常数,该常数就是0x 属于°A 的隶属度,即 °0()lim .n An m x nμ→∞=比如在论域X 中取027x =,选择若干合适人选,请他们写出各自认为青年人最适宜最恰当的年龄区间(从多少岁到多少岁),即将模糊概念明确化.若n 次试验中覆盖27岁的年龄区间的次数为m ,则称mn为27岁对于青年人的隶属频率,表8-4是抽样调查统计的结果.由于27岁对于青年人的隶属频率稳定在0.78附近,因此可得到027x =属于模糊集°A 的隶属度°(27)0.78Aμ=.试验次数n 1020 30 40 50 60 70 80 90 100110 120 129 隶属次数m6 1423 31 39 47 53 62 6876 85 95 101隶属频率m n0.60 0.70 0.77 0.78 0.78 0.76 0.76 0.78 0.76 0.76 0.75 0.79 0.78③ 在论域X 中适当的取若干个样本点12,,,n x x x L ,分别确定出其隶属度°()(1,2,,)i Ax i n μ=L ,建立适当坐标系,描点连线即可得到模糊集°A 的隶属函数曲线. 将论域X 分组,每组以中值为代表分别计算各组隶属频率,连续地描出图形使得到青年人的隶属函数曲线,见表8-5与图8-5所示.确定模糊集合隶属函数的模糊统计方法,重视实际资料中包含的信息,采用了统计分析手段,是一种应用确定性分析揭示不确定性规律的有效方法.特别是对一些隶属规律不清楚的模糊集合,也能较好地确定其隶属函数.分组频数 隶属频率 分组 频数 隶属频率13.5~14.5 2 0.016 25.5~26.5 103 0.798 14.5~15.5 27 0.210 26.5~27.5 101 0.783 15.5~16.5 51 0.395 27.5~28.5 99 0.767 16.5~17.5 67 0.519 28.5~29.5 80 0.620 17.5~18.5 124 0.961 29.5~30.5 77 0.597 18.5~19.5 125 1.00 30.5~31.5 27 0.209 19.5~20.5 129 1.00 31.5~32.5 27 0.209 20.5~21.5 129 1.00 32.5~33.5 26 0.202 21.5~22.5 129 1.00 33.5~34.5 26 0.202 22.5~23.5 129 1.00 34.5~35.5 26 0.202 23.5~24.5 129 1.00 35.5~36.5 10.008 24.5~25.5128 0.992⑵ 三分法三分法也是利用概率统计中思想以随机区间为工具来处理模糊性的的一种客观方法.例如建立矮个子°1A ,中等个子°2A ,高个子°3A 三个模糊概念的隶属函数.设3{}P =矮个子,中等个子,高个子,论域X 为身高的集合,取(0,3)X =(单位:m).每次模糊试验确定X 的一次划分,每次划分确定一对数(,)ξη,其中ξ为矮个子与中等个子的分界点,η为中等个子与高个子的分界点,从而将模糊试验转化为如下随机试验:即将(,)ξη看作二图8-5 年轻人的隶属函数曲线维随机变量,进行抽样调查,求得ξ、η的概率分布()P x ξ、()P x η后,再分别导出°1A 、°2A 和°3A 的隶属函数±1()A x μ、±2()A x μ和±3()Ax μ,相应的示意图如图8-6所示. ±1()(),A x x P t dt ξμ+∞=⎰ ±3()(),A xx P t dt ημ+∞=⎰±±±213()1()().A A A x x x μμμ=--通常ξ和η分别服从正态分布211(,)N a σ和222(,)N a σ,则°1A 、°2A 和°3A 的隶属函数分别为±111()1,Ax a x μσ⎛⎫-=-Φ ⎪⎝⎭±322()1,A x a x μσ⎛⎫-=-Φ ⎪⎝⎭ ±22121().Ax a x a x μσσ⎛⎫⎛⎫--=Φ-Φ ⎪ ⎪⎝⎭⎝⎭其中22().t xx dt -Φ=⎰⑶ 模糊分布法根据实际情况,首先选定某些带参数的函数,来表示某种类型模糊概念的隶属函数(论域为实数域),然后再通过实验确定参数.在客观事物中,最常见的是以实数集作论域的情形.若模糊集定义在实数域R 上,则模糊集的隶属函数便称为模糊分布.下面给出几种常用的模糊分布,在以后确定隶属函数时,就可以根据问题的性质,选择适当(即符合实际情况)模糊分布,根据测量数据求出分布中所含的参数,从而就可以确定出隶属函数了.为了选择适当的模糊分布,首先应根据实际描述的对象给出选择的大致方向. 偏小型模糊分布适合描述像“小”、“冷”、“青年”以及颜色的“淡”等偏向小的一方的模糊现象,其隶属函数的一般形式为°1, ;()(),.Ax a x f x x a μ≤⎧=⎨>⎩偏大型模糊分布适合描述像“大”、“热”、“老年”以及颜色的“浓”等偏向大的一方的模糊现象,其隶属函数的一般形式为°0, ;()(),.Ax a x f x x a μ<⎧=⎨≥⎩中间型模糊分布适合描述像“中”、“暖和“、“中年”等处于中间状态的模糊现象,其隶属面数可以通过中间型模糊分布表示.图8-6 由概率分布确定模糊集隶属函数①矩形(或半矩形)分布(a)偏小型(b)偏大型(c)中间型°1,; ()0,.Ax a xx aμ≤⎧=⎨>⎩°0,;()1,.Ax axx aμ<⎧=⎨≥⎩°0,;()1,;0,.Ax ax a x bx bμ<⎧⎪=≤≤⎨⎪>⎩此类分布是用于确切概念.矩形(或半矩形)分布相应的示意图如图8-7所示.图8-7矩形(或半矩形)分布示意图②梯形(或半梯形)分布(a)偏小型(b)偏大型(c)中间型°1,;(),;0,.Ax ab xx a x bb ax bμ<⎧⎪-⎪=≤≤⎨-⎪⎪>⎩°0,;(),;1,.Ax ax ax a x bb ax bμ<⎧⎪-⎪=≤≤⎨-⎪⎪>⎩°0,,;,;()1,;,;Ax a x dx aa x bb axb x cd xc x dd cμ<≥⎧⎪-⎪≤<⎪-=⎨≤<⎪⎪-≤<⎪-⎩梯形(或半梯形)分布的示意图如图8-8所示.③抛物形分布(a)偏小型(b)偏大型(c)中间型°1,;(),;0,.kAx ab xx a x bb ax bμ<⎧⎪⎪-⎛⎫=≤≤⎨ ⎪-⎝⎭⎪⎪>⎩°0,;(),;1,.kAx ax ax a x bb ax bμ<⎧⎪⎪-⎛⎫=≤≤⎨ ⎪-⎝⎭⎪⎪>⎩°0,,;,;()1,;,;kAkx a x dx aa x bb axb x cd xc x dd cμ<≥⎧⎪-⎛⎫⎪≤<⎪⎪-⎪⎝⎭=⎨≤<⎪⎪-⎛⎫⎪≤<⎪-⎪⎝⎭⎩抛物形分布的示意图如图8-9所示.(a)偏小型(b)偏大型(c)中间型(a)偏小型(b)偏大型(c)中间型图8-8梯形(或半梯形)分布示意图④ 正态分布(a)偏小型(b)偏大型(c)中间型°21, ;(),.x a A x a x e x a σμ-⎛⎫- ⎪⎝⎭≤⎧⎪=⎨⎪>⎩°20, ;()1,.x a A x a x e x a σμ-⎛⎫- ⎪⎝⎭<⎧⎪=⎨⎪-≥⎩ °2().x a Ax e σμ-⎛⎫- ⎪⎝⎭=正态分布的示意图如图8-10所示.(a)偏小型(b)偏大型(c)中间型°1, ;()1,.1() (0,0)Ax a x x a x a βμααβ≤⎧⎪=⎨>⎪+-⎩>> °0, ;()1,.1() (0,0)Ax a x x a x a βμααβ-≤⎧⎪=⎨>⎪+-⎩>> °1(),1()(0,).Ax x a βμααβ=+->为正偶数柯西形分布的示意图如图8-11所示.(a)偏小型(b)偏大型(c)中间型°()1, ;(),.k x a Ax a x e x a μ--≤⎧=⎨>⎩°()0, ;()1,.k x a Ax a x ex a μ--≤⎧=⎨->⎩°()(),;()1, ;,.k x a Ak b x e x a x a x b ex b μ----⎧<⎪=≤<⎨⎪≥⎩ (a)偏小型 (b)偏大型 (c)中间型图8-9 抛物形分布示意图(a)偏小型 (b)偏大型 (c)中间型 图8-10 正态分布示意图 (a) 偏小型 (b)偏大型 (c)中间型 图8-11 柯西分布示意图k>.Γ型分布的示意图如图8-12所示.其中0(a) 偏小型(b)偏大型(c)中间型图8-12 Γ型分布示意图。
数学建模评价模型方法目标评价方法是通过对建模目标进行分析和评价,从而确定模型的合理性和准确性。
常用的目标评价方法有以下几种:1.目标一致性评价:通过比较建模目标与实际需求的一致性,评估模型是否能够准确反映实际问题的特征。
可以通过专家访谈、问卷调查等方式,收集相关数据,然后通过定量或定性分析的方法来评价目标一致性。
2.目标完备性评价:评估模型是否能够完整地描述问题的各个方面。
可以通过检查模型的输入、输出和求解方法,判断是否包括了问题的所有关键要素,从而评价模型的完备性。
3.目标可行性评价:评估模型是否能够在给定的条件下实现。
通过对模型中所涉及的参数、约束条件和假设进行分析,判断模型是否符合实际操作的限制和要求。
效果评价方法是通过对模型的输出结果进行分析和评价,从而判断模型的有效性和可靠性。
常用的效果评价方法有以下几种:1.精度评价:评估模型的输出结果与实际观测值或已知数据之间的偏差程度。
可以采用各种统计指标,如均方根误差、平均绝对百分比误差等,来度量模型的精度。
2.稳定性评价:评估模型在不同条件下的输出结果是否稳定。
可以通过对输入条件的变化、参数的敏感性分析等方法,来评估模型的稳定性。
3.可行性评价:评估模型的输出结果是否满足实际的约束条件和要求。
可以通过比较模型的输出结果与给定的约束条件来判断模型的可行性。
在实际应用中,常常需要综合考虑目标评价和效果评价方法来对建模进行综合评价。
可以根据实际情况,确定评价指标的权重,并运用多指标综合评价方法来评价模型的综合效果。
总之,数学建模评价模型方法是评估模型合理性、准确性和可行性的重要手段。
通过目标评价和效果评价方法的综合应用,可以对建模过程和建模结果进行全面评估,为实际问题的求解提供科学的依据和方法。
数学建模常见评价模型简介Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998常见评价模型简介评价类数学模型是全国数学建模竞赛中经常出现的一类模型,如2005年全国赛A题长江水质的评价问题,2008年B题高校学费标准评价体系问题等。
主要介绍三种比较常用的评价模型:层次分析模型,模糊综合评价模型,灰色关联分析模型,以期帮助大家了解不同背景下不同评价方法的应用。
层次分析模型层次分析法(AHP)是根据问题的性质和要求,将所包含的因素进行分类,一般按目标层、准则层和子准则层排列,构成一个层次结构,对同层次内诸因素采用两两比较的方法确定出相对于上一层目标的权重,这样层层分析下去,直到最后一层,给出所有因素相对于总目标而言,按重要性程度的一个排序。
其主要特征是,它合理地将定性与定量决策结合起来,按照思维、心理的规律把决策过程层次化、数量化。
运用层次分析法进行决策,可以分为以下四个步骤:步骤1 建立层次分析结构模型深入分析实际问题,将有关因素自上而下分层(目标—准则或指标—方案或对象),上层受下层影响,而层内各因素基本上相对独立。
步骤2构造成对比较阵对于同一层次的各元素关于上一层次中某一准则的重要性进行两两比较,借助1~9尺度,构造比较矩阵;步骤3计算权向量并作一致性检验由判断矩阵计算被比较元素对于该准则的相对权重,并进行一致性检验,若通过,则最大特征根对应的特征向量做为权向量。
步骤4计算组合权向量(作组合一致性检验)组合权向量可作为决策的定量依据通过一个具体的例子介绍层次分析模型的应用。
例(选择旅游地决策问题)如何在桂林、黄山、北戴河3个目的地中按照景色、费用、居住条件、饮食、旅途条件等因素进行选择。
步骤1 建立系统的递阶层次结构将决策问题分为3个层次:目标层O ,准则层C ,方案层P ;每层有若干元素,各层元素间的关系用相连的直线表示。
图1 选择旅游地的层次结构步骤2构造比较矩阵标度值 含义1 两因素相比,具有同等重要性 3 两因素相比,前者比后者稍重要 5 两因素相比,前者比后者明显重要 7 两因素相比,前者比后者强烈重要 9 两因素相比,前者比后者极端重要2、4、6、8表示上述相邻判断的中间值以上各数值的倒数若指标i 与指标j 比较相对重要性用上述之一数值标度,则指标j 与指标i 的相对重要性用上述数值的倒数标度表1 1~9标度的含义设要比较各准则n C C C ,,,21 对目标O 的重要性,记判断矩阵为A显然,A 是正互反阵。
数学建模常用模型与算法一、常用模型☐(一)、评价模型:☐AHP(层次分析法)(确定权重)、模糊评价、聚类分析、因子分析、主成份分析、回归分析、神经网络、多指标综合评价、熵值法(确定权重)等☐(二)、预测模型:☐指数平滑法、灰色预测法、回归模型、神经网络预测、时间序列模型、马尔科夫预测、差分微分方程☐(三)、统计模型:☐方差分析、均值比较的假设检验☐(四)、方程模型:☐常微分方程、差分方程、偏微分方程、以及各种方程的求解(数值解和解析解)☐(五)运筹优化类:☐线性规划、非线性规划、目标规划、整数规划、图论模型(最短路、最大流、遍历问题等)、排队论、对策论、以及各种模型的算法☐(六)其他模型:☐随机模拟模型、等二、十大算法1、蒙特卡罗算法(该算法又称随机性模拟算法,是通过计算机仿真来解决问题的算法,同时可以通过模拟可以来检验自己模型的正确性,是比赛时必用的方法)2、数据拟合、参数估计、插值等数据处理算法(比赛中通常会遇到大量的数据需要处理,而处理数据的关键就在于这些算法,通常使用Matlab作为工具)3、线性规划、整数规划、多元规划、二次规划等规划类问题(建模竞赛大多数问题属于最优化问题,很多时候这些问题可以用数学规划算法来描述,通常使用Lindo、Lingo软件实现)4、图论算法(这类算法可以分为很多种,包括最短路、网络流、二分图等算法,涉及到图论的问题可以用这些方法解决,需要认真准备)5、动态规划、回溯搜索、分治算法、分支定界等计算机算法(这些算法是算法设计中比较常用的方法,很多场合可以用到竞赛中)6、最优化理论的三大非经典算法:模拟退火法、神经网络、遗传算法(这些问题是用来解决一些较困难的最优化问题的算法,对于有些问题非常有帮助,但是算法的实现比较困难,需慎重使用)7、网格算法和穷举法(网格算法和穷举法都是暴力搜索最优点的算法,在很多竞赛题中有应用,当重点讨论模型本身而轻视算法的时候,可以使用这种暴力方案,最好使用一些高级语言作为编程工具)8、一些连续离散化方法(很多问题都是实际来的,数据可以是连续的,而计算机只认的是离散的数据,因此将其离散化后进行差分代替微分、求和代替积分等思想是非常重要的)9、数值分析算法(如果在比赛中采用高级语言进行编程的话,那一些数值分析中常用的算法比如方程组求解、矩阵运算、函数积分等算法就需要额外编写库函数进行调用)10、图象处理算法(赛题中有一类问题与图形有关,即使与图形无关,论文中也应该要不乏图片的,这些图形如何展示以及如何处理就是需要解决的问题,通常使用Matlab进行处理)。
数学建模评价类模型——模糊综合评价文章目录•o一级模糊综合评价应用o1)模糊集合o2)隶属度、隶属函数及其确定方法o3)因素集、评语集、权重集o1、模糊综合评价法的定义o2、应用模糊综合评价法需要的一些小知识oo3、模糊综合评价法的应用(实例)oo4、最后总结1、模糊综合评价法的定义先来看看官方标准定义:模糊综合评价法是一种基于模糊数学的综合评价方法。
该综合评价法根据模糊数学的隶属度理论把定性评价转化为定量评价,即用模糊数学对受到多种因素制约的事物或对象做出一个总体的评价。
它具有结果清晰,系统性强的特点,能较好地解决模糊的、难以量化的问题,适合各种非确定性问题的解决。
初次看,是不是觉得有点懵懵懂懂的?(偷笑)我来用非官方的语言解释一遍,或许你就明白了。
大家想想,生活中,是不是有很多模糊的概念。
比如班级要评三好学生,那评价的标准一般就是学习成绩好不好、思想品德好不好、身体好不好(我查了下百度才发现三好学生竟然要身体好!?感情身体不好还不行)。
学习成绩好或者不好、思想品德好或者不好、身体好或者不好听起来是不是就很模糊?怎么样就算学习成绩好了或者思想品德好了或者身体好了?对,其实这些指标就是模糊的概念。
模糊综合评价法是什么呢?其实就是对评价对象就评价指标进行综合评判,最后给每个评价对象对于每个指标一个隶属度。
(有点绕口,用三好学生的例子再来阐述一下)比如现在有个学生参与评判三好学生。
标准假如就是评上和评不上。
用模糊综合评价法得到的最终结果就是这名学生对于评上的隶属度和评不上的隶属度。
假如评上的隶属度高一些,那这名学生肯定是被评上咯。
(反之亦然)我这样介绍一下,是为了让大家知道我们这个模糊综合评价到底是干嘛的,不要嫌我啰嗦(吃手手)2、应用模糊综合评价法需要的一些小知识1)模糊集合① 定义:(我觉得这段话不错,来自360百科)这段话其实就举了模糊的一些概念,和经典集合(就是有明确数字的,高中学的那个集合)的区别及其历史。
综合评价方法数学建模综合评价方法在数学建模中被广泛应用,用于对模型的准确度和可靠性进行评估。
综合评价方法是通过分析模型的输入、输出和处理过程,结合实际情况来评价模型优劣的一种方法。
本文将介绍几种常见的综合评价方法,并分析它们的优点和不足。
一、误差分析法误差分析法是基于模型输出与实际数据之间的误差来评估模型准确度和可靠性的方法。
该方法通过计算模型的预测值与实际观测值之间的差异,来评估模型的拟合程度。
常用的误差指标包括残差平方和、均方根误差等。
优点是计算简单,直观易懂;缺点是只能评估模型的输出,在一些情况下无法全面评估模型的有效性。
二、参数敏感度分析法参数敏感度分析法是通过改变模型的输入参数,观察模型输出的变化情况,来评估模型的稳定性和可靠性的方法。
该方法通过计算参数的敏感度指标,来评估每个参数对模型输出的影响程度。
常用的敏感度指标包括偏导数、敏感度系数等。
优点是能够全面评估模型的输入对输出的影响;缺点是对于复杂的模型,计算量较大。
三、模型效果评估法模型效果评估法是通过对模型的输出进行评估来评价模型的准确度和可靠性的方法。
该方法通过建立与模型输出相对应的评价指标,来评估模型的效果。
常用的评价指标包括相关系数、拟合好坏指标等。
优点是对模型的整体效果进行综合评估;缺点是评价指标的选择和建立需要考虑实际问题的特点。
四、灵敏度分析法灵敏度分析法是通过改变模型的输入条件,观察模型输出的变化情况,来评估模型的可靠性和鲁棒性的方法。
该方法通过计算输入条件的灵敏度指标,来评估输入条件对模型输出的影响程度。
常用的灵敏度指标包括变动范围、影响程度等。
优点是能够评估模型对输入条件的容忍程度;缺点是对于复杂的模型,计算量较大。
五、假设验证法假设验证法是通过比较模型预测结果与实际观测结果,来评估模型的可靠性和适用性的方法。
该方法通过对模型的假设条件进行验证,来检验模型的合理性和适用性。
常用的方法包括残差分析、拟合优度检验等。