飞机结构静强度计算
- 格式:ppt
- 大小:761.50 KB
- 文档页数:27
飞机复合材料整流罩结构静强度分析作者:郭建来源:《科学与财富》2015年第19期摘要:整流罩是飞机的一个重要部件,主要用来确保飞机外形的连续、减小空气阻力、尽量消除正激波等空气动力学。
飞机结构设计者在设计的时候首先需要考虑结构静强度问题。
目前飞机多应用复合材料,因此对飞机整流罩复合材料静强度进行校核是及其重要的一项工作内容。
http:///1/view-5205964.htm关键词:飞机;复合材料;整流罩;结构静强度一、静强度设计原则一般情况下,复合材料静强度设计要求原则大致无异于金属结构,但在使用基体材料的过程中,复合材料的基体材料会吸收一定的水分量,造成使用过程中如遇到高温联合作用会降低复合材料的性能,通常对结构进行检验是在室温大气环境下实现,所以复合材料飞机结构强度新规范着重强调:如果全尺寸复合材料机构在室温环境下进行试验,如小于或等于设计的极限载荷,结构不能出现总体破坏,而且还应保证结构内部应力需与相应部位结构许用值/最严重吸湿量联合试飞最高工作温度的环境补偿系数相等或比之小。
二、复合材料结构静强度符合性检验要求(1)验证静强度需对潜在失效模式、临界载荷工况等进行充分考虑。
(2)评估静强度需将环境暴露、重复加载等造成材料性能退化的影响因素反映出来。
(3)验证静强度包括内容:材料、工艺变化、环境、制造验收准则、质量控制不可检测或允许的缺陷、维护产品的文件允许服役损伤影响等。
还需要依靠适合环境条件验证下一系列部件的载荷试验程序。
(4)复合材料结构静强度验证中最高一层试验为全尺寸复合材料结构静力试验。
若要对环境因素进行考虑,需补充相关的试验内容,变与将环境引起的破坏模式诊断出来。
当试验证明湿热环境并不会造成新的危险破坏模式时,才能在室温大气环境下对全尺寸结构静力(极限载荷状况)进行试验;若无法满足破坏模式准则,则需要采取一些措施确保条件满足或在湿热条件下进行静力试验。
(5)依据试验分析将与其可见冲击损伤( BVID)结构可承受极限载荷进行说明。
一1. 民用飞机的分类有哪些?干线运输机、支线运输机和通用航空飞机三大类,分别用于洲际干线(中远程)和国内干线(中近程)的客货运输、大城市至中小城镇及中小城镇之间的支线客货运输,以及农林牧副渔业、地质探矿、遥感遥测、公安巡逻、海上救护、体育运动、私人游乐等2. 飞机设计的技术要求主要有哪些?定量指标:升限,Vmax,航程,载重,起飞重量,起飞着陆距离,机动性指标(加速,盘旋,爬升),寿命;非定量指标:全天候,机场要求,维护要求;发展趋势:V ,Hmax ,载重,航程。
3. 飞机研制过程主要包括哪几个方面?1.拟订技术要求:飞机设计单位和用户协商后共同拟订新型号飞机的使用技术要求或战术技术。
2.飞机设计过程:根据技术要求进行飞机设计:总体设计和结构设计要求。
3.飞机制造过程:飞机制造厂根据飞机设计单位提供的设计图纸和技术资料进行试制。
试制出来的新飞机首先进行全机静强度、疲劳强度和损伤容限的验证试验和试飞。
趋势:数字化,无纸化制造。
4.飞机的试飞、定型过程:飞机通过全机静强度试验、必要的疲劳、损伤容限早期验证试验、起落架试验和全机各系统试验后进行试飞4. 简述飞机研制的特点。
•设计成功的飞机是先进科学技术和创造性思维的产物•飞机研制工作是一个反复迭代、逐步逼近相对最优解的过程•成功的飞机设计方案是多学科专业综合协调的结果5. 简要说明飞机结构设计的具体内容。
•飞机部件的结构打样设计(初步设计)•零构件设计•部件的结构图纸6. 飞机结构设计的原始条件有哪些?(一)结构的形状协调(二)结构的外载荷(三)结构的使用条件(四)结构的生产条件7. 飞机结构设计的基本要求有哪几个方面?(一)气动要求(二)结构完整性及最小重量要求(三)使用维护要求(四)工艺要求(五)经济性要求8. 简要说明飞机结构设计思想的演变过程。
•科学技术发展创新促进了飞机结构设计思想的演变;•飞机使用实践促进飞机结构设计思想的演变;•现代飞机结构设计准则不断发展进步。
2019年6期技术创新科技创新与应用Technology Innovation and Application飞机静力/疲劳试验技术分析冀美珊,代月松,刘珺(中国航空规划设计研究总院有限公司,北京100120)1概述飞机静力/疲劳试验是保证飞机结构完整性的重要手段之一。
在新机研制过程中,为了验证设计分析方法、检验制造工艺、保证试飞和使用安全,我国现行的军机强度规范及民用航空规章均对飞机结构(含结构部件)的强度试验作了明确的要求。
飞机静力/疲劳试验是在地面环境下模拟飞机在使用过程中可能遇到的受力状况,从而对其进行强度验证和校核。
飞机静力/疲劳试验是涵盖多个学科的综合性试验,同时,试验的要求、试验件的种类和结构特点也不尽相同。
2飞机静力/疲劳试验技术飞机静力试验用于验证结构是否符合强度要求,对所有影响飞行安全的结构进行静力试验。
飞机的各个部件在不同使用状态下有不同的环境效应,会承受不同的气动力或惯性载荷,也就是不同部件有不同的严重受载状态,静力试验实际上是对全机和每个部件及其连接结构分别进行考核。
飞机疲劳试验则是暴露结构的疲劳薄弱部位,验证疲劳分析方法的正确性;暴露经分析和研制试验未能识别出的结构危险部位、薄弱环节,为结构改进、工艺改进、飞行改型提供依据;同时获得结构的应力分布、裂纹形成寿命、裂纹扩展寿命等,以验证飞机结构是否满足耐久性/损伤容限设计目标要求[1]。
飞机静力/疲劳试验是飞机型号定型和取证的必要条件之一,为了实现飞机静力/疲劳试验的目的,需重视验证试验的总体设计和规划,对试验的项目、内容及顺序都要进行周密的设计和安排,整个试验涉及的主要技术包括试验设计、试验加载、试验支持/约束、试验测控、无损检测等。
2.1试验设计技术现代飞机由于使用情况复杂,导致载荷状态特别多,如民用飞机经常受到垂向突风、横向突风等,军用飞机则由于不同的作战和训练任务常受到机动载荷。
飞机静力/疲劳试验设计主要是根据飞机结构设计准则、飞行任务剖面所确定的使用包线,分析、确定使用中可遇到的主要静力和动力载荷工况及其大小与分布确定,开展试验总体规划和设计方法研究,包括载荷的确定、载荷施加方式确定、试验场地布置、加载设备选择与连接、安装方案设计等任务。
飞机结构强度概念总结1、什么是使用载荷使用载荷是指飞机在正常使用中所允许达到的最大载荷,或称为限制载荷。
2、使用载荷对飞机的各元件有什么要求在使用载荷作用下,各元件的应力临近材料的比例极限强度,但未出现永久变形。
3、什么是设计载荷设计载荷即为使用载荷乘以安全系数。
4、在设计载荷作用下,对飞机的结构及其强度有什么要求飞机及各构件在该载荷作用下不应破坏。
5、安全系数的定义及物理意义安全系数为设计载荷与使用载荷之比,其物理意义为实际使用载荷增大到多少倍结构才破坏,这个倍数就是安全系数。
6、为什么要引入安全系数结构承受的载荷、材料性能、结构尺寸及加工质量等都存在较大分散性,为了保证结构安全可靠,在设计中引入安全系数概念。
7、疲劳破坏一般有什么特征1)在交变载荷作用下,构件交变应力远小于材料的静强度极限的情况下破坏就可能发生2)不管是脆性材料或塑性材料,疲劳断裂在宏观上均表现为无明显塑性变形的突然断裂,属于低应力类脆性断裂,故不易察觉,具有更大的危险性3)疲劳破坏是一个累积损伤的过程,要经历一定的时间历程,甚至是很长的时间历程。
疲劳破坏过程实际由三个过程组成:裂纹形成、裂纹扩展和裂纹扩展到快速断裂。
4)疲劳破坏常具有局部性质,而并不涉及整个结构的所有细节和部位。
因此改变局部设计,就可延长结构寿命,并不需要更换结构全部材料或修改其他细节设计5)疲劳破坏断口在宏观和微观上均有其特征,特别是其宏观特征在外场目视检查即能进行观察,借此可判断是否属于疲劳破坏8、等寿命曲线的三种经验公式及符号所代表的物理意义1)抛物线公式(也称杰波Gerber抛物线)S a=S−1[1−(S mσb)2]2)直线公式(即古德曼Goodman公式)S a=S−1(1−S m σb)3)对于塑性材料,有时把材料达到屈服极限时所受的应力σs 作为破坏的标志,于是工程上就把2)式进一步改写成为(也称为索德柏格Soderberg公式)S a=S−1(1−S m σs)物理意义:S a—应力幅S m—平均应力S−1—给定寿命的情况下通过R=-1(应力比为-1的等幅对称循环)的S-N曲线查到的应力值(不是疲劳极限)σb—强度极限σs—屈服极限9、简述影响疲劳强度的因素1)应力集中 2)尺寸效应 3)表面质量 4)使用环境10、各因素是如何影响疲劳强度的1)应力集中:应力集中处的疲劳强度往往比光滑部分低2)尺寸效应:构件和试样的尺寸增大时,疲劳强度降低3)表面质量:疲劳强度随表面粗糙度的提高而增加,反之,如果表面加工越粗糙,疲劳强度的降低就越严重,而且这种影响通常对强度越高的钢越明显。
垂直起降无人机机翼结构静强度分析作者:郭涛曾琼芝来源:《中国科技博览》2019年第12期[摘要]目前国内外正大力发展垂直起降无人机,且基础理论和关键技术已研究得逐渐成熟,但对其静强度分析研究得较少。
为了确定机翼电机最佳安装位置以及优化机翼结构布局,本文对垂直起降无人机的机翼进行有限元仿真来分析机翼静强度。
采用密度为110.5kg/m³的PMI泡沫材料,仿真分析后可知安装在航模机型机翼上的电机最佳位置为距机翼根部300mm 处,且机翼所受应力随着离根部距离的增大而减小,由此可知在对机翼结构进行设计时可适当对根部进行加强并对翼梢进行减料减重。
[关键词]有限元仿真;机翼静强度;垂直起降;机翼结构布局中图分类号:TP861 文献标识码:A 文章编号:1009-914X(2018)12-0039-02垂直起降无人机是以直升机方式垂直起降,并能以故定翼飞机方式前飞的飞行器,与传统直升机相比,它具有飞行速度快、航程远和油耗低等特点,与故定翼飞机相比,它对跑道无依赖和能够实现定点悬停。
经过多年的研究和发展,关于垂直起降无人机的基础理论和飞行试验研究已经取得了较大进展,研究主要集中在先进气动布局设计、系统建模技术、飞行控制技术等几个方面。
文献[1]根据设计性能指标,进行总体参数估算,完成了常规式和飞翼式两种方案的外形设计,由此进行了不同的低雷诺数翼型和机翼配置,并对设计结果进行了气动分析。
文献[2]针对建模参数的不确定性,采用滑模控制对尾座式飞行器的垂直飞行状态设计了姿态控制器,增强了系统的鲁棒性。
然而纵观国内外研究现状,对垂直起降无人机的静强度研究得较少,为此,本文针对这一问题进行研究。
飞机结构强度是指在规定的力学环境下结构不会发生破坏和保持安全工作的能力。
目前,飞机结构强度研究领域主要包括静强度、动强度与气动弹性不稳定性、疲劳/断裂和损伤容限等[3]。
本文主要研究飞机机翼结构静强度,采用有限元分析方法进行静强度分析的主要步骤为:获取结构外载荷、计算结构内力、与材料许用应力对比判断强度是否符合要求。
民用飞机发动机吊挂部段静力试验与静强度分析李卫平;谭伟;薛彩军;聂宏【摘要】根据民用飞机发动机吊挂部段静力试验技术需求,研制了一套用于吊挂部段静力试验的试验系统,解决了吊挂支持模拟、加载边界模拟等关键技术,完成了吊挂应急着陆、航向侧移两种危险工况试验,并结合试验台架-吊挂有限元分析模型对吊挂进行了静强度分析.试验结果表明,试验系统工作稳定可靠,吊挂在应急着陆等工况下未发生有害塑性变形,其强度、刚度满足设计要求.对比显示:试验最大应力与有限元分析相对误差均小于8%,验证了分析模型的准确性.试验结果可作为民用飞机发动机吊挂部段强度性能的评定依据,有限元建模方法可应用于吊挂部段改型设计.%A static test rig is developed for the pylon of the civil airplane based on its test specifications. Several key technologies are studied including hanging support simulation and loading boundary simulation. According to the requirement of test, two dangerous working conditions test are finished, I. E. , e-mergency landing test and heading lateral test. And bench-pylon finite element analysis model is built based on experimental test for the computational analysis of pylon strength. The test results show that the test system is stable and reliable, and the pylon has enough strength and stiffness in the two working conditions. Contrast analysis shows the relative errors of the max stress between the results of the test and analysis are less than 8% , which verify the accuracy of analysis model. Test results can be used for the strength evaluation of the engine pylon, and the method of the finite element modeling can be applied to pylon for the retrofit design.【期刊名称】《南京航空航天大学学报》【年(卷),期】2011(043)006【总页数】6页(P732-737)【关键词】民用飞机;发动机吊挂;静力试验;有限元模型【作者】李卫平;谭伟;薛彩军;聂宏【作者单位】中国商飞上海飞机设计研究院,上海,200232;南京航空航天大学航空宇航学院,南京,210016;南京航空航天大学航空宇航学院,南京,210016;南京航空航天大学航空宇航学院,南京,210016【正文语种】中文【中图分类】V228.4发动机吊挂部段是发动机短舱与机翼之间的过渡部段,它是民用飞机重要结构部段之一,具有传递发动机的推力、吸收发动机振动、隔离发动机火区的关键作用[1]。