基于悬架的CATIA-DMU仿真
- 格式:pptx
- 大小:21.95 MB
- 文档页数:66
CATIA运动仿真DMU空间分析CATIA的DMU空间分析模块可以进行设计的有效性评价。
它提供丰富的空间分析手段,包括产品干涉检查、剖面分析和3D几何尺寸比较等。
它可以进行碰撞、间隙及接触等计算,并得到更为复杂和详尽的分析结果。
它能够处理电子样机审核及产品总成过程中经常遇到的问题,能够对产品的整个生命周期(从设计到维护)进行考察。
DMU空间分析能够处理任何规模的电子样车,它适用于从日用工具到重型机械行业的各种企业。
X.1 相关的图标菜单CATIA V5的空间分析模块由一个图标菜单组成:空间分析(DMU Space Analysis)Clash: 干涉检查Sectioning: 剖面观察器Distance and Band Analysis: 距离与自定义区域分析Compare Products: 产品比较Measure Between: 测量距离和角度Measure Item: 单项测量Arc through Three Points: 测量过三点的圆弧Measure Inertia: 测量惯量3D Annotation: 三维注释Create an Annotated View: 建立注释视图Managing Annotated Views: 管理注释视图Groups: 定义产品组x.2 空间分析模块的环境参数设定在开始使用CATIA V5的空间分析模块前,我们可以根据自身的习惯特点,合理地设定其环境参数。
在菜单栏中使用下拉菜单Tools→Option→Digital Mockup打开DMU Space Analysis的环境参数设定界面,在此窗口中有六个标签,分别对应不同的参数设定。
x.2.1 干涉检查设置(DMU Clash)该设置针对Clash命令,允许设置以下内容:Retrieve Information:得到干涉的结果From previous computation:从前一个计算得到分析结果From PDM(UNIX only with ENOVIA VPM):从PDM中得到分析结果(在UNIX系统下是ENOVIA VPM)None:(缺省)无比较Results Window /Automatically open:当进行干涉检查时自动打开结果显示窗口Display in Results box:设置缺省的显示条目list by conflict:冲突列表list by product:产品列表First line automatically selected:(缺省)自动选择冲突列表或产品列表的第一行Type of Computation:设置冲突的缺省类型和缺省的安全距离During Initial Computation:计算并显示所有冲突的深度和最小距离x.2.2 干涉检查细节设置(DMU Clash – Detailed Computation)该设置针对Clash命令,允许设置以下内容:Level of Detail:设置细节的级别Element:(缺省)让用户全面地工作于产品级别,直到查明有关的元素。
运动仿真空间分析的空间分析模块可以进行设计的有效性评价。
它提供丰富的空间分析手段,包括产品干涉检查、剖面分析和几何尺寸比较等。
它可以进行碰撞、间隙及接触等计算,并得到更为复杂和详尽的分析结果。
它能够处理电子样机审核及产品总成过程中经常遇到的问题,能够对产品的整个生命周期(从设计到维护)进行考察。
空间分析能够处理任何规模的电子样车,它适用于从日用工具到重型机械行业的各种企业。
相关的图标菜单的空间分析模块由一个图标菜单组成:空间分析( ): 干涉检查: 剖面观察器: 距离与自定义区域分析: 产品比较: 测量距离和角度: 单项测量: 测量过三点的圆弧: 测量惯量: 三维注释: 建立注释视图: 管理注释视图: 定义产品组空间分析模块的环境参数设定在开始使用的空间分析模块前,我们可以根据自身的习惯特点,合理地设定其环境参数。
在菜单栏中使用下拉菜单 打开的环境参数设定界面,在此窗口中有六个标签,分别对应不同的参数设定。
干涉检查设置( )该设置针对命令,允许设置以下内容::得到干涉的结果:从前一个计算得到分析结果( ):从中得到分析结果(在系统下是):(缺省)无比较:当进行干涉检查时自动打开结果显示窗口:设置缺省的显示条目:冲突列表:产品列表:(缺省)自动选择冲突列表或产品列表的第一行:设置冲突的缺省类型和缺省的安全距离:计算并显示所有冲突的深度和最小距离干涉检查细节设置( –)该设置针对命令,允许设置以下内容::设置细节的级别:(缺省)让用户全面地工作于产品级别,直到查明有关的元素。
:仅仅得到产品级别的信息。
注意:只有设置成,才能得到详细的分析结果。
:指定干涉检查结果的显示图形:计算干涉并显示成红色的相交曲线:不生产红色的相交曲线:指定接触和安全距离分析结果的显示图形:当产品之间是接触关系,或者是在指定的安全距离以内时,分别地进行计算并显示成黄色和绿色三角形注意:三角形显示可能会降低性能。
:当产品之间是接触关系,或者是在指定的安全距离以内时,分别地进行计算并显示成黄色和绿色三角形针对该选项,用户必须设置精度。
摘要:本文主要介绍了在CA TIA 软件环境中,汽车底盘系统开发的设计流程以及电子样机DMU(Digital Mockup)与关联设计集成的应用方法。
关键词:设计流程集成设计DMU引言为了缩短产品的设计及生产周期,提高产品的市场竞争力,取得好的经济效益,国内许多的汽车公司在产品的设计上都使用了多种的三维软件系统。
但多种系统并存会带来设计管理与数据交流方面的诸多问题,那么,哪一个系统是最适合汽车设计?如何评估和确定?如何更深入的进行设计水平提升的探索?东风汽车股份公司通过项目实施的方式在这方面做了很多的探索。
东风汽车股份有限公司商品研发院最早于1998 年在车身设计开发上引用CAITA,2005 年开始应用在PICK-UP 及SUV 整车的设计开发上。
特别是在整车底盘的设计开发中,将很多成熟的设计经验与CATIA 软件使用结合到一起,总结出在CATIA 软件中,汽车底盘系统开发的设计流程以及电子样机DMU(Digital Mockup)与关联设计集成的应用方法。
这些方法的使用,提高了设计水平与质量,明显的缩短了变形产品的设计开发周期。
充分的显示出CATIA 在高级应用方面的优势之处。
1 汽车底盘开发设计流程使用CA TIA 软件进行汽车底盘设计开发的核心是基于骨架模型与DMU 集成的TOP-DOWN 设计方法。
自上而下(Top Down Design process)设计是与常规Bottom Up 设计相对应的一种设计方式,此设计方法的中心思路是先整体规划,后细节设计。
即在产品整体设计的初期,就定位于整个装配系统的最高层面来考虑产品的总体设计和功能性设计。
这种方法是从装配构成的最顶层开始,在一个骨架模型零件中来考虑和表达整个装配的各个部件的相互位置关系、作用和实现的功能等,集中捕捉产品的设计意图,自上而下的传递设计信息,从而更加有目的地进行后续的设计。
骨架模型就是产品设计信息的载体,这个骨架模型的建立需要考虑到不同零件之间的参数关系与驱动关系,这些信息会用来作为后期详细模型设计的基础。
CATIA DMU模块在悬架和转向系统中的应用1.前悬架和转向系统的装配模块本文前悬架为麦弗逊悬架,转向机为齿轮齿条转向机,悬架和转向系统的运动仿真DMU共分为18个part,包括副车架、左右下摆臂、左右转向节、左右滑柱、转向机、左右转向拉杆、左右传动轴、左右举升台、左右横向稳定杆拉杆、左右横向稳定杆。
为满足运动仿真要求,其中横向稳定杆被分为左、右两个part,以实现横向稳定杆不同方向的扭转;增加了左右举升台,模拟不平路面时车轮的上下跳动。
打开CATIA,进入Assembly Design模块,并将上述各部件调入到同一个product里。
2.前悬架和转向系统的运动仿真2.1 运动约束进入CATIA 的DUM Kinematics 模块,添加运动约束,具体步骤如下: ➢ 首先将固定副车架固定Fixed ,并在副车架上做出滑柱上点,下摆臂转动轴线,转向机中心线。
➢ 左下摆臂与副车架连接为revolute ,限制5个自由度,系统还有1个独立自由度运动约束工具条(点击revolute 下拉菜单弹出)Fixed revolute sphericalu jointprismaticCylindrical point surfacepoint curveRevolute joint➢左下摆臂与左转向节连接为spherical,限制3个自由度,系统还有4个独立自由度Spherical joint➢左转向节与左转向拉杆连接为spherical,限制3个自由度,系统还有7个独立自由度➢左转向拉杆与转向机连接为u joint,限制4个自由度,系统还有9个独立自由度物体1(副车架)上的旋转轴线物体2(下摆臂)上的旋转轴线物体1上的参考平面物体1上的参考平面两参考平面间距离关系物体1上的球心物体2上的球心Universal joint➢ 转向机与副车架连接为prismatic ,限制5个自由度,系统还有4个独立自由度Prismatic joint➢ 左滑柱与左转向节连接为Cylindrical ,限制4个自由度,系统还有6个独立自由度物体1上的绕转轴物体2的绕转轴物体1上的滑行方向(直线)物体2上的滑行方向(直线,与1的直线重合)物体1上的平面物体2上的平面(与1的平面贴合)Cylindrical joint➢ 左滑柱与副车架连接为u joint ,限制4个自由度,系统还有2个独立自由度 ➢ 左举升台与左转向节连接为point surface ,限制1个自由度,系统还有7个独立自由度Point surface➢ 左举升台与副车架连接为Prismatic ,限制5个自由度,系统还有2个独立自由度➢ 横向稳定杆(左)与副车架连接为revolute ,限制5个自由度,系统还有3个独立自由度➢ 左横向稳定杆拉杆与横向稳定杆(左)连接为u joint ,限制4个自由度,系统还有5个独立自由度➢ 左转向节与左横向稳定杆拉杆连接为Spherical ,限制3个自由度,系统还有2个独立自由度➢ 右下摆臂与副车架连接为revolute ,限制5个自由度,系统还有3个独立自由度➢ 右下摆臂与右转向节连接为spherical ,限制3个自由度,系统还有6个独立物体1上的旋转轴线 物体2上的旋转轴线➢右转向节与右转向拉杆连接为spherical,限制3个自由度,系统还有9个独立自由度➢右转向拉杆与转向机连接为u joint,限制4个自由度,系统还有5个独立自由度➢右滑柱与右转向节连接为Cylindrical,限制4个自由度,系统还有7个独立自由度➢右滑柱与副车架连接为u joint,限制4个自由度,系统还有3个独立自由度➢右举升台与右转向节连接为point surface,限制1个自由度,系统还有8个独立自由度➢右举升台与副车架连接为Prismatic,限制5个自由度,系统还有3个独立自由度➢横向稳定杆(右)与副车架连接为revolute,限制5个自由度,系统还有4个独立自由度➢右横向稳定杆拉杆与横向稳定杆(右)连接为u joint,限制4个自由度,系统还有6个独立自由度➢右转向节与右横向稳定杆拉杆连接为Spherical,限制3个自由度,系统还有3个独立自由度➢左传动轴与左转向节连接为u joint,限制4个自由度,系统还有5个独立自由度➢左传动轴与副车架连接为point curve,限制2个自由度,系统还有3个独立自由度Point curve➢右传动轴与右转向节连接为u joint,限制4个自由度,系统还有5个独立自由度➢右传动轴与副车架连接为point curve,限制2个自由度,系统还有3个独立注:系统此时的自由度数=各个约束限制的自由度数的和+当时系统的独立自由度数。