数学人教版九年级上册圆的内接四边形
- 格式:doc
- 大小:106.50 KB
- 文档页数:3
五.圆内接四边形【考点速览】圆内接四边形对角互补,外角等于内对角。
圆内接梯形为等腰梯形,圆内接平行四边形为矩形。
判断四点共圆的方法之一:四边形对角互补即可。
【典型例题】例1 (1)已知圆内接四边形ABCD 中,∠A:∠B:∠C=2:3:4,求∠D 的度数.(2)已知圆内接四边形ABCD中,如图所示,AB 、BC 、CD 、AD 的度数之比为1:2:3:4,求∠A 、∠B 、∠C 、∠D 的度数.例2 如图所示,ABC 是等边三角形,D 是BC 上任一点.求证:DB+DC=DA .A· ABDO例3、如图7-103,在△ABC中,E,D,F分别为AB,BC,AC的中点,且AP⊥BC于P,求证:E,D,P,F四点共圆.例4、如图7-104,四边形ABCD内接于⊙O,过AB延长线上一点E作EF∥AD,且与DC延长线交于F,证明四边形BEFC为圆内接四边形.例5、如图7-105,△ABC内接于⊙O,D点在⊙O上,AD平分∠BAC,DE⊥AB于E,DF⊥AC交AC延长线于F.求证:BE=CF.例6、如图7-106,在△ABC中,AB=AC,BD是∠ABC的角平分线,△ABD的外接圆交BC于E.求证:AD=EC.例8、如图7-107,⊙O中,两弦AB∥CD,M是AB的中点,过M点作弦DE.求证:E,M,O,C四点共圆.例9、如图7-108,M,N分别是△ABC中AB,AC的中点,过M作AB的垂线交AC于D,过N作AC的垂线交AB于E.求证:B,C,D,E四点共圆.例10、如图7-109,四边形ABCD 内接于圆,AC 平分∠BAD ,延长DC 交AB 的延长线于E 点.若AC=EC ,求证:AD=EB .【考点速练】1.圆内接四边形的对角 ,并且任何一个外角都 它的内对角. 2.已知四边形ABCD 内接于⊙O ,则∠A:∠B:∠C:∠D=3:2: :7,且最大的内角为 . 3.如右图,已知四边形ABCD 内接于⊙O ,AE ⊥CD 于E ,若∠ABC=︒130,则∠DAE= .4.已知圆内接四边形ABCD 的∠A 、∠B 、∠C 的外角度数比为2:3:4,则∠A= ,∠B= .5.圆内接梯形是 梯形,圆内接平行四边形是 .6.若E 是圆内接四边形ABCD 的边BA 的延长线上一点,BD=CD ,∠EAD=︒55,则∠BDC= . 7.四边形ABCD 内接于圆,∠A 、∠C 的度数之比是5:4,∠B 比∠D 大︒30,则∠A= 。
圆内接四边形性质在解题中的应用圆的内接四边形具有如下性质:性质1:圆内接四边形对角互补.性质2:圆内接四边形的外角等于内对角.当遇到圆内接四边形时,能为问题的解决从角的层面提供最有效的帮助,下面就具体展示一下性质的灵活应用,供学习借鉴.1.直接应用性质,求对角的大小例1 (2019年甘肃兰州)如图1,四边形ABCD 内接于⊙0,若∠A=40°,则∠C=( )A.110°B.120°C.135°D.140°解析:因为四边形ABCD 内接于⊙0,且∠A 与∠C 是对角,所以∠A+∠C=180°,因为∠A=40°, 所以∠C=140°,所以选D.点评:这是性质的直接性应用,应用时,抓住四点:一是确定四边形是圆的内接四边形;二 是确定对角是哪一对;三是准确布列对角和为180°的等式;四是代入求值计算即可2.用性质,联手菱形,求角的大小例2(2019年甘肃天水)如图2,四边形ABCD 是菱形,⊙O 经过点A 、C 、D ,与BC 相交于 点E ,连接AC 、AE .若∠D =80°,则∠EAC 的度数为( )A .20°B .25°C .30°D .35°解法1:因为四边形ABCD 是菱形,∠D=80°所以∠ACB=21∠DCB=21(180°﹣∠D )=50°, 因为四边形AECD 是圆内接四边形,所以∠AEB=∠D=80°,所以∠EAC=∠AEB ﹣∠ACE=30°, 所以选C .解法2:因为四边形ABCD 是菱形,∠D=80°所以∠ACB=21∠DCB=21(180°﹣∠D )=50°, 因为四边形AECD 是圆内接四边形,所以∠AEC=180°-∠D=100°,所以∠EAC=180°-∠AEC ﹣∠ACE=30°,所以选C .点评:解答时,有如下几点体会:一是熟练掌握菱形的性质,这是解题的基础;二是熟练掌握圆内接四边形的性质,这是解题的关键;三是灵活运用性质,性质选择不同,就会得到不同的解法,这是解题的灵魂和创新点所在.3.创造条件用性质,求两角的和例3(2019年南京市)如图3,PA 、PB 是⊙O 的切线,A 、B 为切点,点C 、D 在⊙O 上.若∠P =102°,则∠A+∠C = .解析:如图3,连接AB ,因为四边形ABCD 是圆内接四边形,所以∠BAD+∠C=180°. 因为PA 、PB 是⊙O 的切线,A 、B 为切点,所以PA=PB ,因为∠P =102°,∠PAB=21(180°﹣∠P )=39°,所以∠PAD+∠C=∠BAD+∠C+∠PAB=180°+39°=219°. 点评:构造圆内接四边形为性质应用创造条件是解题的关键,其次,熟练运用切线长的性质,等腰三角形的性质也是解题的有效支撑.4.创造条件用性质,求线段的长例4(2019年十堰市)如图4,四边形ABCD 内接于⊙O ,AE ⊥CB 交CB 的延长线于点E ,若BA 平分∠DBE ,AD=5,CE=13,则AE= ( )A .3B .32C .43D .23解析:如图4,连接AC ,因为BA 平分∠DBE ,所以∠1=∠2,因为∠1=∠CDA ,∠2=∠3, 所以∠3=∠CDA ,所以AC=AD=5,因为AE ⊥CB ,所以∠AEC=90°,所以 AE=2222)13(5-=-CE AC =23,所以选D .点评:解答时,把握好五条脉络:一是角平分线得到的两个等角;二是圆内教师必须外角等于内对角得到的两个等角;三是同弧上的圆周角相等得到的两个等角;四是逻辑推理得到的两个等角;五是等腰三角形的判定和勾股定理的应用.5.用性质,探求三角之间的关系例5 如图5矩形ABCD 中,AD=8,DC=6,在对角线AC 上取点O ,以OC 为半径的圆切AD 于E,交BC 于F ,交CD 于G.(1)求⊙O 的半径R ;(2)设∠BFE=α,∠GED=β,请写出α,β,90°三者之间的关系式(只需写出一个)并证明你的结论.解析:(1)如图5,连接OE ,则OE ⊥AD.因为四边形ABCD 是矩形,所以∠D=90°,根据勾股定理,得AC=10.因为OE ⊥AD ,CD ⊥AD ,所以OE ∥CD ,所以△AOE ∽△ACD , 所以CD OE AC AO =,所以61010R R =-,解得R=415; (2)因为四边形EFCG 是圆的内接四边形,所以∠BFE=∠EGC ,因为∠GED=90°-∠EGD, ∠EGD=180°-∠EGC ,所以∠GED=∠EGC-90°即∠GED=∠BFE-90°,所以α,β,90°三者之间的关系式为α=β+90°.点评:本题是矩形与圆及圆内接四边形相结合的开放型的综合题[2],解答时,注意如下几点:一是熟练应用切线的性质,为平行线的生成创造条件;二是熟练驾驭平行线与相似三角形的关系,用相似渗透方程的思想确定线段的长度;三是活动圆内接四边形的性质,互余的性质,邻补角的定义综合推理确定三角之间的关系,这是解题的关键.6.用性质,探求三线段之间的关系或线段比值例6(2019年湖北天门)已知△ABC 内接于⊙O ,∠BAC 的平分线交⊙O 于点D ,连接DB ,DC .(1)如图6,当∠BAC =120°时,请直接写出线段AB ,AC ,AD 之间满足的等量关系式: ;(2)如图7,当∠BAC =90°时,试探究线段AB ,AC ,AD 之间满足的等量关系,并证明你的结论;(3)如图8,若BC =5,BD =4,求的值.解析:(1)解法1:如图9,在AD 上截取AE=AB ,连接BE ,因为∠BAC=120°,∠BAC 的平分线交⊙O于点D,所以∠DBC=∠DAC=60°,∠DCB=∠BAD=60°,所以△ABE和△BCD都是等边三角形,所以∠DBE=∠ABC,AB=BE,BC=BD,所以△BED≌△BAC,所以DE=AC,所以AD=AE+DE=AB+AC.所以应该填AB+AC=AD.点评:此法的灵魂是在较长的线段上截取一段等于其中一条线段,证明余长等于另一条线段,简称截长法,要熟练掌握.解法2:如图10,延长AB到E,使BE=AC,连接DE,因为∠BAC=120°,∠BAC的平分线交⊙O于点D,所以∠DBC=∠DAC=60°,∠DCB=∠BAD=60°,所以△BCD是等边三角形,所以BD=CD,因为四边形ABDC是圆内接四边形,所以∠DBE=∠DCA,所以△BED≌△CAD,所以DE=DA,因为∠BAD=60°,所以△DAE都是等边三角形,所以AD=AE=AB+BE=AB+AC.所以应该填AB+AC=AD.点评:这种证明的方法叫做等量延长法,实质是构造两线段的和,证明和线段等于所求线段.解答时,有三个关键要把握好:一是用好圆内接四边形的外角等于内对角,为三角形的全等提供条件;二是熟练用好等边三角形的判断,为等线段的构造奠定基础;三是灵活运用三角形全等,为问题的解决提供等线段支撑.(3)AB+AC=2AD.理由如下:解法1:如图11,延长AB至点M,使BM=AC,连接DM,因为四边形ABDC内接于⊙O,所以∠MBD=∠ACD,因为∠BAD=∠CAD=45°,所以BD=CD,所以△MBD≌△ACD,所以MD=AD,∠M=∠CAD=45°,所以MD⊥AD.所以AM=2AD,即AB+BM= 2AD,所以AB+AC=2AD.点评:此法是顺延第一问中的解法2,关键是构造直角三角形,基础是三角形全等.解法2:如图12,过点D作ED⊥AD,垂足为D,交AC的延长线于点E,因为∠BAD=∠CAD=45°,所以BD=CD,∠AED=45°,所以AD=DE,所以AE=2AD.因为四边形ABDC内接于⊙O,ED⊥AD,CD⊥BD,所以∠ECD=∠ABD,∠BDA=∠CDE,所以△ABD≌△CED,所以AB=CE,所以AE=AC+CE=AC+AB=2AD,所以AB+AC=2AD.点评:此法的最大特点是直角构造出了一个等腰直角三角形,让结论直接生成,利用圆内接四边形性质,互余性质得到全等三角形,从而实现解题目标.(3)如图13,延长AB至点N,使BN=AC,连接DN,因为四边形ABDC内接于⊙O,所以∠NBD=∠ACD,因为∠BAD=∠CAD,所以BD=CD,所以△NBD≌△ACD,所以ND=AD,∠N=∠CAD,所以∠N=∠NAD=∠DBC=∠DCB,所以△NAD∽△CBD,所以,所以,因为AN=AB+BN=AB+AC,BC=5,BD=4,所以=.点评:用性质,特别是渗透了三角形相似,使得问题求解非常有情趣,有数学味道,从而体会数学解题的乐趣.解后反思:通过对圆内接四边形性质解题应用的探究,深深体会到如下几点:1.学习时,要重视对教材上的每一条性质的掌握,务必从准确记忆,科学把握,灵活应用三个维度去掌握和学习,确实夯实数学基础;2.通过学习,努力更多地去掌握数学的基本解题思路和基本的解题方法,掌握常见题型解题时需要构造的辅助线,使得解题方法更加灵活多样,有生命力,充满解题生机;3.通过学习,要锻炼自己的发散思维能力,通过解题的变式思考,一题多解的思维训练等方式,启迪自己的思维,在解题过程中碰撞数学智慧,探索发现数学解题智慧,切实提高自身数学素养和数学能力;4.通过学习,要牢牢树立数学知识一盘棋的思想,构建起适合自己的数学知识网,让数学知识,数学方法,数学思思,数学智慧都融入这个大棋盘,做到知识选择灵活自如,方法选择灵活自如,思想选择灵活自如,为数学创新思维点燃创新的火花.。
初三几何教学设计
武汉二中广雅中学 李鸿运
课 题:圆的内接四边形 【教学目标】:
教学目标:1、知道圆内接多边形和多边形的外接圆的定义
2、理解并会阐述圆内接四边形的性质定理
3、会运用圆内接四边形性质定理证明有关几何问题
4、培养学生的识图能力、发散思维能力、构造能力以及应用所学知识分析问题和解决问题的实践能力
重 难 点: (1)圆内接四边形的性质定理的证明及其应用 (2)构造圆内接四边形 教 程:
一、引导 1、(学生自己动手)画⊙O ,在⊙O 任取A 、B 、C 三点,连AB ,BC ,CA ,则△ABC
叫⊙O 的 三角形;⊙O 叫△ABC 的 圆。
2、(学生自己动手)画⊙O ,在⊙O 任取A 、B 、C 、D 四点,并顺次连接AB ,BC ,
CD ,DA ,观察四边形ABCD 与⊙O 的特殊位置关系(学生用类比的方法得到)。
说明多边型的外接圆,圆内接多边形。
二、探索
圆内接四边形的四个内角之间有什么关系?试证明你的结论。
(1)引导学生猜想四个内角之间的关系,若学生回答∠A+∠B+∠C+∠D=
360,予以肯定(多边形内角和定理)。
(2)继续引导学生探索:∠A+∠C 是多少度?
(这是本节课要突破的重点,关键点)这里放手让学生交流、讨论,教师根据现场的情况可适当点拨圆心角定理、圆周角定理的应用,必须由学生们共同得出结论:
圆内接四边形对角互补,即在圆内接四边形ABCD 中,∠A+∠C=
180,∠B+
∠
D=
180。
(3)若E 是BC 延长线上一点,∠DCE 是圆内接四边形ABCD 的一个外角,你能发现∠DCE 与四边形ABCD 内角之间的关系吗? 引导学生根据圆内接四边形对角互补得出:
圆内接四边形的一个外角都等它的内对角。
定理:圆内接四边形对角互补,并且每一个外交都等于它的内对角。
三、巩固
1、如图,⊙O 与⊙Q 都经过M ,N 两点,根据定理写出图中四对相等的角。
(1)
(2)
(3)
(4)
2、如图,⊙O 与⊙Q 都经过A 、B ,图中有两组相等的角,各组有三只角相等,请
写出来:
四、例题解析:
例:如下图,⊙O 、⊙Q 都经过A 、B 两点,经过A 点的直线CD 与⊙O 交于C ,与⊙Q 交于D ,经过B 点的直线EF 与⊙O 交于点E ,与⊙Q 交于点F ,求证:CE ∥DF 。
引导分析:(1)怎样证明两条线的平行? (2)由图形可联想到怎样的四边形? (3)构造圆接四边形(圆和圆相交,常作公共弦)。
证明:由学生自主完成。
五、变式
在上例中,已知条件不变,在以下各种情况下,如图所示,请同学们探求CE 、DF 的位置关系,分小组讨论,各小组要总结出解题的规律。
变式(1) 变式(2) 变式(3)
变式(4)
六、课堂练习:P 83 1、2、3
七、小结
1、圆内接四边形——顶点在圆上的四边形
2、圆内接四边形性质:
3、解题思想:
4、变式(形变,解题思想方法不变,以不变应万变)
八、作业
P 86 15、16、17 选作P 87 5
对角互补
外角等于内对角 直接利用圆内接四边形性质
构造圆内接四边形(圆和圆相交,常作公共弦)。