抛物线中动点问题讲义
- 格式:doc
- 大小:57.00 KB
- 文档页数:5
第一讲抛物线中的动点问题一、利用动点(图形)位置进行分类,把运动问题分割成几个静态问题,然后运用转化的思想和方法将几何问题转化为函数和方程问题二、利用函数与方程的思想和方法将所解决图形的性质(或所求图形面积)直接转化为函数或方程。
一、平行四边形与抛物线【例】如图甲,在平面直角坐标系中,A、B的坐标分别为(4,0)、(0,3),抛物线y=x2+bx+c经过点B,且对称轴是直线x=﹣.(1)求抛物线对应的函数解析式;(2)将图甲中△ABO沿x轴向左平移到△DCE(如图乙),当四边形ABCD是菱形时,请说明点C和点D都在该抛物线上;(3)在(2)中,若点M是抛物线上的一个动点(点M不与点C、D重合),经过点M作MN∥y轴交直线CD于N,设点M的横坐标为t,MN的长度为l,求l 与t之间的函数解析式,并求当t为何值时,以M、N、C、E为顶点的四边形是平行四边形.变式演练【变式】如图,在平面直角坐标系中,已知Rt△AOB的两条直角边OA、OB分别在y轴和x轴上,并且OA、OB的长分别是方程x2﹣7x+12=0的两根(OA<OB),动点P从点A开始在线段AO上以每秒1个单位长度的速度向点0运动;同时,动点Q从点B开始在线段BA上以每秒2个单位长度的速度向点A运动,设点P、Q运动的时间为t秒.(1)求A、B两点的坐标.(2)求当t为何值时,△APQ与△AOB相似,并直接写出此时点Q的坐标.(3)当t=2时,在坐标平面内,是否存在点M,使以A、P、Q、M为顶点的四边形是平行四边形?若存在,请直接写出M点的坐标;若不存在,请说明理由.【变式】如图,已知抛物线y=﹣x2+bx+c与一直线相交于A(﹣1,0),C(2,3)两点,与y轴交于点N.其顶点为D.(1)抛物线及直线AC的函数关系式;(2)设点M(3,m),求使MN+MD的值最小时m的值;(3)若抛物线的对称轴与直线AC相交于点B,E为直线AC上的任意一点,过点E作EF∥BD 交抛物线于点F,以B,D,E,F为顶点的四边形能否为平行四边形?若能,求点E的坐标;若不能,请说明理由;二、梯形与抛物线【例】已知,在Rt△OAB中,∠OAB=90°,∠BOA=30°,AB=2.若以O为坐标原点,OA所在直线为x轴,建立如图所示的平面直角坐标系,点B在第一象限内.将Rt△OAB沿OB折叠后,点A落在第一象限内的点C处.(1)求点C的坐标;(2)若抛物线y=ax2+bx(a≠0)经过C、A两点,求此抛物线的解析式;(3)若上述抛物线的对称轴与OB交于点D,点P为线段DB上一动点,过P作y轴的平行线,交抛物线于点M,问:是否存在这样的点P,使得四边形CDPM为等腰梯形?若存在,请求出此时点P的坐标;若不存在,请说明理由.变式演练【变式】如图,O为坐标原点,直线l绕着点A(0,2)旋转,与经过点C(0,1)的二次函数y=x2+h的图象交于不同的两点P、Q.(1)求h的值;(2)通过操作、观察,算出△POQ的面积的最小值(不必说理);(3)过点P、C作直线,与x轴交于点B,试问:在直线l的旋转过程中,四边形AOBQ是否【变式】如图,在平面直角坐标系xOy中,矩形AOCD的顶点A的坐标是(0,4),现有两动点P,Q,点P从点O出发沿线段OC(不包括端点O,C)以每秒2个单位长度的速度匀速向点C运动,点Q从点C出发沿线段CD(不包括端点C,D)以每秒1个单位长度的速度匀速向点D运动.点P,Q同时出发,同时停止,设运动时间为t(秒),当t=2(秒)时,PQ=2.(1)求点D的坐标,并直接写出t的取值范围.(2)连接AQ并延长交x轴于点E,把AE沿AD翻折交CD延长线于点F,连接EF,则△AEF 的面积S是否随t的变化而变化?若变化,求出S与t的函数关系式;若不变化,求出S的值.(3)在(2)的条件下,t为何值时,四边形APQF是梯形?三、等腰三角形、菱形与抛物线【例】在平面直角坐标系xOy中,一块含60°角的三角板作如图摆放,斜边AB在x轴上,直角顶点C在y轴正半轴上,已知点A(﹣1,0).(1)请直接写出点B、C的坐标:B 、C ;并求经过A、B、C三点的抛物线解析式;(2)现有与上述三角板完全一样的三角板DEF(其中∠EDF=90°,∠DEF=60°),把顶点E放在线段AB上(点E是不与A、B两点重合的动点),并使ED所在直线经过点C.此时,EF 所在直线与(1)中的抛物线交于点M.②在①的条件下探究:抛物线的对称轴上是否存在点P使△PEM是等腰三角形?若存在,请写出点P的坐标;若不存在,请说明理由.变式演练【变式】如图,在平面直角坐标系中,直角三角形AOB的顶点A、B分别落在坐标轴上.O为原点,点A的坐标为(6,0),点B的坐标为(0,8).动点M从点O出发.沿OA向终点A以每秒1个单位的速度运动,同时动点N从点A出发,沿AB向终点B以每秒个单位的速度运动.当一个动点到达终点时,另一个动点也随之停止运动,设动点M、N运动的时间为t秒(t >0).(1)当t=3秒时.直接写出点N的坐标,并求出经过O、A、N三点的抛物线的解析式;(2)在此运动的过程中,△MNA的面积是否存在最大值?若存在,请求出最大值;若不存在,请说明理由;(3)当t为何值时,△MNA是一个等腰三角形?【变式】如图,直线l1经过点A(﹣1,0),直线l2经过点B(3,0),l1、l2均为与y轴交于点C(0,),抛物线y=ax2+bx+c(a≠0)经过A、B、C三点.(1)求抛物线的函数表达式;(2)抛物线的对称轴依次与x轴交于点D、与l2交于点E、与抛物线交于点F、与l1交于点G.求证:DE=EF=FG;(3)若l1⊥l2于y轴上的C点处,点P为抛物线上一动点,要使△PCG为等腰三角形,请写出符合条件的点P的坐标,并简述理由.【变式】如图,在平面直角坐标系中,直角梯形OABC的边OC、OA分别与x轴、y轴重合,AB∥OC,∠AOC=90°,∠BCO=45°,BC=12,点C的坐标为(﹣18,0).(1)求点B的坐标;(2)若直线DE交梯形对角线BO于点D,交y轴于点E,且OE=4,OD=2BD,求直线DE的解析式;(3)若点P是(2)中直线DE上的一个动点,在坐标平面内是否存在点Q,使以O、E、P、Q 为顶点的四边形是菱形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.【变式】如图,已知抛物线经过原点O和x轴上一点A(4,0),抛物线顶点为E,它的对称轴与x轴交于点D.直线y=﹣2x﹣1经过抛物线上一点B(﹣2,m)且与y轴交于点C,与抛物线的对称轴交于点F.(1)求m的值及该抛物线对应的解析式;(2)P(x,y)是抛物线上的一点,若S△ADP =S△ADC,求出所有符合条件的点P的坐标;(3)点Q是平面内任意一点,点M从点F出发,沿对称轴向上以每秒1个单位长度的速度匀速运动,设点M的运动时间为t秒,是否能使以Q、A、E、M四点为顶点的四边形是菱形?若能,请直接写出点M的运动时间t的值;若不能,请说明理由.四、直角三角形与抛物线【例】如图,抛物线y=与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C.(1)求点A、B的坐标;(2)设D为已知抛物线的对称轴上的任意一点,当△ACD的面积等于△ACB的面积时,求点D的坐标;(3)若直线l过点E(4,0),M为直线l上的动点,当以A、B、M为顶点所作的直角三角形有且只有三个时,求直线l的解析式.【变式】如图,在等腰三角形ABC中,AB=AC,以底边BC的垂直平分线和BC所在的直线建立平面直角坐标系,抛物线y=﹣x2+x+4经过A、B两点.(1)写出点A、点B的坐标;(2)若一条与y轴重合的直线l以每秒2个单位长度的速度向右平移,分别交线段OA、CA 和抛物线于点E、M和点P,连接PA、PB.设直线l移动的时间为t (0<t<4)秒,求四边形PBCA的面积S(面积单位)与t(秒)的函数关系式,并求出四边形PBCA的最大面积;(3)在(2)的条件下,抛物线上是否存在一点P,使得△PAM是直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.【变式】如图,顶点为P(4,﹣4)的二次函数图象经过原点(0,0),点A在该图象上,OA 交其对称轴l于点M,点M、N关于点P对称,连接AN、ON,(1)求该二次函数的关系式;(2)若点A在对称轴l右侧的二次函数图象上运动时,请解答下面问题:①证明:∠ANM=∠ONM;②△ANO能否为直角三角形?如果能,请求出所有符合条件的点A的坐标;如果不能,请说明理由.【变式】如图,在平面直角坐标系中,直线y=x+2交x轴于点P,交y轴于点A.抛物线y=x2+bx+c的图象过点E(﹣1,0),并与直线相交于A、B两点.(1)求抛物线的解析式(关系式);(2)过点A作AC⊥AB交x轴于点C,求点C的坐标;(3)除点C外,在坐标轴上是否存在点M,使得△MAB是直角三角形?若存在,请求出点M 的坐标;若不存在,请说明理由.五、相似三角形与抛物线【例】如图1,已知抛物线y=ax2+bx(a≠0)经过A(3,0)、B(4,4)两点.(1)求抛物线的解析式;(2)将直线OB向下平移m个单位长度后,得到的直线与抛物线只有一个公共点D,求m的值及点D的坐标;(3)如图2,若点N在抛物线上,且∠NBO=∠ABO,则在(2)的条件下,求出所有满足△POD ∽△NOB的点P坐标(点P、O、D分别与点N、O、B对应).变式演练【变式】如图,已知抛物线y=ax2+bx+c(a≠0)的图象经过原点O,交x轴于点A,其顶点B 的坐标为(3,﹣).(1)求抛物线的函数解析式及点A的坐标;(2)在抛物线上求点P,使S△POA =2S△AOB;(3)在抛物线上是否存在点Q,使△AQO与△AOB相似?如果存在,请求出Q点的坐标;如果不存在,请说明理由.【变式】如图,已知抛物线的方程C:y=﹣(x+2)(x﹣m)(m>0)与x轴相交于点B、C,1与y轴相交于点E,且点B在点C的左侧.过点M(2,2),求实数m的值;(1)若抛物线C1(2)在(1)的条件下,求△BCE的面积;(3)在(1)条件下,在抛物线的对称轴上找一点H,使BH+EH最小,并求出点H的坐标;上是否存在点F,使得以点B、C、F为顶点的三角形与△BCE (4)在第四象限内,抛物线C1相似?若存在,求m的值;若不存在,请说明理由.【变式】如图,已知二次函数的图象过点A(﹣4,3),B(4,4).(1)求二次函数的解析式:(2)求证:△ACB是直角三角形;(3)若点P在第二象限,且是抛物线上的一动点,过点P作PH垂直x轴于点H,是否存在以P、H、D为顶点的三角形与△ABC相似?若存在,求出点P的坐标;若不存在,请说明理由.【变式】如图,直线AB交x轴于点B(4,0),交y轴于点A(0,4),直线DM⊥x轴正半轴于点M,交线段AB于点C,DM=6,连接DA,∠DAC=90°.(1)直接写出直线AB的解析式;(2)求点D的坐标;(3)若点P是线段MB上的动点,过点P作x轴的垂线,交AB于点F,交过O、D、B三点的抛物线于点E,连接CE.是否存在点P,使△BPF与△FCE相似?若存在,请求出点P的坐标;若不存在,请说明理由.【变式】在平面直角坐标系中,二次函数y=ax2+bx+2的图象与x轴交于A(﹣3,0),B(1,0)两点,与y轴交于点C.(1)求这个二次函数的关系解析式;(2)点P是直线AC上方的抛物线上一动点,是否存在点P,使△ACP的面积最大?若存在,求出点P的坐标;若不存在,说明理由;(3)在平面直角坐标系中,是否存在点Q,使△BCQ是以BC为腰的等腰直角三角形?若存在,直接写出点Q的坐标;若不存在,说明理由;(4)点Q是直线AC上方的抛物线上一动点,过点Q作QE垂直于x轴,垂足为E.是否存在点Q,使以点B、Q、E为顶点的三角形与△AOC相似?若存在,直接写出点Q的坐标;若不存在,说明理由;(5)点M为抛物线上一动点,在x轴上是否存在点Q,使以A、C、M、Q为顶点的四边形是平行四边形?若存在,直接写出点Q的坐标;若不存在,说明理由.六、抛物线中的翻折问题【例】如图,抛物线y=ax2+bx+2交x轴于A(﹣1,0),B(4,0)两点,交y轴于点C,与过点C且平行于x轴的直线交于另一点D,点P是抛物线上一动点.(1)求抛物线解析式及点D坐标;(2)点E在x轴上,若以A,E,D,P为顶点的四边形是平行四边形,求此时点P的坐标;(3)过点P作直线CD的垂线,垂足为Q,若将△CPQ沿CP翻折,点Q的对应点为Q′.是否存在点P,使Q′恰好落在x轴上?若存在,求出此时点P的坐标;若不存在,说明理由.变式演练【变式】如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,A 点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,﹣3)点,点P是直线BC下方的抛物线上一动点.(1)求这个二次函数的表达式.(2)连接PO、PC,并把△POC沿CO翻折,得到四边形POP′C,那么是否存在点P,使四边形POP′C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由.(3)当点P运动到什么位置时,四边形ABPC的面积最大并求出此时P点的坐标和四边形ABPC 的最大面积.。
第3课时 抛物线中的一个动点问题(40分)1.(20分)[2017·酒泉]如图6-3-1,已知二次函数y=ax 2+bx +4的图象与x 轴交于点B (-2,0),点C (8,0),与y 轴交于点A .(1)求二次函数y =ax 2+bx +4的表达式;(2)连结AC ,AB ,若点N 在线段BC 上运动(不与点B ,C 重合),过点N 作NM ∥AC ,交AB 于点M ,当△AMN 面积最大时,求N 点的坐标;(3)连结OM ,在(2)的结论下,求OM 与AC 的数量关系.【解析】 (1)用待定系数法,将点B ,点C 的坐标分别代入y =ax 2+bx +4,解得a ,b ,即可求出二次函数的表达式;(2)设点N 的坐标为(n ,0)(-2<n <8),则BN =n +2,CN =8-n .由题意可知,BC =10,OA =4,S △ABC =20,S △ABN =2(n +2),因MN ∥AC ,根据平行线分线段成比例定理可得AM AB =NC BC =8-n 10,由△AMN ,△ABN 是同高三角形,可得出S △AMN S △ABN =AM AB =CN CB=8-n 10,从而得出△AMN 的面积S 与n 的二次函数关系式,根据二次函数的顶点性质,即可求出当n =3时,即N (3,0)时,△AMN 的面积最大;(3)当N (3,0)时,N 为BC 边中点,由NM ∥AC 推出M 为AB 边中点,根据直角三角形中线定理可得OM =12AB ,利用勾股定理,易得AB =25,AC =45,即可求出OM =14AC .解:(1)将点B ,点C 的坐标分别代入y =ax 2+bx +4,得⎩⎨⎧4a -2b +4=0,64a +8b +4=0, 解得a =-14,b =32.∴该二次函数的表达式为y =-14x 2+32x +4;图6-3-1(2)设点N 的坐标为(n ,0)(-2<n <8);则BN =n +2,CN =8-n .∵B (-2,0),C (8,0),∴BC =10.令x =0,得y =4,∴A (0,4),OA =4,∵MN ∥AC ,∴AM AB =NC BC =8-n 10.∵OA =4,BC =10,∴S △ABC =12BC ·OA =20.S △ABN =12BN ·OA =12(n +2)×4=2(n +2),又∵S △AMN S △ABN =AM AB=8-n 10, ∴S △AMN =8-n 10S △ABN =15(8-n )(n +2)=-15(n -3)2+5.∴当n =3时,即N (3,0)时,△AMN 的面积最大;(3)当N (3,0)时,N 为BC 边中点.∴M 为AB 边中点,∴OM =12AB ,∵AB =OB 2+OA 2=4+16=25,AC =OC 2+OA 2=64+16=45,∴AB =12AC ,∴OM =14AC .2.(20分)[2016·贵港]如图6-3-2,抛物线y =ax 2+bx -5(a ≠0)与x 轴交于点A (-5,0)和点B (3,0),与y 轴交于点C .(1)求该抛物线的表达式;(2)若E 为x 轴下方抛物线上的一动点,当S △ABE =S △ABC时,求点E 的坐标; (3)在(2)的条件下,抛物线上是否存在点P ,使∠BAP =∠CAE ?若存在,求出点P 的横坐标;若不存在,请说明理由.解:(1)把A ,B 两点坐标代入表达式,可得⎩⎨⎧25a -5b -5=0,9a +3b -5=0,解得⎩⎪⎨⎪⎧a =13,b =23,图6-3-2∴抛物线的表达式为y =13x 2+23x -5;(2)在y =13x 2+23x -5中,令x =0,可得y =-5,∴点C 坐标为(0,-5),∵S △ABE =S △ABC ,且点E 在x 轴下方,∴点E 纵坐标和点C 纵坐标相同,当y =-5时,代入可得13x 2+23x -5=-5,解得x =-2或x =0(舍去),∴点E 坐标为(-2,-5);(3)假设存在满足条件的P 点,其坐标为⎝ ⎛⎭⎪⎫m ,13m 2+23m -5, 如答图,连结AP ,CE ,AE ,过点E 作ED ⊥AC 于点D ,过点P 作PQ ⊥x 轴于点Q ,则AQ =AO +OQ =5+m ,PQ =⎪⎪⎪⎪⎪⎪13m 2+23m -5, 在Rt △AOC 中,OA =OC =5,则AC =52,∠ACO =∠DCE =45°,由(2)可得EC =2,在Rt △EDC 中,可得DE =DC =2,∴AD =AC -DC =52-2=42,当∠BAP =∠CAE 时,则△EDA ∽△PQA ,∴ED AD =PQ AQ ,即242=⎪⎪⎪⎪⎪⎪13m 2+23m -55+m , ∴13m 2+23m -5=14(5+m )或13m 2+23m -5=-14(5+m ), 当13m 2+23m -5=14(5+m )时,整理可得4m 2+5m -75=0,解得m =154或m =-5(与点A 重合,舍去),当13m 2+23m -5=-14(5+m )时,整理可得4m 2+11m -45=0,解得m =94或m =-5(与点A 重合,舍去),第2题答图∴存在满足条件的点P ,其横坐标为94或154.(40分)3.(20分)[2016·南宁]如图6-3-3,已知抛物线经过原点O ,顶点为A (1,1),且与直线y =x -2交于B ,C两点.(1)求抛物线的表达式及点C 的坐标;(2)求证:△ABC 是直角三角形;(3)若N 为x 轴上的一个动点,过点N 作MN ⊥x 轴与抛物线交于点M ,则是否存在以O ,M ,N 为顶点的三角形与△ABC 相似?若存在,请求出点N 的坐标;若不存在,请说明理由.【解析】 (1)∵顶点坐标为(1,1),∴设抛物线表达式为y =a (x -1)2+1,又∵抛物线过原点,∴0=a (0-1)2+1,解得a =-1,∴抛物线的表达式为y =-(x -1)2+1,即y =-x 2+2x ,联立抛物线和直线表达式,可得⎩⎨⎧y =-x 2+2x ,y =x -2,解得⎩⎨⎧x =2,y =0或⎩⎨⎧x =-1,y =-3,∴B (2,0),C (-1,-3);(2)证明:如答图,分别过A ,C 两点作x 轴的垂线,交x 轴于D ,E 两点, 则AD =OD =BD =1,BE =OB +OE =2+1=3,EC =3.∴∠ABO =∠CBO =45°,即∠ABC =90°,∴△ABC 是直角三角形;(3)假设存在满足条件的点N ,设N (x ,0),则M (x ,-x 2+2x ),∴ON =|x |,MN =|-x 2+2x |,由(2)在Rt △ABD 和Rt △CEB 中,可分别求得AB =2,BC =32, ∵MN ⊥x 轴于点N ,∴∠ABC =∠MNO =90°, 图6-3-3第3题答图∴当△ABC 和△MNO 相似时有MN AB =ON CB 或MN CB =ON AB , ①当MN AB =ON CB 时,则有|-x 2+2x |2=|x |32, 即|x |·|-x +2|=13|x |,∵当x =0时M ,O ,N 不能构成三角形,∴x ≠0,∴|-x +2|=13,即-x +2=±13,解得x 1=53,x 2=73,此时点N 坐标为⎝ ⎛⎭⎪⎫53,0或⎝ ⎛⎭⎪⎫73,0; ②当MN CB =ON AB 时,则有|-x 2+2x |32=|x |2, 即|x |·|-x +2|=3|x |,∴|-x +2|=3,即-x +2=±3,解得x =5或-1,此时点N 坐标为(-1,0)或(5,0),综上可知,存在满足条件的点N ,其坐标为⎝ ⎛⎭⎪⎫53,0或⎝ ⎛⎭⎪⎫73,0或(-1,0)或(5,0).4.(20分)[2017·泸州]如图6-3-4,已知二次函数y =ax 2+bx +c (a ≠0)的图象经过A (-1,0),B (4,0),C (0,2)三点.(1)求该二次函数的表达式;(2)点D 是该二次函数图象上的一点,且满足∠DBA=∠CAO (O 是坐标原点),求点D 的坐标;(3)点P 是该二次函数图象上位于第一象限内的一个动点,连结P A 分别交BC ,y 轴于点E ,F ,若△PEB ,△CEF 的面积分别为S 1,S 2,求S 1-S 2的最大值.【解析】 (1)根据待定系数法求解;(2)设直线BD 与y 轴的交点为M (0,t ).根据tan ∠MBA =tan ∠CAO 列关于t 的方程求解t ,从而可确定直线BD 表达式,再求直线BD 与抛物线交点坐标图6-3-4即可,注意分类讨论;(3)过点P 作PH ∥y 轴交直线BC 于点H ,设P (t ,at 2+bt +c ),根据直线BC 表达式点H 的坐标,计算线段PH 长度;用t 表示直线AP 表达式,解出点E ,F 坐标从而可表示出线段CF ,将S 1-S 2用t 表示,根据二次函数性质求最值. 解:(1)设抛物线的表达式为y =a (x +1)(x -4),∵抛物线图象过点C (0,2),∴-4a =2,解得a =-12. ∴抛物线的表达式为y =-12(x +1)(x -4),即y =-12x 2+32x +2;(2)设直线BD 与y 轴的交点为M (0,t ).∵∠DBA =∠CAO ,∴∠MBA =∠CAO ,∴tan ∠MBA =tan ∠CAO =2,∴|t |4=2,即t =±8.当t =8时,直线BD 表达式为y =-2x +8.联立⎩⎪⎨⎪⎧y =-2x +8,y =-12x 2+32x +2,解得⎩⎨⎧x 1=4,y 1=0; ⎩⎨⎧x 2=3,y 2=2.∴D (3,2).当t =-8时,直线BD 表达式为y =2x -8.联立⎩⎪⎨⎪⎧y =2x -8,y =-12x 2+32x +2,解得⎩⎨⎧x 1=4,y 1=0; ⎩⎨⎧x 2=-5,y 2=-18.∴D (-5,-18).综上:点D 的坐标为(3,2)或(-5,-18);(3)如答图,过点P 作PH ∥y 轴交直线BC 于点H ,设P ⎝ ⎛⎭⎪⎫t ,-12t 2+32t +2, 直线BC 的表达式为y =-12x +2,则H ⎝ ⎛⎭⎪⎫t ,-12t +2,∴PH =y P -y H =-12t 2+2t ; 第4题答图直线AP 的表达式为y =⎝ ⎛⎭⎪⎫-12t +2(x +1),取x =0,得y =2-12t ; 故F ⎝ ⎛⎭⎪⎫0,2-12t ,CF =2-⎝ ⎛⎭⎪⎫2-12t =12t ; 联立⎩⎪⎨⎪⎧y =⎝ ⎛⎭⎪⎫2-t 2(x +1),y =-12x +2,解得x E =t 5-t , ∴S 1=12(y P -y H )(x B -x E )=12⎝ ⎛⎭⎪⎫-12t 2+2t ⎝ ⎛⎭⎪⎫4-t 5-t , S 2=12·t 2·t 5-t. ∴S 1-S 2=12⎝ ⎛⎭⎪⎫-12t 2+2t ⎝ ⎛⎭⎪⎫4-t 5-t -12·t 2·t 5-t=-54t 2+4x =-54⎝ ⎛⎭⎪⎫t -852+165. ∴当t =85时,S 1-S 2有最大值,最大值为165.(20分)5.(20分)[2016·金华]在平面直角坐标系中,O 为原点,平行于x 轴的直线与抛物线L :y =ax 2相交于A ,B 两点(点B 在第一象限),点D 在AB 的延长线上.(1)已知a =1,点B 的纵坐标为2.①如图6-3-5①,向右平移抛物线L 使该抛物线过点B ,与AB 的延长线交于点C ,求AC 的长;②如图②,若BD =12AB ,过点B ,D 的抛物线L 2,其顶点M 在x 轴上,求该抛物线的函数表达式;(2)如图③,若BD =AB ,过O ,B ,D 三点的抛物线L 3的顶点为P ,对应函数的二次项系数为a 3,过点P 作PE ∥x 轴交抛物线L 于E ,F 两点,求a 3a 的值,并直接写出AB EF 的值.图6-3-5解:(1)①对于二次函数y =x 2,当y =2时,2=x 2,解得x 1=2,x 2=-2,∴AB =2 2.∵平移得到的抛物线L 1经过点B ,∴BC =AB =22, ∴AC =42;②如答图①,记抛物线L 2的对称轴与AD 相交于点N .根据抛物线的轴对称性,得BN =12DB =22,∴OM =322.设抛物线L 2的函数表达式为y =a 2·⎝⎛⎭⎪⎫x -3222. 由①得,点B 的坐标为()2,2,∴2=a 2·⎝⎛⎭⎪⎫2-3222,解得a 2=4. ∴抛物线L 2的函数表达式为y =4⎝⎛⎭⎪⎫x -3222; 即y =4x 2-122x +18.① ②第5题答图 (2)如答图②,设抛物线L 3与x 轴交于点G ,其对称轴与x 轴交于点Q ,过点B 作BK ⊥x 轴于点K .设OK =t ,则AB =BD =2t ,点B 的坐标为(t ,at 2), 根据抛物线的轴对称性,得OQ =2t ,OG =2OQ =4t . 设抛物线L 3的函数表达式为y =a 3x (x -4t ),∵该抛物线过点B(t,at2),∴at2=a3t(t-4t),又∵t≠0,∴a3a=-13,由题意得,点P的坐标为(2t,-4a3t2),则-4a3t2=ax2,解得x1=233t,x2=-233t,EF=433t,∴ABEF=32.。
抛物线专题讲义一、知识讲义1.抛物线的概念平面内与一个定点F 和一条定直线l (l 不经过点F )的距离相等的点的轨迹叫做抛物线.点F 叫做抛物线的焦点,直线l 叫做抛物线的准线. 2.抛物线的标准方程与几何性质标准方程y 2=2px (p >0)y 2=-2px (p >0)x 2=2py (p >0)x 2=-2py (p >0)p 的几何意义:焦点F 到准线l 的距离图形顶点坐标 O (0,0)对称轴 x 轴y 轴焦点坐标离心率 e =1准线方程 x =-p 2x =p 2 y =-p 2y =p 2 范围 x ≥0,y ∈Rx ≤0,y ∈Ry ≥0,x ∈Ry ≤0,x ∈R开口方向向右向左向上向下注意:1.抛物线y 2=2px (p >0)上一点P (x 0,y 0)到焦点F )0,2(的距离|PF |=x 0+p2,也称为抛物线的焦半径.2.y 2=ax (a ≠0)的焦点坐标为)0,4(a ,准线方程为x =-a4.3.设AB 是过抛物线y 2=2px (p >0)焦点F 的弦, 若A (x 1,y 1),B (x 2,y 2),则 (1)x 1x 2=p 24,y 1y 2=-p 2.(2)弦长|AB |=x 1+x 2+p =2psin 2α(α为弦AB 的倾斜角).(3)以弦AB 为直径的圆与准线相切.(4)通径:过焦点垂直于对称轴的弦,长等于2p ,通径是过焦点最短的弦.二、基础检测题组一:思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹一定是抛物线.( )(2)方程y =ax 2(a ≠0)表示的曲线是焦点在x 轴上的抛物线,且其焦点坐标是)0,4(a ,准线方程是x =-a4.( ) (3)抛物线既是中心对称图形,又是轴对称图形.( ) (4)AB 为抛物线y 2=2px (p >0)的过焦点F )0,2(p 的弦,若A (x 1,y 1),B (x 2,y 2),则x 1x 2=p 24,y 1y 2=-p 2,弦长|AB |=x 1+x 2+p .( )(5)若直线与抛物线只有一个交点,则直线与抛物线一定相切.( )(6)过抛物线的焦点与抛物线对称轴垂直的直线被抛物线截得的线段叫做抛物线的通径,那么抛物线x 2=-2ay (a >0)的通径长为2a .( ) 题组二:教材改编2.过抛物线y 2=4x 的焦点的直线l 交抛物线于P (x 1,y 1),Q (x 2,y 2)两点,如果x 1+x 2=6,则|PQ |等于( ) A .9 B .8 C .7 D .63.已知抛物线的顶点是原点,对称轴为坐标轴,并且经过点P (-2,-4),则该抛物线的标准方程为________. 题组三:易错自纠4.设抛物线y 2=8x 上一点P 到y 轴的距离是4,则点P 到该抛物线焦点的距离是( ) A .4 B .6 C .8D .125.已知抛物线C 与双曲线x 2-y 2=1有相同的焦点,且顶点在原点,则抛物线C 的方程是( ) A .y 2=±22x B .y 2=±2x C .y 2=±4xD .y 2=±42x6.设抛物线y 2=8x 的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是__________.三、典型例题题型一:抛物线的定义及应用典例 设P 是抛物线y 2=4x 上的一个动点,若B (3,2),则|PB |+|PF |的最小值为________. 引申探究1.若将本例中的B 点坐标改为(3,4),试求|PB |+|PF |的最小值.2.若将本例中的条件改为:已知抛物线方程为y 2=4x ,直线l 的方程为x -y +5=0,在抛物线上有一动点P 到y 轴的距离为d 1,到直线l 的距离为d 2,求d 1+d 2的最小值.思维升华:与抛物线有关的最值问题,一般情况下都与抛物线的定义有关.“看到准线想焦点,看到焦点想准线”,这是解决与过抛物线焦点的弦有关问题的重要途径.跟踪训练:P 是抛物线y 2=4x 上的一个动点,则点P 到点A (-1,1)的距离与点P 到直线x =-1的距离之和的最小值为________.题型二:抛物线的标准方程和几何性质 命题点1:求抛物线的标准方程典例如图所示,过抛物线y 2=2px (p >0)的焦点F 的直线交抛物线于点A ,B ,交其准线l 于点C ,若|BC |=2|BF |,且|AF |=3,则此抛物线的方程为( )A .y 2=32xB .y 2=9xC .y 2=92xD .y 2=3x命题点2:抛物线的几何性质典例 已知抛物线y 2=2px (p >0)的焦点为F ,A (x 1,y 1),B (x 2,y 2)是过F 的直线与抛物线的两个交点,求证: (1)y 1y 2=-p 2,x 1x 2=p 24; (2)1|AF |+1|BF |为定值; (3)以AB 为直径的圆与抛物线的准线相切.思维升华:(1)求抛物线标准方程的常用方法是待定系数法,其关键是判断焦点位置、开口方向,在方程的类型已经确定的前提下,只需一个条件就可以确定抛物线的标准方程.(2)在解决与抛物线的性质有关的问题时,要注意利用几何图形的形象、直观的特点来解题,特别是涉及焦点、顶点、准线的问题更是如此.跟踪训练 (1)若抛物线y 2=2px (p >0)上的点A (x 0,2)到其焦点的距离是A 到y 轴距离的3倍,则p 等于( ) A.12 B .1 C.32D .2 (2)过点P (-2,0)的直线与抛物线C :y 2=4x 相交于A ,B 两点,且|P A |=12|AB |,则点A 到抛物线C 的焦点的距离为( ) A.53 B.75 C.97D .2题型三:直线与抛物线的综合问题 命题点1:直线与抛物线的交点问题典例 已知抛物线C :y 2=8x 与点M (-2,2),过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若MA →·MB →=0,则k =________.命题点2:与抛物线弦的中点有关的问题典例 已知抛物线C :y 2=2x 的焦点为F ,平行于x 轴的两条直线l 1,l 2分别交C 于A ,B 两点,交C 的准线于P ,Q 两点.(1)若F 在线段AB 上,R 是PQ 的中点,证明:AR ∥FQ ;(2)若△PQF 的面积是△ABF 的面积的两倍,求AB 中点的轨迹方程.思维升华:(1)直线与抛物线的位置关系和直线与椭圆、双曲线的位置关系类似,一般要用到根与系数的关系.(2)有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点.若过抛物线的焦点(设焦点在x 轴的正半轴上),可直接使用公式|AB |=x 1+x 2+p ,若不过焦点,则必须用一般弦长公式.(3)涉及抛物线的弦长、中点、距离等相关问题时,一般利用根与系数的关系采用“设而不求”、“整体代入”等解法.提醒:涉及弦的中点、斜率时一般用“点差法”求解.跟踪训练:已知抛物线C :x 2=2py (p >0)和定点M (0,1),设过点M 的动直线交抛物线C 于A ,B 两点,抛物线C 在A ,B 处的切线交点为N . (1)若N 在以AB 为直径的圆上,求p 的值;(2)若△ABN 面积的最小值为4,求抛物线C 的方程. 注意:直线与圆锥曲线问题的求解策略典例 (12分)已知抛物线C :y =mx 2(m >0),焦点为F ,直线2x -y +2=0交抛物线C 于A ,B 两点,P 是线段AB 的中点,过P 作x 轴的垂线交抛物线C 于点Q . (1)求抛物线C 的焦点坐标;(2)若抛物线C 上有一点R (x R ,2)到焦点F 的距离为3,求此时m 的值;(3)是否存在实数m ,使△ABQ 是以Q 为直角顶点的直角三角形?若存在,求出m 的值;若不存在,请说明理由.四、反馈练习1.点M (5,3)到抛物线y =ax 2(a ≠0)的准线的距离为6,那么抛物线的方程是( ) A .y =12x 2 B .y =12x 2或y =-36x 2 C .y =-36x 2D .y =112x 2或y =-136x 22.已知抛物线C :y 2=4x 的焦点为F ,准线为l ,点A ∈l ,线段AF 交抛物线C 于点B ,若F A →=3FB →,则|AF →|等于( )A .3B .4C .6D .73.已知抛物线C :x 2=2py (p >0),若直线y =2x 被抛物线所截弦长为45,则抛物线C 的方程为( ) A .x 2=8y B .x 2=4y C .x 2=2yD .x 2=y4.抛物线C :y 2=2px (p >0)的焦点为F ,A 是抛物线上一点,若A 到F 的距离是A 到y 轴距离的两倍,且△OAF 的面积为1,O 为坐标原点,则p 的值为( ) A .1 B .2 C .3 D .45.过抛物线C :x 2=2y 的焦点F 的直线l 交抛物线C 于A ,B 两点,若抛物线C 在点B 处的切线的斜率为1,则|AF |等于( )A .1B .2C .3D .46.已知抛物线C 的顶点是原点O ,焦点F 在x 轴的正半轴上,经过点F 的直线与抛物线C 交于A ,B 两点,若OA →·OB →=-12,则抛物线C 的方程为( ) A .x 2=8y B .x 2=4y C .y 2=8xD .y 2=4x7.抛物线C :y 2=2px (p >0)的焦点为F ,点O 是坐标原点,过点O ,F 的圆与抛物线C 的准线相切,且该圆的面积为36π,则抛物线的方程为________.8.在平面直角坐标系xOy 中,抛物线y 2=6x 的焦点为F ,准线为l ,P 为抛物线上一点,P A ⊥l ,A 为垂足.若直线AF 的斜率k =-3,则线段PF 的长为________.9.抛物线y 2=2px (p >0)的焦点为F ,其准线与双曲线y 2-x 2=1相交于A ,B 两点,若△ABF 为等边三角形,则p =________.10.已知F 是抛物线C :y 2=8x 的焦点,M 是C 上一点,FM 的延长线交y 轴于点N .若M 为FN 的中点,则|FN |=________.11.已知过抛物线y 2=2px (p >0)的焦点,斜率为22的直线交抛物线于A (x 1,y 1),B (x 2,y 2)(x 1<x 2)两点,且|AB |=9.(1)求该抛物线的方程;(2)O 为坐标原点,C 为抛物线上一点,若OC →=OA →+λOB →,求λ的值.12.已知抛物线C :y 2=2px 过点P (1,1),过点)210(,作直线l 与抛物线C 交于不同的两点M ,N ,过点M 作x 轴的垂线分别与直线OP ,ON 交于点A ,B ,其中O 为原点. (1)求抛物线C 的方程,并求其焦点坐标和准线方程; (2)求证:A 为线段BM 的中点.。
中考数学抛物线动点题秒杀技巧全文共四篇示例,供读者参考第一篇示例:抛物线是数学中一个非常重要的概念,也是中考数学考试中常常会出现的题型之一。
抛物线的性质不仅仅是个别的知识点,更是一个整体的系统性知识。
在解题过程中,我们需要灵活运用抛物线的相关知识,抓住关键点,掌握一些技巧,才能在考试中取得更好的成绩。
本文将为大家介绍一些中考数学抛物线动点题的秒杀技巧,希望能够帮助大家顺利解答相关题目。
我们需要了解抛物线的基本性质。
抛物线是一种特殊的二次曲线,其一般方程为y=ax^2+bx+c,其中a、b、c为常数,a≠0。
抛物线开口的方向取决于a的正负性:当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。
在抛物线上,我们常常遇到顶点、焦点、准线等概念,这些都是解题过程中需要重点关注的内容。
在解决抛物线动点题时,我们首先要确定动点的位置。
动点通常是抛物线上的一个点,在运动过程中其坐标会发生变化。
设抛物线的方程为y=ax^2+bx+c,动点的坐标为(x,y),我们需要根据题目中的条件,确定动点的位置。
我们需要利用抛物线的性质,建立动点坐标变化的关系式。
在解题过程中,我们常常需要根据已知条件列方程,利用抛物线的性质建立动点坐标变化的关系式,从而求解动点的轨迹、移动方向等。
如果动点在抛物线上以匀速运动,我们可以利用速度的定义建立关于动点坐标的变化式。
我们需要灵活运用数学知识,解题过程中要注意化繁为简。
在解决抛物线动点题时,我们可能会遇到复杂的条件和问题,这时我们需要善于化繁为简,抓住关键点,简化问题。
可以通过几何、代数等不同的方法,灵活运用数学知识,解题过程中要注意逻辑性,不要陷入死胡同。
中考数学抛物线动点题并不是难题,关键在于掌握抛物线的基本性质,灵活运用数学知识,化繁为简,善于建立关系式,抓住关键点。
通过不断练习,积累经验,相信大家能够在考试中轻松应对抛物线动点题,取得好成绩。
希望以上的技巧能够帮助大家更好地掌握抛物线动点题的解题方法,祝大家在中考数学考试中取得优异成绩!第二篇示例:中考数学中,抛物线动点题是考生普遍认为比较难的题型之一。
中考数学抛物线动点题秒杀技巧
中考数学中关于抛物线动点题目的解题关键在于,首先要理解抛物线的性质,包括其方程、顶点、对称轴等。
然后,根据题目给出的条件,选择适当的公式或方法来求解。
对于抛物线上的动点问题,通常需要找到与动点相关的量,如距离、角度等,并使用这些量建立方程或不等式。
在解题过程中,可能还需要使用一些基本的数学技能,如代数运算、几何作图和推理等。
以一道题目为例:在平面直角坐标系中,点A的坐标为(1,0),点B的坐标为(0,2),点C的坐标为(4,0),动点P在x轴上运动,当∠APB最大时,求点P的坐标。
首先,需要确定∠APB的最大值。
根据三角形内角和为180°的性质,∠APB=180°-∠APO-∠BPO。
因为∠APO和∠BPO的大小与点P的位置有关,所以当∠APB 最大时,必然有∠APO和∠BPO尽可能小。
根据题目条件,可以找到当OA=PB 时,∠APB最大。
接下来,设点P的坐标为(x,0),根据OA=PB,可以得到方程x^2+1=x-4+2,
解得x=-1或x=3。
由于题目要求∠APB最大,所以点P的坐标应为(3,0)。
解决抛物线上的动点问题需要综合运用抛物线的性质、三角形的性质、代数运算和几何作图等技能。
在解题过程中,要善于根据题目条件建立方程或不等式,并灵活运用各种数学技能来求解。
考点二十二 动点与抛物线问题典型例题:(如图,已知抛物线2(1)33(0)y a x a =-+≠经过点A(-2,0),抛物线的顶点为D ,过0作射线OM∥AD.过顶点D 平行于x 轴的直线交射线OM 于点C ,B 在x 轴正半轴上,连结BC .(1)求该抛物线的解析式; (2)若动点P 从点0出发,以每秒l 个长度单位的速度沿射线OM 运动,设点P 运动的时间为t(s).问:当t 为何值时,四边形DAOP 分别为平行四边形?直角梯形?等腰梯形?(3)若OC=OB ,动点P 和动点Q 分别从点O 和点B 同时出发,分别以每秒l 个长度单位和2个长度单位的速度沿OC 和B0运动,当其中一个点停止运动时另一个点也随之停止运动设它们运动的时间为t(s),连接PQ ,当t 为何值时,四边形BCPQ 的面积最小?并求出最小值及此时PQ 的长.解:(1)抛物线2(1)33(0)y a x a =-+≠经过点(20)A -,, 30933a a ∴=+= ·············································································· 1分 ∴二次函数的解析式为:232383y x x =++··········································· 3分 (2)D 为抛物线的顶点(133)D ∴,过D 作DN OB ⊥于N ,则33DN = 2233(33)660AN AD DAO =∴=+=∴∠=,° ············································ 4分 OM AD ∥①当AD OP =时,四边形DAOP 是平行四边形66(s)OP t ∴=∴= ·········································· 5分 ②当DP OM ⊥时,四边形DAOP 是直角梯形过O 作OH AD ⊥于H ,2AO =,则1AH =xyM CDPQO AB N E H(如果没求出60DAO ∠=°可由Rt Rt OHA DNA △∽△求1AH =)55(s)OP DH t ∴=== ················································································ 6分 ③当PD OA =时,四边形DAOP 是等腰梯形26244(s)OP AD AH t ∴=-=-=∴=综上所述:当6t =、5、4时,对应四边形分别是平行四边形、直角梯形、等腰梯形. · 7分(3)由(2)及已知,60COB OC OB OCB ∠==°,,△是等边三角形 则6262(03)OB OC AD OP t BQ t OQ t t =====∴=-<<,,,过P 作PE OQ ⊥于E ,则PE =······························································· 8分116(62)22BCPQ S t ∴=⨯⨯⨯-232t ⎫-⎪⎝⎭··················································································· 9分当32t =时,BCPQ S ························································· 10分∴此时33393324444OQ OP OE QE PE ==∴=-==,=,PQ ∴===············································· 11分名题精练1.(2009河南)如图,在平面直角坐标系中,已知矩形ABCD 的三个顶点B (4,0)、C (8,0)、D (8,8).抛物线y=ax 2+bx 过A 、C 两点.(1)直接写出点A 的坐标,并求出抛物线的解析式;(2)动点P 从点A 出发.沿线段AB 向终点B 运动,同时点Q 从点C 出发,沿线段CD 向终点D 运动.速度均为每秒1个单位长度,运动时间为t 秒.过点P 作PE ⊥AB 交AC 于点E①过点E 作EF ⊥AD 于点F ,交抛物线于点G.当t 为何值时,线段EG 最长?②连接EQ .在点P 、Q 运动的过程中,判断有几个时刻使得△CEQ 是等腰三角形? 请直接写出相应的t 值.2. 已知二次函数c bx ax y ++=2的图象经过点A (3,0),B (2,-3),C (0,-3).(1)求此函数的解析式及图象的对称轴;(2)点P 从B 点出发以每秒0.1个单位的速度沿线段BC 向C 点运动,点Q 从O 点出发以相同的速度沿线段OA 向A 点运动,其中一个动点到达端点时,另一个也随之停止运动.设运动时间为t 秒.①当t 为何值时,四边形ABPQ 为等腰梯形;②设PQ 与对称轴的交点为M ,过M 点作x 轴的平行线交AB 于点N ,设四边形ANPQ 的面积为S ,求面积S 关于时间t 的函数解析式,并指出t 的取值范围;当t 为何值时,S 有 最大值或最小值.3.如图,二次函数2y ax bx c =++(0a ≠)的图象与x 轴交于A B 、两点,与y 轴相交于点C .连结AC BC A C 、,、两点的坐标分别为(30)A -,、(03)C ,,且当4x =-和2x =时二次函数的函数值y 相等.(1)求实数a b c ,,的值;xyO A BCP Q M N第23题图(2)若点M N 、同时从B 点出发,均以每秒1个单位长度的速度分别沿BA BC 、边运动,其中一个点到达终点时,另一点也随之停止运动.当运动时间为t 秒时,连结MN ,将BMN △沿MN 翻折,B 点恰好落在AC 边上的P 处,求t 的值及点P 的坐标;(3)在(2)的条件下,二次函数图象的对称轴上是否存在点Q ,使得以B N Q ,,为项点的三角形与ABC △相似?如果存在,请求出点Q 的坐标;如果不存在,请说明理由.考点二十二 答案1.解.(1)点A 的坐标为(4,8) …………………1 将A (4,8)、C (8,0)两点坐标分别代入y=ax 2+bx8=16a +4b得0=64a +8b解 得a =-12,b =4 ∴抛物线的解析式为:y =-12x 2+4x …………………3分(2)①在Rt △APE 和Rt △ABC 中,tan ∠PAE =PE AP =BC AB ,即PE AP =48∴PE =12AP =12t .PB=8-t .∴点E的坐标为(4+12t ,8-t ).∴点G 的纵坐标为:-12(4+12t )2+4(4+12t )=-18t 2+8. …………………5分∴EG=-18t 2+8-(8-t )=-18t 2+t .∵-18<0,∴当t =4时,线段EG 最长为2. …………………7分②共有三个时刻. …………………8分t 1=163, t 2=4013,t 3= 8525+. …………………11分2.解:(1)∵二次函数c bx ax y ++=2的图象经过点C (0,-3),∴c =-3.将点A (3,0),B (2,-3)代入c bx ax y ++=2得⎩⎨⎧-+=--+=.32433390b a b a ,解得:a =1,b =-2.∴322--=x x y .-------------------2分配方得:412--=)(x y ,所以对称轴为x =1.-------------------3分 (2) 由题意可知:BP = OQ =0.1t . ∵点B ,点C 的纵坐标相等, ∴BC ∥OA .过点B ,点P 作BD ⊥OA ,PE ⊥OA ,垂足分别为D ,E . 要使四边形ABPQ 为等腰梯形,只需PQ =AB .xyO A BC P QDE GM N F即QE =AD =1.又QE =OE -OQ =(2-0.1t )-0.1t =2-0.2t , ∴2-0.2t =1. 解得t =5.即t=5秒时,四边形ABPQ 为等腰梯形.-------------------6分 ②设对称轴与BC ,x 轴的交点分别为F ,G . ∵对称轴x =1是线段BC 的垂直平分线, ∴BF =CF =OG =1. 又∵BP =OQ , ∴PF =QG .又∵∠PMF =∠QMG , ∴△MFP ≌△MGQ . ∴MF =MG .∴点M 为FG 的中点 -------------------8分 ∴S=BPN ABPQ S -S ∆四边形, =BPN ABFG S -S ∆四边形.由=ABFG S 四边形FG AG BF )(21+=29.t FG BP S BPN 4032121=⋅=∆.∴S=t 40329-.-------------------10分 又BC =2,OA =3,∴点P 运动到点C 时停止运动,需要20秒. ∴0<t ≤20.∴当t =20秒时,面积S 有最小值3.------------------113、(1)由题意,得93016442a b c a b c a b c c ⎧-+=⎪-+=++⎨⎪=⎩,,解之得3a b c ⎧=-⎪⎪⎪⎪=⎨⎪⎪=⎪⎪⎩··········································································· 3分 (2)由(1)得3332332+--=x x y ,当y =0时,3x =-或1. ∴B (1,0),A (3-,0),C (0,3).∴OA =3,OB =1,OC =3. 易求得AC =23,24BC AB ==,. ∴△ABC 为Rt △,且∠ACB =90°,∠A =30°,∠B =60°.又由BM BN PN PM ===知四边形PMBN 为菱形, ∴PN ∥AB ,∴CB CN AB PN =,即224tt -=. ∴34=t . ···························································································· 5分过P 作PE ⊥AB 于E ,在Rt △PEM 中,∠PME =∠B =60°,PM =34. ∴332233460sin =⨯=⋅=PM PE . 3260tan ==PE ME . 又31=-=OB BM OM 故,∴(1P -. ·················································································· 7分 (3)由(1)、(2)知抛物线3332332+--=x x y 的对称轴为直线1x =-, 且∠ACB =90°.①若∠BQN =90°,∵BN 的中点到对称轴的距离大于1, 而13221<=BM , ∴以BN 为直径的圆不与对称轴相交, ∴∠BQN ≠90°,即此时不存在符合条件的Q 点. ②若∠BNQ =90°,当∠NBQ =60°,则Q 、E 重合,此时90BNQ ∠≠°; 当∠NBQ =30°,则Q 、P 重合,此时90BNQ ∠≠°.即此时不存在符合条件的Q 点.③若∠QBN =90°时,延长NM 交对称轴于点Q , 此时,Q 为P 关于x 轴的对称点. ∴Q (1-,332-)为所求. 10分。
抛物线动点问题解题思路一、问题描述某人站在离地面为h的平台上,用力将一个物体以初速度v0水平抛出,物体沿抛出方向的轨迹为抛物线。
我们希望了解在给定初速度和高度的情况下,物体在不同时间点的位置以及其他相关信息。
二、解题思路为了解决这个问题,我们可以按照以下步骤进行分析和计算:1.计算物体的运动时间首先,我们需要计算物体在空中飞行的总时间。
这个时间可以通过以下公式得到:时间=2*初速度*si n(抛射角度)/g,其中初速度为v0,抛射角度为α,g为重力加速度。
2.计算物体的飞行距离接下来,我们可以计算物体在空中飞行的总距离。
这个距离可以通过以下公式得到:距离=2*初速度^2*s in(抛射角度)*co s(抛射角度)/g,其中初速度为v0,抛射角度为α,g为重力加速度。
3.计算物体在特定时间点的位置在了解了物体的运动时间和飞行距离后,我们可以得到物体在不同时刻的位置。
物体在x轴方向的位置可以通过以下公式得到:x=初速度*c os(抛射角度)*时间,其中初速度为v0,抛射角度为α,时间可以取0~飞行总时间的任意值。
物体在y轴方向的位置可以通过以下公式得到:y=h+初速度*si n(抛射角度)*时间-0.5*g*时间^2,其中初速度为v0,抛射角度为α,时间可以取0~飞行总时间的任意值,h为平台高度,g为重力加速度。
三、实例演算下面,我们以一个具体的实例来演算一下抛物线动点问题的解题思路。
假设物体被以初速度v0=20m/s水平抛出,初始高度为h=5m,请问物体在t=1s的位置是多少?首先,我们可以计算出物体在空中飞行的总时间:时间=2*20*si n(α)/g=2*20*0.5/9.8≈2.04s。
接下来,我们可以计算出物体在空中飞行的总距离:距离=2*20^2*si n(α)*c o s(α)/g=2*20^2*0.5*0.5/9.8≈20.41m。
然后,我们可以根据给定的时间点t=1s来计算物体的位置。
初中数学抛物线上的动点问题抛物线上的动点问题,这听起来像是数学课上最无聊的内容了,但它就像那杯热腾腾的奶茶,里面藏着不少惊喜呢!想象一下,一个小球在空中飞来飞去,它的轨迹就像一条优美的抛物线,哦,真是太酷了。
这个动点问题就像是在跟我们讲一个故事,讲述着这个小球如何在某个特定的时刻、某个特定的地方,和我们发生奇妙的碰撞。
咱们得明白什么是抛物线。
想象一下,小时候玩风筝,放得太高了,风一吹,风筝就会沿着一个弯曲的轨迹下落。
那就是抛物线的感觉。
抛物线有点像是大自然给我们的一个玩具,它可以用来解决许多有趣的问题,比如说,投篮的时候,篮球的弧线也是抛物线啊!所以,咱们一边学习,心里还得想着这些有趣的场景,真是两全其美。
什么是动点呢?小球就像是一个小精灵,它在抛物线上跳来跳去,不停地变化位置。
我们要想象一下,这个小精灵在做什么。
它可能在追逐小鸟,或者在寻找糖果。
哦,想到糖果我都想流口水了!这个动点就是一个在抛物线上不断移动的点,简单吧?我们用数学的语言来描述它,其实就是用公式来告诉我们它的位置随时间的变化。
想想看,多有趣啊,这小精灵跟着时间的脚步在舞动。
再说说,为什么要研究这些动点问题呢?生活中到处都是这样的抛物线和动点。
比如说,你扔一个苹果,苹果的轨迹就像抛物线一样。
你知道的,苹果掉下来可能会砸到人的头上,哈哈,那就很尴尬了。
不过,从这个角度看,苹果的落点就成了一个动点的问题,咱们要算好它落在哪里,避免意外发生,这就是用数学来保护自己啊。
说到这里,不得不提一提动点的速度和位置,这俩家伙简直就是双胞胎。
动点的速度就像是你在追赶公交车的时候,心里的那个紧张感。
咱们得知道,这小精灵在每一秒钟的位置变化得有多快。
速度快了,位置就变得飞快;速度慢了,哎,可能就得慢慢来,像在沙滩上走路一样,费劲。
有些同学可能觉得数学公式枯燥无味,其实这些公式就像是调料,少了它们,整个故事就没味道。
比如说,抛物线的方程y = ax² + bx + c,这些字母就像是调皮的小精灵,代表着不同的数值。
抛物线与相似三角形结合的动点问题一、概述在数学中,抛物线与相似三角形是两个重要的概念。
抛物线具有很多有趣的性质,而相似三角形则是几何学中的重要概念之一。
本文将探讨抛物线与相似三角形结合的动点问题,通过具体的案例分析和推导,探讨这两个概念之间的通联,从而深入理解这一数学问题。
二、抛物线的基本性质1. 抛物线的定义抛物线是平面上所有到定点的距离等于其到定直线的距离的点的轨迹。
在直角坐标系中,抛物线的标准方程为 y=ax^2+bx+c,其中 a、b、c为常数,且a≠0。
2. 抛物线的焦点和准线抛物线的焦点是定点 F,准线是定直线 l。
对于标准方程 y=ax^2 的抛物线来说,焦点的横坐标为 0,纵坐标为 1/(4a),准线的方程为 y=-1/(4a)。
3. 抛物线的对称性抛物线具有关于焦点的对称性。
即便不考虑直角坐标系下的图像,只需考虑焦点和抛物线上另一点的连线和准线的位置关系即可。
三、相似三角形的基本概念1. 相似三角形的定义相似三角形是指它们的对应角相等,并且对应边成比例。
两个三角形相似的简化表述是它们的形状相似,但尺寸不同。
2. 相似三角形的性质相似三角形的边长之比等于它们的对应边上的线段之比。
并且,对于两个相似三角形来说,它们的面积之比等于它们的相似边长之比的平方。
3. 相似三角形的判定方法判定两个三角形相似的方法有AAA判定法、AA判定法、SAS判定法、SSS判定法等。
通过这些判定方法,可以判断两个三角形是否相似。
四、抛物线与相似三角形结合的动点问题1. 问题描述考虑一个抛物线 y=ax^2 上的动点 P(x,y),将 P 连接到抛物线的焦点F,将 P 到抛物线的准线的垂直距离记作 h,P 到抛物线的焦点的距离记作 d。
如何根据 P 的位置来求出 h 和 d 之间的关系呢?2. 问题分析我们可以通过抛物线 y=ax^2 的标准方程求解出焦点 F 的坐标,以及准线的方程。
我们可以通过 P 的坐标求出 h 和 d 之间的关系。
抛物线中的动点问题专题复习【精品】本文档将介绍抛物线中的动点问题的相关知识,并提供复材料和练题。
一、概述抛物线中的动点问题是数学中涉及到抛物线和动点运动的问题。
通过研究动点在抛物线上的运动,可以解决与速度、加速度、时间等相关的物理问题。
二、相关概念在抛物线中的动点问题中,有几个重要的概念需要掌握:1. 抛物线:抛物线是一种特殊的曲线,具有对称性和顶点。
它可以用一条二次函数的图像来表示。
抛物线:抛物线是一种特殊的曲线,具有对称性和顶点。
它可以用一条二次函数的图像来表示。
2. 动点:动点是在抛物线上移动的一个点,其位置随时间的变化而变化。
动点:动点是在抛物线上移动的一个点,其位置随时间的变化而变化。
3. 速度:动点在抛物线上的运动速度可以用速度向量表示。
速度是动点在单位时间内所移动的距离。
速度:动点在抛物线上的运动速度可以用速度向量表示。
速度是动点在单位时间内所移动的距离。
4. 加速度:动点在抛物线上的运动加速度是速度的导数,表示速度的变化率。
加速度:动点在抛物线上的运动加速度是速度的导数,表示速度的变化率。
三、解题方法在解决抛物线中的动点问题时,可以采用以下方法:1. 分析曲线方程:首先要了解抛物线的方程以及其特点,例如顶点坐标、对称轴等。
分析曲线方程:首先要了解抛物线的方程以及其特点,例如顶点坐标、对称轴等。
2. 确定动点的运动方程:根据题目给出的条件,可以推导出动点的运动方程,通常是关于时间的函数。
确定动点的运动方程:根据题目给出的条件,可以推导出动点的运动方程,通常是关于时间的函数。
3. 计算速度和加速度:利用导数和微分的知识,可以计算动点在抛物线上的速度和加速度。
计算速度和加速度:利用导数和微分的知识,可以计算动点在抛物线上的速度和加速度。
4. 解决相关问题:根据题目的要求,可以利用速度、加速度等参数解决与动点运动相关的物理问题。
解决相关问题:根据题目的要求,可以利用速度、加速度等参数解决与动点运动相关的物理问题。
抛物线上的动点教学目标1.巩固二次函数及图像的知识,会利用二次函数及图像的知识探究相关的数学问题.2.学会构建函数模型解决数学综合问题,培养学生分析问题和解决问题的能力.教学重点利用动点(图形)位置进行分类,然后运用转化的思想和方法将函数问题转化为几何和方程问题.教学难点函数动点问题转化过程的理解.教学过程一、新课引入1.课前预备:音乐欣赏蔡健雅《抛物线》,动画《抛物线上的动点》.三、新课讲解1.课前热身(1)点A(-2,m)在抛物线y=x2上,则m的值为_______.(2)函数y=x2-4x-5与x轴的交点坐标是_____________,与y轴的交点坐标是____________. (3)直线y=x与抛物线y=-3x2的交点是_____________.(4)动点P(x,y)在抛物线y=x2-4x+3 (-3≤x≤3)上,则y的最小值是________, 最大值是________.预设目标:简单复习抛物线上点的意义、交点坐标与二次函数的性质.2.例题讲解视频欣赏《脑洞巨开:理科生的投篮》.预设目标:情境引入,激发状态.例在《理科生投篮》动画中,篮球的运动路线是抛物线y=a x2+bx+3,下表给出了抛物线与自变量x的一些对应值:((2)抛物线与x轴分别交于点A,点B(3,0),与y轴相交于点C,若在抛物线的对称轴上有一点P,要使PA+PC的值最小,求点P的坐标.那么ΔPAC周长的最小值呢?预设目标:通过一个点的运动,让学生掌握利用抛物线的轴对称性,通过特殊点求线段和或周长的最值问题.(3)若点M是抛物线在直线BC上方的动点,连结MC,MB,那么ΔMBC的有最大值吗?如果有,请求出面积的最大值.(动画演示,直观理解求三角形面积最大即求底边的最大值)预设目标:通过图形中两个点的运动,让学生理解可以把面积的最值问题转化为求底边最值(或函数最值)问题.(4)点P 为x 轴上的一动点,在抛物线上是否存在一点Q ,使以A ,C ,P ,Q 四点构成 的四边形为平行四边形?若存在,求点Q 的坐标;若不存在,请说明理由.预设目标:通过图形中的两个动点,把抛物线上平行四边形的存在问题转化为全等三角形问题建方程求解.(5)动点E 从O 点出发,沿着OB 方向以1个单位/秒的速度向终点匀速运动,同时, 动点F 从点B 出发,沿着BC个单位/秒的速度向终点C 匀速运动,当E , F 中任意一点到达终点时另一点也随之停止运动,连接EF ,设运动时间为t 秒,当t 为何值时,△EF 为直角三角形?预设目标:通过图形中的两个动点,把抛物线上直接三角形的存在问题转化为相似三角形问题(或勾股定理)建方程求解.(6)当a 取a 1时,抛物线与x 轴正半轴交于点A (m ,0);当a 取a 2时,抛物线与 x 轴交于点B (n ,0).若点A 在点B 左边,试比较a 1与a 2的大小.预设目标:通过抛物线的变化,把二次项系数a 的大小比较转化为代数式的比较.三、小结四、作业良渚二中 盛华2017.4.18。
第一讲抛物线中的动点问题一、利用动点(图形)位置进行分类,把运动问题分割成几个静态问题,然后运用转化的思想和方法将几何问题转化为函数和方程问题二、利用函数与方程的思想和方法将所解决图形的性质(或所求图形面积)直接转化为函数或方程。
一、平行四边形与抛物线【例】如图甲,在平面直角坐标系中,A、B的坐标分别为(4,0)、(0,3),抛物线y=x2+bx+c经过点B,且对称轴是直线x=﹣.(1)求抛物线对应的函数解析式;(2)将图甲中△ABO沿x轴向左平移到△DCE(如图乙),当四边形ABCD是菱形时,请说明点C和点D都在该抛物线上;(3)在(2)中,若点M是抛物线上的一个动点(点M不与点C、D重合),经过点M作MN∥y轴交直线CD于N,设点M的横坐标为t,MN的长度为l,求l与t之间的函数解析式,并求当t为何值时,以M、N、C、E为顶点的四边形是平行四边形.变式演练【变式】如图,在平面直角坐标系中,已知Rt△AOB的两条直角边OA、OB分别在y轴和x轴上,并且OA、OB的长分别是方程x2﹣7x+12=0的两根(OA<OB),动点P从点A开始在线段AO上以每秒1个单位长度的速度向点0运动;同时,动点Q从点B开始在线段BA上以每秒2个单位长度的速度向点A运动,设点P、Q运动的时间为t秒.(1)求A、B两点的坐标.(2)求当t为何值时,△APQ与△AOB相似,并直接写出此时点Q的坐标.(3)当t=2时,在坐标平面内,是否存在点M,使以A、P、Q、M为顶点的四边形是平行四边形?若存在,请直接写出M点的坐标;若不存在,请说明理由.【变式】如图,已知抛物线y=﹣x2+bx+c与一直线相交于A(﹣1,0),C(2,3)两点,与y 轴交于点N.其顶点为D.(1)抛物线及直线AC的函数关系式;(2)设点M(3,m),求使MN+MD的值最小时m的值;(3)若抛物线的对称轴与直线AC相交于点B,E为直线AC上的任意一点,过点E作EF∥BD 交抛物线于点F,以B,D,E,F为顶点的四边形能否为平行四边形?若能,求点E的坐标;若不能,请说明理由;(4)若P是抛物线上位于直线AC上方的一个动点,求△APC的面积的最大值.二、梯形与抛物线【例】已知,在Rt△OAB中,∠OAB=90°,∠BOA=30°,AB=2.若以O为坐标原点,OA所在直线为x轴,建立如图所示的平面直角坐标系,点B在第一象限内.将Rt△OAB沿OB折叠后,点A落在第一象限内的点C处.(1)求点C的坐标;(2)若抛物线y=ax2+bx(a≠0)经过C、A两点,求此抛物线的解析式;(3)若上述抛物线的对称轴与OB交于点D,点P为线段DB上一动点,过P作y轴的平行线,交抛物线于点M,问:是否存在这样的点P,使得四边形CDPM为等腰梯形?若存在,请求出此时点P的坐标;若不存在,请说明理由.变式演练【变式】如图,O为坐标原点,直线l绕着点A(0,2)旋转,与经过点C(0,1)的二次函数y=x2+h的图象交于不同的两点P、Q.(1)求h的值;(2)通过操作、观察,算出△POQ的面积的最小值(不必说理);(3)过点P、C作直线,与x轴交于点B,试问:在直线l的旋转过程中,四边形AOBQ是否为梯形?若是,请说明理由;若不是,请指出四边形的形状.【变式】如图,在平面直角坐标系xOy中,矩形AOCD的顶点A的坐标是(0,4),现有两动点P,Q,点P从点O出发沿线段OC(不包括端点O,C)以每秒2个单位长度的速度匀速向点C运动,点Q从点C出发沿线段CD(不包括端点C,D)以每秒1个单位长度的速度匀速向点D运动.点P,Q同时出发,同时停止,设运动时间为t(秒),当t=2(秒)时,PQ=2.(1)求点D的坐标,并直接写出t的取值范围.(2)连接AQ并延长交x轴于点E,把AE沿AD翻折交CD延长线于点F,连接EF,则△AEF 的面积S是否随t的变化而变化?若变化,求出S与t的函数关系式;若不变化,求出S的值.(3)在(2)的条件下,t为何值时,四边形APQF是梯形?三、等腰三角形、菱形与抛物线【例】在平面直角坐标系xOy中,一块含60°角的三角板作如图摆放,斜边AB在x轴上,直角顶点C在y轴正半轴上,已知点A(﹣1,0).(1)请直接写出点B、C的坐标:B 、C ;并求经过A、B、C三点的抛物线解析式;(2)现有与上述三角板完全一样的三角板DEF(其中∠EDF=90°,∠DEF=60°),把顶点E放在线段AB上(点E是不与A、B两点重合的动点),并使ED所在直线经过点C.此时,EF 所在直线与(1)中的抛物线交于点M.①设AE=x,当x为何值时,△OCE∽△OBC;②在①的条件下探究:抛物线的对称轴上是否存在点P使△PEM是等腰三角形?若存在,请写出点P的坐标;若不存在,请说明理由.变式演练【变式】如图,在平面直角坐标系中,直角三角形AOB的顶点A、B分别落在坐标轴上.O为原点,点A的坐标为(6,0),点B的坐标为(0,8).动点M从点O出发.沿OA向终点A以每秒1个单位的速度运动,同时动点N从点A出发,沿AB向终点B以每秒个单位的速度运动.当一个动点到达终点时,另一个动点也随之停止运动,设动点M、N运动的时间为t秒(t >0).(1)当t=3秒时.直接写出点N的坐标,并求出经过O、A、N三点的抛物线的解析式;(2)在此运动的过程中,△MNA的面积是否存在最大值?若存在,请求出最大值;若不存在,请说明理由;(3)当t为何值时,△MNA是一个等腰三角形?【变式】如图,直线l1经过点A(﹣1,0),直线l2经过点B(3,0),l1、l2均为与y轴交于点C(0,),抛物线y=ax2+bx+c(a≠0)经过A、B、C三点.(1)求抛物线的函数表达式;(2)抛物线的对称轴依次与x轴交于点D、与l2交于点E、与抛物线交于点F、与l1交于点G.求证:DE=EF=FG;(3)若l1⊥l2于y轴上的C点处,点P为抛物线上一动点,要使△PCG为等腰三角形,请写出符合条件的点P的坐标,并简述理由.【变式】如图,在平面直角坐标系中,直角梯形OABC的边OC、OA分别与x轴、y轴重合,AB∥OC,∠AOC=90°,∠BCO=45°,BC=12,点C的坐标为(﹣18,0).(1)求点B的坐标;(2)若直线DE交梯形对角线BO于点D,交y轴于点E,且OE=4,OD=2BD,求直线DE的解析式;(3)若点P是(2)中直线DE上的一个动点,在坐标平面内是否存在点Q,使以O、E、P、Q 为顶点的四边形是菱形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.【变式】如图,已知抛物线经过原点O和x轴上一点A(4,0),抛物线顶点为E,它的对称轴与x轴交于点D.直线y=﹣2x﹣1经过抛物线上一点B(﹣2,m)且与y轴交于点C,与抛物线的对称轴交于点F.(1)求m的值及该抛物线对应的解析式;(2)P(x,y)是抛物线上的一点,若S△ADP =S△ADC,求出所有符合条件的点P的坐标;(3)点Q是平面内任意一点,点M从点F出发,沿对称轴向上以每秒1个单位长度的速度匀速运动,设点M的运动时间为t秒,是否能使以Q、A、E、M四点为顶点的四边形是菱形?若能,请直接写出点M的运动时间t的值;若不能,请说明理由.四、直角三角形与抛物线【例】如图,抛物线y=与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C.(1)求点A、B的坐标;(2)设D为已知抛物线的对称轴上的任意一点,当△ACD的面积等于△ACB的面积时,求点D的坐标;(3)若直线l过点E(4,0),M为直线l上的动点,当以A、B、M为顶点所作的直角三角形有且只有三个时,求直线l的解析式.【变式】如图,在等腰三角形ABC中,AB=AC,以底边BC的垂直平分线和BC所在的直线建立平面直角坐标系,抛物线y=﹣x2+x+4经过A、B两点.(1)写出点A、点B的坐标;(2)若一条与y轴重合的直线l以每秒2个单位长度的速度向右平移,分别交线段OA、CA 和抛物线于点E、M和点P,连接PA、PB.设直线l移动的时间为t(0<t<4)秒,求四边形PBCA的面积S(面积单位)与t(秒)的函数关系式,并求出四边形PBCA的最大面积;(3)在(2)的条件下,抛物线上是否存在一点P,使得△PAM是直角三角形?若存在,请求出点P的坐标;若不存在,请说明理由.【变式】如图,顶点为P(4,﹣4)的二次函数图象经过原点(0,0),点A在该图象上,OA 交其对称轴l于点M,点M、N关于点P对称,连接AN、ON,(1)求该二次函数的关系式;(2)若点A在对称轴l右侧的二次函数图象上运动时,请解答下面问题:①证明:∠ANM=∠ONM;②△ANO能否为直角三角形?如果能,请求出所有符合条件的点A的坐标;如果不能,请说明理由.【变式】如图,在平面直角坐标系中,直线y=x+2交x轴于点P,交y轴于点A.抛物线y=x2+bx+c的图象过点E(﹣1,0),并与直线相交于A、B两点.(1)求抛物线的解析式(关系式);(2)过点A作AC⊥AB交x轴于点C,求点C的坐标;(3)除点C外,在坐标轴上是否存在点M,使得△MAB是直角三角形?若存在,请求出点M 的坐标;若不存在,请说明理由.五、相似三角形与抛物线【例】如图1,已知抛物线y=ax2+bx(a≠0)经过A(3,0)、B(4,4)两点.(1)求抛物线的解析式;(2)将直线OB向下平移m个单位长度后,得到的直线与抛物线只有一个公共点D,求m的值及点D的坐标;(3)如图2,若点N在抛物线上,且∠NBO=∠ABO,则在(2)的条件下,求出所有满足△POD ∽△NOB的点P坐标(点P、O、D分别与点N、O、B对应).变式演练【变式】如图,已知抛物线y=ax2+bx+c(a≠0)的图象经过原点O,交x轴于点A,其顶点B 的坐标为(3,﹣).(1)求抛物线的函数解析式及点A的坐标;(2)在抛物线上求点P,使S△POA =2S△AOB;(3)在抛物线上是否存在点Q,使△AQO与△AOB相似?如果存在,请求出Q点的坐标;如果不存在,请说明理由.【变式】如图,已知抛物线的方程C1:y=﹣(x+2)(x﹣m)(m>0)与x轴相交于点B、C,与y轴相交于点E,且点B在点C的左侧.(1)若抛物线C1过点M(2,2),求实数m的值;(2)在(1)的条件下,求△BCE的面积;(3)在(1)条件下,在抛物线的对称轴上找一点H,使BH+EH最小,并求出点H的坐标;(4)在第四象限内,抛物线C1上是否存在点F,使得以点B、C、F为顶点的三角形与△BCE 相似?若存在,求m的值;若不存在,请说明理由.【变式】如图,已知二次函数的图象过点A(﹣4,3),B(4,4).(1)求二次函数的解析式:(2)求证:△ACB是直角三角形;(3)若点P在第二象限,且是抛物线上的一动点,过点P作PH垂直x轴于点H,是否存在以P、H、D为顶点的三角形与△ABC相似?若存在,求出点P的坐标;若不存在,请说明理由.【变式】如图,直线AB交x轴于点B(4,0),交y轴于点A(0,4),直线DM⊥x轴正半轴于点M,交线段AB于点C,DM=6,连接DA,∠DAC=90°.(1)直接写出直线AB的解析式;(2)求点D的坐标;(3)若点P是线段MB上的动点,过点P作x轴的垂线,交AB于点F,交过O、D、B三点的抛物线于点E,连接CE.是否存在点P,使△BPF与△FCE相似?若存在,请求出点P的坐标;若不存在,请说明理由.【变式】在平面直角坐标系中,二次函数y=ax2+bx+2的图象与x轴交于A(﹣3,0),B(1,0)两点,与y轴交于点C.(1)求这个二次函数的关系解析式;(2)点P是直线AC上方的抛物线上一动点,是否存在点P,使△ACP的面积最大?若存在,求出点P的坐标;若不存在,说明理由;(3)在平面直角坐标系中,是否存在点Q,使△BCQ是以BC为腰的等腰直角三角形?若存在,直接写出点Q的坐标;若不存在,说明理由;(4)点Q是直线AC上方的抛物线上一动点,过点Q作QE垂直于x轴,垂足为E.是否存在点Q,使以点B、Q、E为顶点的三角形与△AOC相似?若存在,直接写出点Q的坐标;若不存在,说明理由;(5)点M为抛物线上一动点,在x轴上是否存在点Q,使以A、C、M、Q为顶点的四边形是平行四边形?若存在,直接写出点Q的坐标;若不存在,说明理由.六、抛物线中的翻折问题【例】如图,抛物线y=ax2+bx+2交x轴于A(﹣1,0),B(4,0)两点,交y轴于点C,与过点C且平行于x轴的直线交于另一点D,点P是抛物线上一动点.(1)求抛物线解析式及点D坐标;(2)点E在x轴上,若以A,E,D,P为顶点的四边形是平行四边形,求此时点P的坐标;(3)过点P作直线CD的垂线,垂足为Q,若将△CPQ沿CP翻折,点Q的对应点为Q′.是否存在点P,使Q′恰好落在x轴上?若存在,求出此时点P的坐标;若不存在,说明理由.变式演练【变式】如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,A 点在原点的左侧,B点的坐标为(3,0),与y轴交于C(0,﹣3)点,点P是直线BC下方的抛物线上一动点.(1)求这个二次函数的表达式.(2)连接PO、PC,并把△POC沿CO翻折,得到四边形POP′C,那么是否存在点P,使四边形POP′C为菱形?若存在,请求出此时点P的坐标;若不存在,请说明理由.(3)当点P运动到什么位置时,四边形ABPC的面积最大并求出此时P点的坐标和四边形ABPC 的最大面积.。