机械结构设计基础..
- 格式:ppt
- 大小:3.62 MB
- 文档页数:15
机械结构设计的基本要求
1.结构合理性:机械结构设计应在满足功能需求的基础上,合理布局
各个部件,使得其结构紧凑、稳定,能够在使用过程中承受各种力学和热
力学载荷,同时提供足够的刚度和强度。
2.可靠性:机械结构设计应能够确保机械产品长期稳定运行。
合理选
择材料,考虑疲劳寿命和可靠性指标,充分考虑各种额定工况和应变等参数,从而确保机械产品在使用寿命内不发生故障和失效。
3.易制造性:机械结构设计应考虑到产品的制造工艺和生产成本。
合
理选择加工工艺,设计易于加工和组装的零件形式,避免复杂的加工工序
和装配难度,以确保工程实施的顺利进行。
4.经济性:机械结构设计应在满足性能需求的前提下,优化结构设计,减少材料和能源的消耗,降低制造成本和运营成本。
5.可维护性:机械结构设计应考虑到产品的维修和保养的可行性。
设
计易于检修和更换的零部件,方便进行设备维护,提高设备的可用性和可
维护性。
6.安全性:机械结构设计应考虑到操作人员的人身安全和设备的安全
运行。
在设计中,应合理设置各种保护装置和安全措施,避免事故的发生,降低安全隐患。
7.环境适应性:机械结构设计应考虑到产品在不同环境条件下的适应性。
合理选择材料,通过设计防尘、防水、防腐蚀等措施,保证产品在各
种恶劣环境中的可靠运行。
综上所述,机械结构设计的基本要求包括结构合理性、可靠性、易制造性、经济性、可维护性、安全性和环境适应性。
通过合理的结构设计,可以提高机械产品的性能和可靠性,降低成本和风险,从而满足用户对产品的要求。
机械结构设计课程教学大纲课程简介机械结构设计是机械工程专业的重要课程之一,它主要讲授机械结构设计的基础理论和实际应用技巧。
本课程通过培养学生的机械结构设计能力,旨在使学生能够独立进行机械结构的设计与优化。
本文档旨在提供机械结构设计课程的教学大纲,以便教师和学生对课程内容有清晰的了解。
授课目标1.理解机械结构设计的基本理论框架。
2.掌握机械结构设计的基本步骤和方法。
3.能够运用机械结构设计软件进行实际项目的设计与分析。
4.培养学生的创新能力和团队合作意识。
主要内容第一章:机械结构设计基础•机械结构设计的概念和作用•机械结构设计的基本流程•机械结构设计的基本原则•机械结构的材料选择与应用第二章:机械结构设计工具与软件•AutoCAD在机械结构设计中的应用•SolidWorks在机械结构设计中的应用•ANSYS在机械结构分析中的应用•MATLAB在机械结构优化中的应用第三章:机械结构设计实例分析•基于里兹图的机械结构设计•基于强度计算的机械结构设计•基于有限元分析的机械结构设计•基于性能优化的机械结构设计第四章:机械结构设计项目案例•学生团队拟定机械结构设计项目•设计项目分组和任务分配•机械结构设计项目的实施与成果展示教学方法1.授课:通过讲授基本理论和应用技巧,使学生掌握机械结构设计的基本知识。
2.实践:通过机械结构设计软件的实际操作,让学生掌握实际设计与分析的能力。
3.项目:通过小组合作完成机械结构设计项目,培养学生的团队合作与创新能力。
4.讨论:通过案例分析和课堂讨论,引导学生思考和交流,加深对机械结构设计的理解。
考核方式1.平时成绩:包括课堂出勤、参与讨论和作业完成情况。
占总评成绩的30%。
2.课程设计:根据学生完成的机械结构设计项目进行评分。
占总评成绩的40%。
3.期末考试:对学生对机械结构设计基础理论的理解进行考核。
占总评成绩的30%。
参考书目1.《机械结构设计基础》李明著,机械工业出版社,2015年。
设计机械结构重点知识点设计机械结构是机械工程师必备的核心能力之一。
在进行机械结构设计时,掌握一些重要的知识点能够帮助我们更加高效地完成工作。
本文将介绍设计机械结构的一些重点知识点,并提供相应的解释和应用案例。
1. 强度学在机械结构设计中,强度学是最基础的知识之一。
它主要研究物体在受力下的强度和变形情况。
强度学包含了材料力学、受力分析和结构设计等内容。
工程师需要了解不同材料的强度特性,掌握受力分析的方法,并根据结构设计要求进行相应的设计。
例如,在设计一个起重机的臂架时,工程师需要考虑臂架的受力情况,选择合适的材料并进行强度计算,以确保臂架在承受最大负荷时不会发生断裂或变形。
2. 运动学运动学是研究物体运动规律的学科,也是机械结构设计的重要基础知识。
在机械结构设计中,运动学可以帮助工程师分析和预测机械系统的运动状态,包括速度、加速度和轨迹等。
例如,在设计一个汽车悬挂系统时,工程师需要通过运动学分析来确定悬挂系统在不同路面条件下的运动状态,以确保车辆具有良好的悬挂性能和乘坐舒适度。
3. 连接件设计连接件设计是机械结构设计中的关键环节,它涉及到不同零部件之间的连接和传递力的方式。
良好的连接件设计能够保证整个机械系统具有足够的刚度和稳定性。
常见的连接件包括螺栓、螺母、销钉等。
在进行连接件设计时,工程师需要根据连接件的类型、载荷和工作环境等因素进行选择,并进行强度计算和优化设计。
4. 轴系设计轴系设计是指将转动的力或转矩传递给机械系统不同部件的设计。
在轴系设计中,工程师需要考虑轴的材料、直径、轴承支撑方式等因素,以确保轴能够承受正常工作负荷并保持稳定运行。
举个例子,设计一台机床时,工程师需要设计合适的传动轴系,以确保电机能够将动力传递给机床主轴,并使机床在加工工件时保持稳定运行。
5. 齿轮传动设计齿轮传动是机械结构中常用的传动方式之一,它可以将旋转运动转换为线性运动或改变旋转速度和转矩。
在齿轮传动设计中,工程师需要选择合适的齿轮类型、齿数、模数等参数,并进行强度计算和齿面优化设计。
机械设计基础一.概论:1.机械设计课程主要讨论设计和计算的理论和方法。
2.机械零件设计应遵循的基本原则:3.强度:零件抵抗力的能力。
2、结构组成和自由度:1所谓的机架是指。
2.机构是机器中的单元体;构件是;零件组成。
3.两构件组成运动副必须具备的条件是两构件。
4.组成转动副的两个运动副元素的基本特征是。
5.由两个部件的表面接触形成的运动对称为引入约束的运动对,由导线接触形成的运动对称为引入约束的运动对。
6.机构的自由度数等于原动件数是机构具有的条件。
7.与机构运动相关的尺寸元素必须反映在机构的运动图上。
因此,应正确标记移动副、移动副和高副。
3、连杆结构:1.铰链四杆机构若则可能存在曲柄。
其中若最短杆是,则为;若最短杆是,则为;若最短杆是机架,则为;若则不存在曲柄(任何情况下均为双摇杆机构)。
2.最简单的平面连杆机构是机构。
3.为保证连杆机构良好的传力性能,当机构处于死点位置时,最小传动角应为4个传动角。
5.平面连杆机构中,从动件压力角α与机构传动角γ之间的关系是.6.曲柄摇杆机构中,必然出现死点位置的原动件是。
7.曲柄摇杆机构共有个瞬心。
8.当连杆没有急回运动特性时,行程速比系数。
9.以曲柄为主动件色曲柄摇杆机构、曲柄滑块机构中,可能出现最小传动角的位置分别是,而导杆机构始终是90°。
四.凸轮机构:1.凸轮机构的基圆半径指2.凸轮机构中,若增大基圆半径rb,,则压力角作如下变化:3.使凸轮机构的压力角减小的有效方法是。
4.凸轮机构刚性冲击的原因是:。
灵活影响的原因是。
5.从动件的运动规律可以使凸轮机构产生刚性冲击(硬冲击),而规律可以使凸轮机构产生刚性冲击。
6.按滚子对心移动从动件设计制造的盘形凸轮廓线若将滚子直径rk改小则滚子对心移动从动件盘形凸轮机构的(rb变大α变大)。
五.齿轮机构:1.渐开线标准直齿轮必须满足两个条件:。
2.渐开线直齿圆柱齿轮的正确啮合条件是,连动传动条件是。
3.齿轮机构的基本参数中,与重合度无关的参数是。
机械结构设计基础知识1前言1、1机械结构设计的任务机械结构设计的任务就是在总体设计的基础上,根据所确定的原理方案,确定并绘出具体的结构图,以体现所要求的功能。
就是将抽象的工作原理具体化为某类构件或零部件,具体内容为在确定结构件的材料、形状、尺寸、公差、热处理方式与表面状况的同时,还须考虑其加工工艺、强度、刚度、精度以及与其它零件相互之间关系等问题。
所以,结构设计的直接产物虽就是技术图纸,但结构设计工作不就是简单的机械制图,图纸只就是表达设计方案的语言,综合技术的具体化就是结构设计的基本内容。
1、2机械结构设计特点机械结构设计的主要特点有:(1)它就是集思考、绘图、计算(有时进行必要的实验)于一体的设计过程,就是机械设计中涉及的问题最多、最具体、工作量最大的工作阶段,在整个机械设计过程中,平均约80%的时间用于结构设计,对机械设计的成败起着举足轻重的作用。
(2)机械结构设计问题的多解性,即满足同一设计要求的机械结构并不就是唯一的。
(3)机械结构设计阶段就是一个很活跃的设计环节,常常需反复交叉的进行。
为此,在进行机械结构设计时,必须了解从机器的整体出发对机械结构的基本要求2机械结构件的结构要素与设计方法2、1结构件的几何要素机械结构的功能主要就是靠机械零部件的几何形状及各个零部件之间的相对位置关系实现的。
零部件的几何形状由它的表面所构成,一个零件通常有多个表面,在这些表面中有的与其它零部件表面直接接触,把这一部分表面称为功能表面。
在功能表面之间的联结部分称为联接表面。
零件的功能表面就是决定机械功能的重要因素,功能表面的设计就是零部件结构设计的核心问题。
描述功能表面的主要几何参数有表面的几何形状、尺寸大小、表面数量、位置、顺序等。
通过对功能表面的变异设计,可以得到为实现同一技术功能的多种结构方案。
2、2结构件之间的联接在机器或机械中,任何零件都不就是孤立存在的。
因此在结构设计中除了研究零件本身的功能与其它特征外,还必须研究零件之间的相互关系。
机械设计机械结构设计的基本知识
一、机械结构设计的基本原理
1.力学原理:力学原理是机械结构设计的基础,深入研究机械结构设计,要从力学原理入手,力学原理涉及力、位移及力的作用,主要分为力的平衡、力的抗力、力的传递及受力分析等几个部分。
2.材料特性:机械结构设计要根据设计要求选择适宜的材料,关于材料的性能一般可以从强度、韧性、热强度、质量、结构等方面加以分类,并且要注意材料构成、性能、特性等因素的合理性;
3.结构设计:结构设计是机械结构设计的核心,设计时要考虑机构结构、部件尺寸、易于装配等问题,做出合理的决定;
4.优化设计:优化设计也是机械结构设计的一个重要方面,根据多种要求综合考虑,最终形成一个可行的最优解决方案,以达到最佳的设计效果;
二、机械结构设计步骤
1.了解客户的需求:首先要充分了解客户的需求,明确需要设计的机构类型、机构尺寸、预期的使用寿命等 task,以及机构的设计要求;
2.设计初步方案:按照客户的需求,做出初步方案,包括功能要求、机构尺寸设计、材料选择、尺度把握等部分;
3.分析优化:根据工程物理原理、计算机仿真技术。
1、机械零件常用材料:普通碳素结构钢(Q屈服强度)优质碳素结构钢(20平均碳的质量分数为万分之20)、合金结构钢(20Mn2锰的平均质量分数约为2%)、铸钢(ZG230—450屈服点不小于230,抗拉强度不小于450)、铸铁(HT200灰铸铁抗拉强度)2、常用的热处理方法:退火(随炉缓冷)、正火(在空气中冷却)、淬火(在水或油中迅速冷却)、回火(吧淬火后的零件再次加热到低于临界温度的一定温度,保温一段时间后在空气中冷却)、调质(淬火+高温回火的过程)、化学热处理(渗碳、渗氮、碳氮共渗)3、机械零件的结构工艺性:便于零件毛坯的制造、便于零件的机械加工、便于零件的装卸和可靠定位4、机械零件常见的失效形式:因强度不足而断裂;过大的弹性变形或塑性变形;摩擦表面的过度磨损、打滑或过热;连接松动;容器、管道等的泄露;运动精度达不到设计要求5、应力的分类:分为静应力和变应力。
最基本的变应力为稳定循环变应力,稳定循环变应力有非对称循环变应力、脉动循环变应力和对称循环变应力三种6、疲劳破坏及其特点:变应力作用下的破坏称为疲劳破坏。
特点:在某类变应力多次作用后突然断裂;断裂时变应力的最大应力远小于材料的屈服极限;即使是塑性材料,断裂时也无明显的塑性变形.确定疲劳极限时,应考虑应力的大小、循环次数和循环特征7、接触疲劳破坏的特点:零件在接触应力的反复作用下,首先在表面或表层产生初始疲劳裂纹,然后再滚动接触过程中,由于润滑油被基金裂纹内而造成高压,使裂纹扩展,最后使表层金属呈小片状剥落下来,在零件表面形成一个个小坑,即疲劳点蚀.疲劳点蚀危害:减小了接触面积,损坏了零件的光滑表面,使其承载能力降低,并引起振动和噪声。
疲劳点蚀使齿轮。
滚动轴承等零件的主要失效形式8、引入虚约束的原因:为了改善构件的受力情况(多个行星轮)、增强机构的刚度(轴与轴承)、保证机械运转性能9、螺纹的种类:普通螺纹、管螺纹、矩形螺纹、梯形螺纹、锯齿形螺纹10、自锁条件:λ≤ψ即螺旋升角小于等于当量摩擦角11、螺旋机构传动与连接:普通螺纹由于牙斜角β大,自锁性好,故常用于连接;矩形螺纹梯形螺纹锯齿形螺纹因β小,传动效率高,故常用于传动12、螺旋副的效率:η=有效功/输入功=tanλ/tan(λ+ψv)一般螺旋升角不宜大于40°。
机械结构设计入门知识点一、简介机械结构设计是机械工程中至关重要的一环,它涉及到构造、功能、寿命和性能等方面。
本文将介绍机械结构设计的入门知识点,以帮助读者了解和理解机械结构设计的基本概念和原则。
二、材料选择在机械结构设计中,选择合适的材料是至关重要的一步。
常用的材料包括金属、塑料、陶瓷等。
选材时需要考虑结构的强度、刚度、耐磨性等要求,并根据具体应用环境选择合适的材料。
三、构造设计机械结构的构造设计是指在满足功能需求的基础上,设计合理的结构形式和连接方式。
在构造设计中,需要考虑结构的稳定性、可靠性和便于制造与维修等因素。
合理的构造设计可以提高机械结构的性能和寿命。
四、运动学分析机械结构的运动学分析是指对机械结构中各个零件的运动进行分析和计算。
通过运动学分析,可以了解机械结构的运动规律,并进行合理的设计和优化。
五、强度分析强度分析是机械结构设计中不可或缺的一步。
通过强度分析,可以确定结构的最大受力位置和受力情况,并对结构进行合理的尺寸设计和材料选择,以保证结构的安全可靠性。
六、疲劳寿命评估疲劳是机械结构长期使用过程中不可避免的问题。
疲劳寿命评估是指对机械结构在交变载荷下的寿命进行评估和预测。
通过疲劳寿命评估,可以对机械结构的使用寿命进行合理的估计,并采取相应的措施延长结构的使用寿命。
七、制造与装配在机械结构设计中,制造与装配是非常重要的环节。
在制造过程中,需要考虑材料的加工性能、制造工艺和成本等因素。
在装配过程中,需要保证结构零件的精度和互换性,以确保结构的稳定性和可靠性。
八、润滑与密封机械结构的润滑和密封对于结构的正常运行非常重要。
通过合理的润滑和密封设计,可以减小结构的摩擦和磨损,提高结构的工作效率和使用寿命。
九、CAD辅助设计CAD(计算机辅助设计)已经成为现代机械结构设计的重要工具。
通过CAD软件,设计师可以进行三维建模、装配仿真和结构优化等操作,提高设计效率和质量。
十、结构优化结构优化是机械结构设计中的一项关键技术。
第1章平面机构的自由度和速度分析固定构件(机架)构件组成原动件(主动件)从动件回转副低副运动副高副定义平面机构的自由度和速度分析机构运动简图运动副、构件、常用机构表达方法机构运动简图绘制机构具有确定运动的条件:自由度等于原动件数平面机构自由度的计算:F机构自由度的计算移动副=3n -2P l -P h正确计算运动副的数量(复合铰链等)计算自由度应注意的事项局部自由度:滚子绕其中心的转动虚约束存在的几种情况绝对瞬心相对瞬心瞬心机构瞬心数平面机构的速度分析:速度瞬心法K =N (N -1 /2两构件直接以运动副连接两构件不直接连接:三心定理瞬心位置的确定求两构件的角速度之比求构件的角速度和速度机构的速度分析第2章平面连杆机构平面四杆机构的基本型式及其演化双曲柄机构导杆机构摇块机构和定块机构双滑块机构平面压力角和传动角行程速比速度变化系数 K =v 2180 +θ=v 1180 -θ当θ>0时,K >1,机构有急回特性压力角α:从动件受力方向和速度方向所夹锐角传动角γ:压力角的余角α越小,γ越大,机构的传力性能越好连的主要特性γm in ≤40 ,出现在曲柄与机架共线两位置之一γ=0 消除方法:利用飞轮或机构自身的惯性力杆机有整转副条件构l m in +l m ax ≤另两杆长度之和;整转副由最短杆与其邻边组成有整转副时,双曲柄机构—最短杆为机架解析法:利用几何关系列解析式求解凸轮机构的分类推杆的运动形式凸轮机构及其设计盘形凸轮机构移动凸轮机构按凸轮的形状分圆柱凸轮机构尖顶从动件凸轮机构滚子从动件凸轮机构按从动件的形状分平底从动件凸轮机构对心直动从动件凸轮机构直动从动件凸轮机构偏置直动从动件凸轮机构摆动从动件凸轮机构基本概念:基圆、基圆半径、推程、升程、推程运动角、回程、回程运动角、休止、远休止角、近休止角、压力角。
常用的运动形式设计原理:反转法原理作图基本步骤凸轮轮廓曲线设计图解法设计方法①画出基圆及推杆起始位置,取合适的直角坐标系。
机械设计基础知识点归纳图机械设计是一门涉及机械结构与零件设计的学科,它关注机械系统的运动、力学特性和工程应用等方面。
在进行机械设计时,掌握一些基础知识点是至关重要的。
下面,将通过归纳图的形式,对机械设计的基础知识点进行简要概述。
I. 机械结构1. 刚体与弹性体- 刚体:在外力作用下不发生形变的物体,可以看作是由无穷多个微小颗粒组成的。
- 弹性体:在外力作用下存在形变,但在去除外力后可以恢复原状的物体。
2. 运动副与约束- 运动副:两个物体之间的相对运动关系,如平面副、立体副、螺旋副等。
- 约束:将机械系统的自由度限制在一定范围内的控制手段,如固定约束、定位约束、导向约束等。
3. 机构与机件- 机构:由多个运动副组成的装置,通过这些副的相互配合实现特定的运动形式。
- 机件:为实现机械系统的某种功能而设计制造的装置,包括零件、元件以及它们的组合等。
II. 材料与力学1. 常用材料- 金属材料:具有良好的导热、导电性和可塑性的材料,如钢、铝、铜等。
- 非金属材料:通常具有较低的密度、较高的比强度和较好的绝缘性能,如塑料、橡胶、陶瓷等。
2. 力学基础- 平衡条件:物体处于静止或匀速直线运动时,力的合力和合力矩均为零。
- 应力与应变:在物体受力作用下,产生的应力和应变与受力的大小和形状有关。
III. 设计原则与方法1. 设计过程- 产品需求分析:明确设计目标、功能和性能要求。
- 初步设计:根据需求分析,进行初始设计,包括选择适合的机构和材料。
- 详细设计:进一步完善设计,确定具体的尺寸和结构。
2. 设计准则- 可靠性:设计要求满足机械系统在整个使用寿命内的稳定可靠运行。
- 经济性:在满足性能要求的前提下,尽量减少材料和能源的消耗。
- 可制造性:设计要考虑到制造工艺,方便生产和加工。
IV. CAD与CAE应用1. CAD(计算机辅助设计)- 用计算机软件辅助进行产品几何造型、尺寸标注和装配等设计工作。
- 示例软件:AutoCAD、SolidWorks、CATIA等。