初二数学知识点总结
- 格式:docx
- 大小:42.85 KB
- 文档页数:20
数学初二知识点总结归纳初二数学知识点总结归纳一、有理数与整式1. 有理数的概念与性质2. 有理数的加减乘除及其性质3. 绝对值与有理数大小关系4. 有理数的科学计数法5. 计算器使用方法6. 整数的概念和性质二、代数式与整式1. 代数式的概念、含义及运算法则2. 代数式的等值关系和计算3. 整式的概念与性质4. 整式的加减乘除及其性质5. 因式分解与公因式提取6. 分式、分式的加减乘除7. 分式方程三、平面图形的认识1. 点、线、面的认识2. 点的坐标系3. 直线与角四、图形的性质1. 直角、直线、角度的意义2. 平行线与相交线3. 四边形的性质4. 三角形的性质5. 圆的概念与性质五、相似1. 相似的概念和判定2. 相似三角形的性质3. 相似三角形的应用六、比例与实际问题1. 比例的概念与性质2. 比例与相似的关系3. 平均数与几何平均数七、数据的搜集和整理1. 调查、统计与实际问题2. 统计图的绘制与分析八、选修内容初二数学的选修内容主要包括:1. 平面向量与坐标2. 多边形的面积3. 空间图形的认识4. 立体图形的计算5. 数据的分析与应用6. 几何体的展开与折叠7. 根式的运算及其应用此外,还需要掌握一些常用的计算方法和数学问题的解决思路,如:1. 常用的数学运算法则和计算技巧2. 数学问题的解决思路和方法3. 数学模型的建立和应用4. 数学问题中的一些常用定理、公式和推理方法的运用5. 数学与实际问题的联系和应用初二数学知识点总结归纳完毕。
以上列举的知识点是初中数学课程的主要内容,通过学习这些知识点,可以打好数学基础,为进一步的学习打下良好的基础。
初二数学必考知识点归纳最新
一、代数基本知识
1.代数式的定义与性质
2.方程与不等式的概念
3.一元一次方程的解法(如去分式法、加减消去法等等)
4.二元一次方程的解法(如联立消元法、代入法等等)
5.等式的基本性质
6.二次根式的化简方法
二、平面几何基础
1.基本图形的面积计算(如矩形、三角形、梯形等等)
2.基本图形的周长计算(如矩形、三角形、梯形等等)
3.计算线段的长度
4.平行线与垂线的性质
5.相似三角形的判定与性质
6.图形的旋转与对称性
7.圆的相关概念与性质
三、立体几何基础
1.空间图形的投影
2.空间图形的计算
3.空间直角坐标系的使用
4.空间向量的计算(如加减、数量积、等等)
5.空间中的平面与直线
6.空间图形的重心与质心
四、三角函数的基本概念
1.角度的概念与弧度制的转换
2.正弦、余弦、正切等三角函数的定义
3.各种三角函数的性质
4.三角函数的图像与周期性
五、统计学的基本知识
1.数据的采集与整理
2.数据的中心与散布度量(如平均数、中位数、众数、标准差等等)
3.数据的分布形式(如正态分布、偏态分布等等)
4.数据的统计推断(如置信区间、假设检验等等)
六、概率的基本概念
1.随机事件、试验与样本空间
2.概率的定义与性质
3.条件概率的定义及其应用
4.独立事件的概念与性质
以上是初二数学必考知识点的归纳总结,希望对初中学生们的学习有所帮助。
初二数学知识点因式分解1、因式分解:把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解;注意:因式分解与乘法就是相反的两个转化、2.因式分解的方法:常用“提取公因式法”、“公式法”、“分组分解法”、“十字相乘法”、3.公因式的确定:系数的最大公约数·相同因式的最低次幂、注意公式:a+b=b+a; a-b=-(b-a); (a-b)2=(b-a)2; (a-b)3=-(b-a)3、4.因式分解的公式:(1)平方差公式: a2-b2=(a+ b)(a- b);(2)完全平方公式: a2+2ab+b2=(a+b)2, a2-2ab+b2=(a-b)2、5.因式分解的注意事项:(1)选择因式分解方法的一般次序就是:一提取、二公式、三分组、四十字;(2)使用因式分解公式时要特别注意公式中的字母都具有整体性;(3)因式分解的最后结果要求分解到每一个因式都不能分解为止;(4)因式分解的最后结果要求每一个因式的首项符号为正;(5)因式分解的最后结果要求加以整理;(6)因式分解的最后结果要求相同因式写成乘方的形式、6.因式分解的解题技巧:(1)换位整理,加括号或去括号整理;(2)提负号;(3)全变号;(4)换元;(5)配方;(6)把相同的式子瞧作整体;(7)灵活分组;(8)提取分数系数;(9)展开部分括号或全部括号;(10)拆项或补项、7.完全平方式:能化为(m+n)2的多项式叫完全平方式;对于二次三项式x2+px+q, 有“ x2+px+q就是完全平方式 ”、分式1.分式:一般地,用A、B表示两个整式,A÷B就可以表示为的形式,如果B中含有字母,式子叫做分式、2.有理式:整式与分式统称有理式;即、3.对于分式的两个重要判断:(1)若分式的分母为零,则分式无意义,反之有意义;(2)若分式的分子为零,而分母不为零,则分式的值为零;注意:若分式的分子为零,而分母也为零,则分式无意义、4.分式的基本性质与应用:(1)若分式的分子与分母都乘以(或除以)同一个不为零的整式,分式的值不变;(2)注意:在分式中,分子、分母、分式本身的符号,改变其中任何两个,分式的值不变;即(3)繁分式化简时,采用分子分母同乘小分母的最小公倍数的方法,比较简单、5.分式的约分:把一个分式的分子与分母的公因式约去,叫做分式的约分;注意:分式约分前经常需要先因式分解、6.最简分式:一个分式的分子与分母没有公因式,这个分式叫做最简分式;注意:分式计算的最后结果要求化为最简分式、7.分式的乘除法法则:、8.分式的乘方:、9.负整指数计算法则:(1)公式: a0=1(a≠0), a-n= (a≠0);(2)正整指数的运算法则都可用于负整指数计算;(3)公式:,;(4)公式: (-1)-2=1, (-1)-3=-1、10.分式的通分:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分;注意:分式的通分前要先确定最简公分母、11.最简公分母的确定:系数的最小公倍数·相同因式的最高次幂、12.同分母与异分母的分式加减法法则:、13.含有字母系数的一元一次方程:在方程ax+b=0(a≠0)中,x就是未知数,a与b就是用字母表示的已知数,对x来说,字母a就是x的系数,叫做字母系数,字母b就是常数项,我们称它为含有字母系数的一元一次方程、注意:在字母方程中,一般用a、b、c等表示已知数,用x、y、z等表示未知数、14.公式变形:把一个公式从一种形式变换成另一种形式,叫做公式变形;注意:公式变形的本质就就是解含有字母系数的方程、特别要注意:字母方程两边同时乘以含字母的代数式时,一般需要先确认这个代数式的值不为0、15.分式方程:分母里含有未知数的方程叫做分式方程;注意:以前学过的,分母里不含未知数的方程就是整式方程、16.分式方程的增根:在解分式方程时,为了去分母,方程的两边同乘以了含有未知数的代数式,所以可能产生增根,故分式方程必须验增根;注意:在解方程时,方程的两边一般不要同时除以含未知数的代数式,因为可能丢根、17.分式方程验增根的方法:把分式方程求出的根代入最简公分母(或分式方程的每个分母),若值为零,求出的根就是增根,这时原方程无解;若值不为零,求出的根就是原方程的解;注意:由此可判断,使分母的值为零的未知数的值可能就是原方程的增根、18.分式方程的应用:列分式方程解应用题与列整式方程解应用题的方法一样,但需要增加“验增根”的程序、数的开方1.平方根的定义:若x2=a,那么x叫a的平方根,(即a的平方根就是x);注意:(1)a叫x的平方数,(2)已知x 求a叫乘方,已知a求x叫开方,乘方与开方互为逆运算、2.平方根的性质:(1)正数的平方根就是一对相反数;(2)0的平方根还就是0;(3)负数没有平方根、3.平方根的表示方法:a的平方根表示为与、注意:可以瞧作就是一个数,也可以认为就是一个数开二次方的运算、4.算术平方根:正数a的正的平方根叫a的算术平方根,表示为、注意:0的算术平方根还就是0、5.三个重要非负数: a2≥0 ,|a|≥0 ,≥0 、注意:非负数之与为0,说明它们都就是0、6.两个重要公式:(1) ; (a≥0)(2) 、7.立方根的定义:若x3=a,那么x叫a的立方根,(即a的立方根就是x)、注意:(1)a叫x的立方数;(2)a的立方根表示为;即把a开三次方、8.立方根的性质:(1)正数的立方根就是一个正数;(2)0的立方根还就是0;(3)负数的立方根就是一个负数、9.立方根的特性:、10.无理数:无限不循环小数叫做无理数、注意:π与开方开不尽的数就是无理数、11.实数:有理数与无理数统称实数、12.实数的分类:(1)(2)、13.数轴的性质:数轴上的点与实数一一对应、14.无理数的近似值:实数计算的结果中若含有无理数且题目无近似要求,则结果应该用无理数表示;如果题目有近似要求,则结果应该用无理数的近似值表示、注意:(1)近似计算时,中间过程要多保留一位;(2)要求记忆:、三角形几何A级概念:(要求深刻理解、熟练运用、主要用于几何证明)1.三角形的角平分线定义:三角形的一个角的平分线与这个角的对边相交,这个角的顶点与交点之间的线段叫做三角形的角平分线、(如图)几何表达式举例: (1) ∵AD平分∠BAC∴∠BAD=∠CAD (2) ∵∠BAD=∠CAD∴AD就是角平分线2.三角形的中线定义:在三角形中,连结一个顶点与它的对边的中点的线段叫做三角形的中线、(如图) 几何表达式举例:(1) ∵AD就是三角形的中线∴ BD = CD(2) ∵ BD = CD∴AD就是三角形的中线3.三角形的高线定义:从三角形的一个顶点向它的对边画垂线,顶点与垂足间的线段叫做三角形的高线、(如图) 几何表达式举例:(1) ∵AD就是ΔABC的高∴∠ADB=90°(2) ∵∠ADB=90°∴AD就是ΔABC的高※4.三角形的三边关系定理:三角形的两边之与大于第三边,三角形的两边之差小于第三边、(如图) 几何表达式举例: (1) ∵AB+BC>AC∴……………(2) ∵ AB-BC<AC∴……………5.等腰三角形的定义:有两条边相等的三角形叫做等腰三角形、几何表达式举例:(1) ∵ΔABC就是等腰三角形(如图) ∴ AB = AC(2) ∵AB = AC∴ΔABC就是等腰三角形6.等边三角形的定义:有三条边相等的三角形叫做等边三角形、(如图) 几何表达式举例:(1)∵ΔABC就是等边三角形∴AB=BC=AC(2) ∵AB=BC=AC∴ΔABC就是等边三角形7.三角形的内角与定理及推论:(1)三角形的内角与180°;(如图)(2)直角三角形的两个锐角互余;(如图)(3)三角形的一个外角等于与它不相邻的两个内角的与;(如图) ※(4)三角形的一个外角大于任何一个与它不相邻的内角、(1) (2) (3)(4) 几何表达式举例:(1) ∵∠A+∠B+∠C=180°∴…………………(2) ∵∠C=90°∴∠A+∠B=90°(3) ∵∠ACD=∠A+∠B∴…………………(4) ∵∠ACD >∠A∴…………………8.直角三角形的定义:有一个角就是直角的三角形叫直角三角形、(如图) 几何表达式举例:(1) ∵∠C=90°∴ΔABC就是直角三角形(2) ∵ΔABC就是直角三角形∴∠C=90°9.等腰直角三角形的定义:两条直角边相等的直角三角形叫等腰几何表达式举例:(1) ∵∠C=90° CA=CB直角三角形、(如图) ∴ΔABC就是等腰直角三角形(2) ∵ΔABC就是等腰直角三角形∴∠C=90° CA=CB10.全等三角形的性质:(1)全等三角形的对应边相等;(如图)(2)全等三角形的对应角相等、(如图) 几何表达式举例:(1) ∵ΔABC≌ΔEFG∴ AB = EF ………(2) ∵ΔABC≌ΔEFG∴∠A=∠E ………11.全等三角形的判定:“SAS”“ASA”“AAS”“SSS”“HL”、 (如图)(1)(2) (3) 几何表达式举例:(1) ∵ AB = EF∵∠B=∠F又∵ BC = FG∴ΔABC≌ΔEFG(2) ………………(3)在RtΔABC与RtΔEFG中∵ AB=EF又∵ AC = EG∴RtΔABC≌RtΔEFG12.角平分线的性质定理及逆定理: (1)在角平分线上的点到角的两边距离相几何表达式举例: (1)∵OC平分∠AOB等;(如图)(2)到角的两边距离相等的点在角平分线上、(如图)又∵CD⊥OA CE⊥OB∴ CD = CE (2) ∵CD⊥OA CE⊥OB 又∵CD = CE∴OC就是角平分线13.线段垂直平分线的定义:垂直于一条线段且平分这条线段的直线,叫做这条线段的垂直平分线、(如图) 几何表达式举例:(1) ∵EF垂直平分AB∴EF⊥AB OA=OB(2) ∵EF⊥AB OA=OB∴EF就是AB的垂直平分线14.线段垂直平分线的性质定理及逆定理: (1)线段垂直平分线上的点与这条线段的两个端点的距离相等;(如图)(2)与一条线段的两个端点的距离相等的点,在这条线段的垂直平分线上、(如图) 几何表达式举例:(1) ∵MN就是线段AB的垂直平分线∴ PA = PB(2) ∵PA = PB∴点P在线段AB的垂直平分线上15.等腰三角形的性质定理及推论:(1)等腰三角形的两个底角相等;(即等边对等角)(如图)(2)等腰三角形的“顶角平分线、底边中线、底边上的高”三线合一;(如图)(3)等边三角形的各角都相等,并且都就是60°、(如图)(1) (2) (3) 几何表达式举例:(1) ∵AB = AC∴∠B=∠C(2) ∵AB = AC又∵∠BAD=∠CAD∴BD = CDAD⊥BC………………(3) ∵ΔABC就是等边三角形∴∠A=∠B=∠C =60°16.等腰三角形的判定定理及推论:(1)如果一个三角形有两个角都相等,那么这两个角所对边也相等;(即等角对等边)(如图)(2)三个角都相等的三角形就是等边三角形;(如图)(3)有一个角等于60°的等腰三角形就是等边三角形;(如图)(4)在直角三角形中,如果有一个角等于30°,那么它所对的直角边就是斜边的一半、(如图)(1)(2)(3)(4) 几何表达式举例:(1) ∵∠B=∠C∴ AB = AC(2) ∵∠A=∠B=∠C∴ΔABC就是等边三角形(3) ∵∠A=60°又∵AB = AC∴ΔABC就是等边三角形(4) ∵∠C=90°∠B=30°∴AC =AB17.关于轴对称的定理(1)关于某条直线对称的两个图形就是全等形;(如图) 几何表达式举例:(1) ∵ΔABC、ΔEGF关于MN轴对称(2)如果两个图形关于某条直线对称,那么对称轴就是对应点连线的垂直平分线、(如图)∴ΔABC≌ΔEGF(2) ∵ΔABC、ΔEGF关于MN轴对称∴OA=OE MN⊥AE18.勾股定理及逆定理:(1)直角三角形的两直角边a、b的平方与等于斜边c的平方,即a2+b2=c2;(如图) (2)如果三角形的三边长有下面关系: a2+b2=c2,那么这个三角形就是直角三角形、(如图) 几何表达式举例:(1) ∵ΔABC就是直角三角形∴a2+b2=c2(2) ∵a2+b2=c2∴ΔABC就是直角三角形19.RtΔ斜边中线定理及逆定理:(1)直角三角形中,斜边上的中线就是斜边的一半;(如图)(2)如果三角形一边上的中线就是这边的一半,那么这个三角形就是直角三角形、(如图) 几何表达式举例:(1)∵ΔABC就是直角三角形∵D就是AB的中点∴CD = AB(2) ∵CD=AD=BD∴ΔABC就是直角三角形几何B级概念:(要求理解、会讲、会用,主要用于填空与选择题)一基本概念:三角形、不等边三角形、锐角三角形、钝角三角形、三角形的外角、全等三角形、角平分线的集合定义、原命题、逆命题、逆定理、尺规作图、辅助线、线段垂直平分线的集合定义、轴对称的定义、轴对称图形的定义、勾股数、二常识:1.三角形中,第三边长的判断: 另两边之差<第三边<另两边之与、2.三角形中,有三条角平分线、三条中线、三条高线,它们都分别交于一点,其中前两个交点都在三角形内,而八年级数学重点知识点(全)第三个交点可在三角形内,三角形上,三角形外、注意:三角形的角平分线、中线、高线都就是线段、3.如图,三角形中,有一个重要的面积等式,即:若CD⊥AB,BE⊥CA,则CD·AB=BE·CA、4.三角形能否成立的条件就是:最长边<另两边之与、5.直角三角形能否成立的条件就是:最长边的平方等于另两边的平方与、6.分别含30°、45°、60°的直角三角形就是特殊的直角三角形、7.如图,双垂图形中,有两个重要的性质,即:(1) AC·CB=CD·AB ; (2)∠1=∠B ,∠2=∠A 、8.三角形中,最多有一个内角就是钝角,但最少有两个外角就是钝角、9.全等三角形中,重合的点就是对应顶点,对应顶点所对的角就是对应角,对应角所对的边就是对应边、10.等边三角形就是特殊的等腰三角形、11.几何习题中,“文字叙述题”需要自己画图,写已知、求证、证明、12.符合“AAA”“SSA”条件的三角形不能判定全等、13.几何习题经常用四种方法进行分析:(1)分析综合法;(2)方程分析法;(3)代入分析法;(4)图形观察法、14.几何基本作图分为:(1)作线段等于已知线段;(2)作角等于已知角;(3)作已知角的平分线;(4)过已知点作已知直线的垂线;(5)作线段的中垂线;(6)过已知点作已知直线的平行线、15.会用尺规完成“SAS”、“ASA”、“AAS”、“SSS”、“HL”、“等腰三角形”、“等边三角形”、“等腰直角三角形”的作图、16.作图题在分析过程中,首先要画出草图并标出字母,然后确定先画什么,后画什么;注意:每步作图都应该就是几何基本作图、17.几何画图的类型:(1)估画图;(2)工具画图;(3)尺规画图、※18.几何重要图形与辅助线:(1)选取与作辅助线的原则:①构造特殊图形,使可用的定理增加;②一举多得;八年级数学重点知识点(全)③聚合题目中的分散条件,转移线段,转移角;④作辅助线必须符合几何基本作图、(2)已知角平分线、(若BD就是角平分线)①在BA 上截取BE=BC构造全等,转移线段与角;②过D点作DE∥BC交AB于E,构造等腰三角形、(3)已知三角形中线(若AD就是BC的中线)①过D点作DE∥AC交AB于E,构造中位线 ; ②延长AD到E,使DE=AD连结CE构造全等,转移线段与角;③∵AD就是中线∴SΔABD= SΔADC(等底等高的三角形等面积)(4) 已知等腰三角形ABC中,AB=AC①作等腰三角形ABC底边的中线AD (顶角的平分线或底边的高)构造全等三角形; ②作等腰三角形ABC一边的平行线DE,构造新的等腰三角形、八年级数学重点知识点(全) (5)其它①作等边三角形ABC一边的平行线DE,构造新的等边三角形; ②作CE∥AB,转移角; ③延长BD与AC交于E,不规则图形转化为规则图形;④多边形转化为三角形; ⑤延长BC到D,使CD=BC,连结AD,直角三角形转化为等腰三角形; ⑥若a∥b,AC,BC就是角平分线,则∠C=90°、。
初二数学知识点全总结一、整数1. 整数的概念和表示法2. 整数的加减法3. 整数的乘除法4. 整数的乘方和开方5. 整数的大小比较和大小关系的判断6. 整数的运算性质和规律二、分数1. 分数的概念和表示法2. 分数的加减法3. 分数的乘除法4. 分数的约分和商的混合数表示法5. 分数的运算性质和规律6. 分数的大小比较和大小关系的判断三、小数1. 小数的概念和表示法2. 小数的加减法3. 小数的乘除法4. 小数与分数的相互转换5. 小数的运算性质和规律6. 小数的大小比较和大小关系的判断四、代数式与方程式1. 代数式的概念和表示法2. 代数式的加减法和乘法3. 代数式的乘方和乘方的运算规则4. 代数式的化简和展开5. 一元一次方程和一元一次方程的解法6. 代数式和方程式在实际问题中的应用五、平面图形1. 点、线、面的概念和性质2. 直线、射线、线段的概念和性质3. 角的概念和性质4. 三角形、四边形、多边形的概念和性质5. 圆的概念和性质6. 平面图形的周长和面积计算六、几何变换1. 平移、旋转、翻转的概念和性质2. 平移、旋转、翻转的操作方法和计算规则3. 平面图形在几何变换中的变化规律4. 几何变换在实际问题中的应用七、统计与概率1. 数据的搜集、整理、分析和表示2. 数据的统计量和图表的绘制3. 概率的概念和性质4. 事件的概念和性质5. 概率计算和事件发生的可能性判断以上是初二数学的主要知识点总结,其中包括整数、分数、小数、代数式与方程式、平面图形、几何变换、统计与概率等方面的内容。
掌握这些知识点对于学好初二数学非常重要,希望对你有所帮助。
初二数学知识点全总结梳理一、代数与方程式1. 整数的加减乘除2. 分数的加减乘除3. 同底数幂的乘法与除法4. 多项式的加减乘除5. 一元一次方程的解法6. 一元一次方程组的解法7. 二元一次方程组的解法8. 四则运算法则9. 开方法则(开方、乘方)10. 分式方程的解法二、几何1. 点、线、面、立体图形的性质2. 直线、射线和线段的性质3. 角的基本概念4. 直角、锐角和钝角的概念5. 平行线与垂直线的判定6. 三角形的分类(等腰、等边、直角等)7. 三角形的性质(面积、高、中线等)8. 同位角与内错角的性质9. 图形的相似与全等10. 空间中的位置与方向三、函数1. 函数的概念及性质2. 函数的图像与表示3. 一次函数与二次函数4. 反比例函数与比例函数5. 常用函数的性质与图像6. 函数的求值与求解四、概率1. 事件与概率的概念2. 随机事件的组合与求概率3. 统计与频率分布4. 概率的计算与应用五、数与数量关系1. 整数与有理数的性质2. 分数与小数的转换3. 比例与比例的应用4. 百分数与百分数的应用5. 近似数与误差的估算六、数与代数1. 数字运算与计算2. 运算法则与运算律3. 数量与代数式的关系4. 代数式的展开与因式分解5. 符号与数学运算的关系七、图形与变换1. 图形的分类与性质2. 图形的平移、旋转、翻转与对称3. 图形的相似与全等4. 图形的计算与应用八、应用题1. 实际问题的数学化及求解2. 理解题、烦恼题的求解3. 推算与循环推理问题的解决以上是初二数学知识点的全面总结梳理,希望对你有所帮助。
如需详细了解每个知识点的具体内容,可以选择相应的知识点进行深入学习。
初二数学知识点总结一、整数与分数1. 整数的概念与运算规则- 整数是由正整数、负整数和零组成的数集,用符号表示。
- 整数的加法、减法和乘法运算满足交换律、结合律和分配律。
- 整数的除法运算遵循除法法则,结果可能是整数、分数或无理数。
2. 分数的概念与运算规则- 分数是指由分子和分母表示的数,分子表示被分成的份数,分母表示总共要分成的份数。
- 分数的加法、减法运算需要找到通分的分子,然后进行相应的运算。
- 分数的乘法运算直接将分子相乘,分母相乘。
- 分数的除法运算可以转化为乘法,即分子乘以倒数。
二、代数表达式与方程式1. 代数表达式的概念与常见类型- 代数表达式是用数、变量和运算符号表示的式子,例如3x+2、4y-5。
- 常见的代数表达式类型包括一元一次表达式、一元二次表达式等。
2. 方程式的概念与解法- 方程式是包含一个或多个未知数的等式,例如2x+5=10。
- 方程式的解即满足方程式的未知数的值,可以通过移项、消元、代入等方法求解。
三、平面图形与空间图形1. 平面图形的概念与性质- 平面图形是由线段、直线、角、面积等构成的图形,包括三角形、四边形、圆等。
- 不同平面图形具有各自的特点和性质,如三角形的内角和为180度。
2. 空间图形的概念与性质- 空间图形是由平面图形在空间中绕某个轴旋转形成的图形,比如圆柱体、圆锥体等。
- 空间图形的计算涉及到体积、表面积等概念,需要根据具体图形选择相应的公式。
四、比例与百分数1. 比例的概念与计算- 比例是指两个或多个有联系的数之间的比较关系,可以用等于号或冒号表示。
- 比例的计算包括已知部分比例求另一部分、已知比例求满足条件的数等。
2. 百分数的概念与计算- 百分数是将比例的数值乘以100并加上百分号表示的数,如60%。
- 百分数的计算涉及到百分数与小数、分数、比例的互相转化等。
五、图形的坐标与运动1. 坐标系与坐标的表示- 坐标系是用来表示平面上点位置的一种方式,包括直角坐标系和极坐标系等。
初二的数学知识点总结初二数学是整个初中数学学习的关键阶段,知识点逐渐增多,难度也有所提升。
以下是对初二数学知识点的详细总结。
一、三角形1、三角形的定义和性质三角形是由三条线段首尾顺次相接组成的图形。
具有稳定性,三角形任意两边之和大于第三边,任意两边之差小于第三边。
2、三角形的内角和三角形的内角和为 180 度,可以通过多种方法进行证明,如折叠、剪拼等。
3、三角形的外角三角形的外角等于与它不相邻的两个内角之和。
4、三角形的分类按角分类:锐角三角形、直角三角形、钝角三角形。
按边分类:等边三角形、等腰三角形、不等边三角形。
5、全等三角形全等三角形的性质:全等三角形的对应边相等,对应角相等。
全等三角形的判定方法:SSS(边边边)、SAS(边角边)、ASA (角边角)、AAS(角角边)、HL(斜边、直角边)(仅适用于直角三角形)。
二、勾股定理1、勾股定理的内容直角三角形两直角边的平方和等于斜边的平方。
如果直角三角形的两条直角边长分别为 a,b,斜边长为 c,那么 a²+ b²= c²。
2、勾股定理的应用常用于已知直角三角形的两条边求第三边,或者判断一个三角形是否为直角三角形。
三、实数1、平方根与立方根一个正数有两个平方根,它们互为相反数;0 的平方根是 0;负数没有平方根。
正数的立方根是正数,负数的立方根是负数,0 的立方根是 0 。
2、无理数无限不循环小数叫做无理数,常见的无理数有π、开方开不尽的数、有特定规律的无限不循环小数等。
3、实数的分类实数包括有理数和无理数。
有理数包括整数和分数。
四、一次函数1、函数的概念在一个变化过程中,如果有两个变量 x 和 y ,并且对于 x 的每一个确定的值,y 都有唯一确定的值与其对应,那么我们就说 x 是自变量,y 是 x 的函数。
2、一次函数的表达式形如 y = kx + b (k、b 为常数,k ≠ 0 )的函数叫做一次函数。
3、一次函数的图像和性质一次函数的图像是一条直线。
初二数学全部知识点一、整数1. 整数的概念2. 整数的绝对值3. 整数的比较大小及大小关系4. 整数的加法与减法5. 整数的乘法与除法二、分数1. 分数的概念2. 分数的简化与化简3. 分数的大小比较及大小关系4. 分数的加法与减法5. 分数的乘法与除法6. 分数的乘方三、小数1. 小数的概念2. 小数的读法与写法3. 小数的大小比较及大小关系4. 小数的加法与减法5. 小数的乘法与除法四、比例与比例应用1. 比例的概念2. 倍数、百分数3. 比例的简化4. 比例的转化5. 各种比例的应用五、代数式1. 代数式的概念2. 代数式的常见运算3. 代数式的化简与展开4. 代数式的四则运算5. 代数式的等式与方程六、方程1. 方程的概念2. 等式与方程3. 一元一次方程4. 一元二次方程5. 一元一次方程组七、函数1. 函数的概念2. 函数的图象3. 函数的初等函数4. 一次函数5. 二次函数八、几何基础1. 几何公理与定理2. 平面图形的基本概念3. 线段、射线、直线4. 平行线、垂线与角度5. 多边形的基本概念九、三角形1. 三角形的分类2. 三角形的周长与面积3. 直角三角形三边关系4. 正弦、余弦、正切及其应用5. 各种三角形的性质十、圆1. 圆的基本概念2. 圆的周长与面积3. 切线的性质4. 圆弧、扇形与坐标系5. 同心圆与交叉角十一、空间几何与立体图形1. 空间直线、射线、线段2. 平面与空间直角坐标系3. 空间锥、圆锥、圆柱、球等图形的基本概念4. 空间几何不等式5. 空间图形的表面积与体积以上是初二数学全部知识点。
初二数学必考知识点总结一、三角形。
1. 三角形的性质。
- 三角形三边关系:三角形任意两边之和大于第三边,任意两边之差小于第三边。
例如,已知三角形两边长分别为3和5,则第三边的取值范围是2 < 第三边<8。
- 三角形内角和为180°。
在求解三角形内角问题时经常用到,如在一个三角形中,已知两个角分别为50°和60°,则第三个角为180° - 50°-60° = 70°。
- 三角形的外角等于与它不相邻的两个内角之和。
2. 等腰三角形。
- 性质:等腰三角形两腰相等,两底角相等(等边对等角)。
例如等腰三角形的顶角为80°,则底角为(180° - 80°)÷2 = 50°。
- 判定:如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)。
3. 等边三角形。
- 性质:三边相等,三个内角都等于60°。
- 判定:三条边都相等的三角形是等边三角形;三个角都相等的三角形是等边三角形;有一个角是60°的等腰三角形是等边三角形。
二、全等三角形。
1. 全等三角形的性质。
- 全等三角形的对应边相等,对应角相等。
例如,若△ABC≌△DEF,则AB = DE,∠A=∠D等。
2. 全等三角形的判定。
- SSS(边边边):三边对应相等的两个三角形全等。
- SAS(边角边):两边和它们的夹角对应相等的两个三角形全等。
- ASA(角边角):两角和它们的夹边对应相等的两个三角形全等。
- AAS(角角边):两角和其中一角的对边对应相等的两个三角形全等。
- HL(斜边、直角边):斜边和一条直角边对应相等的两个直角三角形全等。
三、轴对称。
1. 轴对称图形。
- 如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴。
例如,等腰三角形是轴对称图形,它的对称轴是底边上的高(或顶角平分线或底边的中线)所在的直线。
初二数学知识点归纳初二数学笔记整理大全一、代数运算1.整数的加减乘除运算规则2.分数的加减乘除运算规则3.实数的加减乘除运算规则4.分数的化简与约分5.分数的四则混合运算6.幂、根的运算规则7.根号的运算法则8.数字的比较与大小关系9.比例与比例的运算二、方程与不等式1.一元一次方程与不等式的定义2.解一元一次方程与不等式的基本方法3.解一元一次方程组与不等式组的基本方法4.二元一次方程组的解法5.分式方程的解法6.绝对值方程的解法7.含有根式的方程的解法8.二次方程的解法9.铺设问题与类似三角形问题的解法三、图形的认识1.二维图形的基本性质和特征2.三维图形的基本性质和特征3.平行四边形、矩形、正方形、菱形、梯形、圆的性质与计算4.三角形的分类及判定5.角的概念与性质6.多边形的计算7.扇形、弓形、环形、正多边形的计算8.圆锥、圆柱、圆台、球的计算9.空间几何问题的解法四、数据与统计1.统计调查的基本方法2.频率分布的制作与分析3.统计图的制作与分析4.平均数、中位数、众数的计算与分析5.概率与事件的关系与计算6.抽样调查的方法与误差分析五、平面向量1.平面向量的定义与加减运算2.向量的模长和方向角3.向量的数量积与数量积的性质4.单位向量与平行向量5.向量的线性运算与运算规则6.向量的坐标表示与问题求解六、函数与应用1.函数的概念与性质2.函数的表示与函数图像3.函数的特性与求解4.函数的类型与性质5.函数与方程、不等式的关系。
初二数学知识点总结(最新5篇)初二数学知识点总结篇一在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。
(1)多边形的一些要素:边:组成多边形的各条线段叫做多边形的边。
顶点:每相邻两条边的公共端点叫做多边形的顶点。
内角:多边形相邻两边组成的角叫多边形的内角,一个n边形有n个内角。
外角:多边形的边与它的邻边的延长线组成的角叫做多边形的外角。
(2)在定义中应注意:①一些线段(多边形的边数是大于等于3的正整数);②首尾顺次相连,二者缺一不可;③理解时要特别注意“在同一平面内”这个条件,其目的是为了排除几个点不共面的情况,即空间初二数学基础知识点篇二轴对称一、知识框架:二、知识概念:1.基本概念:⑴轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形。
⑵两个图形成轴对称:把一个图形沿某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称。
⑶线段的垂直平分线:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线。
⑷等腰三角形:有两条边相等的三角形叫做等腰三角形。
相等的两条边叫做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角。
⑸等边三角形:三条边都相等的三角形叫做等边三角形。
2.基本性质:⑴对称的性质:①不管是轴对称图形还是两个图形关于某条直线对称,对称轴都是任何一对对应点所连线段的垂直平分线。
②对称的图形都全等。
⑵线段垂直平分线的性质:①线段垂直平分线上的点与这条线段两个端点的距离相等。
②与一条线段两个端点距离相等的点在这条线段的垂直平分线上。
⑶关于坐标轴对称的点的坐标性质①点P(x,y)关于x轴对称的点的坐标为P'(x,y).②点P(x,y)关于y轴对称的点的坐标为P"(x,y).⑷等腰三角形的性质:①等腰三角形两腰相等。
②等腰三角形两底角相等(等边对等角).③等腰三角形的顶角角平分线、底边上的中线,底边上的高相互重合。
初二数学知识点总结一、实数1. 有理数与无理数- 有理数的定义:可以表示为两个整数的比的数。
- 无理数的定义:不能表示为两个整数的比的数,如√2、π。
2. 绝对值- 绝对值的定义:一个数距离0的距离。
- 绝对值的性质:|a| ≥ 0,|a| = |-a|。
3. 实数的运算- 加法、减法、乘法、除法、乘方、开方。
4. 根式- 算术平方根:√a(a ≥ 0)。
- 立方根:∛a。
二、代数表达式1. 单项式- 单项式的定义:数字与字母的乘积。
- 系数与指数。
2. 多项式- 多项式的定义:若干个单项式的和。
- 多项式的加减法、乘法。
3. 代数式的简化- 合并同类项。
- 分配律、结合律、交换律。
三、方程与不等式1. 一元一次方程- 方程的解、根。
- 解一元一次方程。
2. 二元一次方程- 二元一次方程组。
- 代入法、消元法。
3. 不等式- 不等式的定义与性质。
- 解一元一次不等式。
4. 绝对值不等式- 绝对值不等式的解法。
四、几何1. 平面几何- 点、线、面的基本性质。
- 角的概念与分类。
- 三角形、四边形的性质与计算。
2. 圆的基本性质- 圆的定义与性质。
- 圆周角、圆心角、弦、弧的关系。
3. 相似形- 相似三角形的判定与性质。
- 相似多边形。
4. 几何图形的计算- 面积、体积的计算公式。
- 应用题的解题方法。
五、概率与统计1. 概率的基本概念- 随机事件、概率的定义。
- 等可能事件的概率计算。
2. 统计初步- 数据的收集与整理。
- 频数与频率。
- 统计图表的绘制与解读。
六、函数1. 函数的概念- 函数的定义、表示方法。
- 函数的图像。
2. 一次函数与反比例函数- 一次函数的图像与性质。
- 反比例函数的图像与性质。
3. 函数的应用- 函数在实际问题中的应用。
- 解决问题的策略。
七、数列1. 数列的概念- 数列的定义、通项公式。
- 等差数列与等比数列。
2. 数列的求和- 等差数列与等比数列的求和公式。
初二数学基础知识点归纳总结一、数的概念和运算1. 自然数、整数、有理数、实数的定义和性质。
2. 数的分类:质数、合数、真数、奇数、偶数等。
3. 数的运算:加法、减法、乘法、除法、平方等。
4. 大数计算方法。
二、代数式与方程1. 代数式的概念和性质。
2. 代数式的运算:加法、减法、乘法、除法、分配律等。
3. 方程的概念和性质。
4. 一元一次方程及其解法。
5. 一元二次方程及其解法。
三、数轴和坐标系1. 数轴的概念和性质。
2. 数轴上的点与有理数的对应关系。
3. 数轴上的加法、减法、乘法、除法等运算。
4. 坐标系的概念和性质。
5. 平面直角坐标系的表示和性质。
四、平面图形的认识1. 点、线、面的概念和性质。
2. 线段、射线、直线的概念和性质。
3. 角的概念和性质。
4. 三角形、四边形、多边形的概念和性质。
五、相似与全等1. 相似的概念和性质。
2. 相似三角形的判定和性质。
3. 相似三角形的比例定理和重要定理。
4. 全等的概念和性质。
5. 全等三角形的判定和性质。
六、统计与概率1. 数据的分类和整理。
2. 统计频数表、频率表、频率直方图、条形统计图等的制作和分析。
3. 概率的概念和性质。
4. 概率的计算方法。
七、平行与垂直1. 平行线的概念和性质。
2. 平行线与横线、竖线之间的关系。
3. 平行线的证明方法。
4. 垂直线的概念和性质。
5. 垂直线的证明方法。
八、数与式1. 数的乘方及其性质。
2. 代数式的因式分解和分式的化简。
3. 含有乘方的代数式的展开和化简。
4. 一次幂、零次幂的定义和运算。
九、算式1. 算式的概念和性质。
2. 算式的加法、减法、乘法和除法运算。
3. 算式的顺序运算。
4. 算式的解法和推理。
十、三角函数与图形的坐标变换1. 三角函数的定义和性质。
2. 正弦定理和余弦定理。
3. 直角三角形的性质和解法。
4. 图形的坐标变换。
以上是初二数学基础知识点的简要总结,希望对你有所帮助。
如果你还有其他关于初二数学的问题,可以继续提问。
初二数学知识点全总结一、代数1. 数字与式子- 正整数、负整数、分数、小数与百分数的相互转化与运算- 代数式的简化与加减乘除- 代数式的展开与因式分解- 一元一次方程的解法- 一元一次方程与实际问题的模型应用2. 直线与线性方程- 线性方程与可视化的关系- 解线性方程的图象解法- 两个方程联立的解法- 实际问题中的线性方程组与解法- 含有两个未知数的一元一次方程组与解法3. 平方根与二次根式- 正数的平方根与二次根式的意义- 二次根式的运算与化简- 二次根式的乘法公式与分式- 德国数学家费马定理的推广与应用4. 整式的加减与乘法- 整式的加减运算- 整式的乘法运算- 含参系数的整式乘法与因式分解- 解决实际问题中的有参系数整式5. 分式- 分子、分母互质的分式- 分式的乘法与除法- 分式的混合运算与简便法- 分式线性方程的解法与实际应用6. 一元二次方程- 一元二次方程与根的关系- 一元二次方程的因式分解与求解- 一元二次方程与实际问题的模型应用7. 平面直角坐标系- 平面直角坐标系的引入与性质- 点、线、圆在平面直角坐标系中的位置关系- 相关系数、线性回归与实际问题的应用- 平面图形的平移、旋转、翻折等变换8. 一次函数- 一次函数的基本概念与性质- 一次函数的图象与函数图象的性质- 一次函数与线性方程、函数的应用9. 指数与幂- 正数的指数、指数运算法则- 指数函数与对数函数的简单性质- 指数与幂在实际问题中的应用二、几何1. 几何基本概念- 点、线、面等基本概念与特征- 角的概念与分类- 相交、垂直、平行线段与线条角的判定2. 三角形- 三角形的分类与性质- 三角形在平面上的位置关系与判定- 三角形的内角和定理与外角性质- 等腰三角形、直角三角形的判定与性质- 三角形的相似性质与判定- 三角形应用题与实际问题解决3. 四边形- 矩形、平行四边形、菱形与正方形的性质- 梯形与平行四边形的判定与性质- 有关四边形的运算与分类4. 内接与外切- 圆内接四边形的性质与判定- 圆的内接与外接、内切与外切的判定条件5. 平面镜像与旋转- 平面镜像的性质与构造- 旋转的构造、旋转中心与旋转角度6. 三视图与投影- 物体的三视图的构造与识图- 投影的基本概念与性质- 平行投影与中心投影的区别与应用7. 圆- 圆的定义与性质- 圆上的点与圆上线段的关系- 切线定理与弦切角定理- 圆应用题与实际问题解决三、数据与统计1. 统计资料与标度- 数据的查数、统数、分组与绘图- 高度与代表数的含义- 平均值与间隔值的概念与计算2. 数据的描写- 数据的分散程度与极差、方差、标准差的计算- 数据的集中程度与四分位数、中位数的概念与计算3. 概率与事件- 实验与样本空间的概念- 事件与概率的概念- 事件的概率计算与应用。
初二数学知识点归纳(全)初二数学知识点归纳如下:一、三角形1. 三角形的定义:由三条线段首尾顺次相接所组成的图形。
2. 三角形的分类:按边长关系:等边三角形、等腰三角形、不等边三角形。
按角关系:锐角三角形、直角三角形、钝角三角形。
3. 三角形的三边关系:任意两边之和大于第三边,任意两边之差小于第三边。
4. 三角形的内角和:180度。
5. 三角形的内接圆与外接圆:内接圆:圆心到三角形各顶点的距离相等。
外接圆:圆心到三角形各边的距离相等。
6. 正弦定理:在任意三角形中,任意一边的边长与其对应的角的正弦值之比是一个常数,即a/sinA = b/sinB = c/sinC。
7. 余弦定理:在任意三角形中,任意一边的平方等于其他两边的平方和减去这两边与夹角余弦的乘积的两倍,即c^2 = a^2 + b^2 - 2ab*cosC。
二、全等三角形1. 全等三角形的定义:两个三角形在形状和大小方面完全相同,即它们的对应边长相等,对应角度相等。
2. 全等三角形的判定方法:SAS(边角边):两边的长度分别相等,并且这两边夹的角也分别相等。
ASA(角边角):两角分别相等,并且其中一个角的对边也分别相等。
SSS(边边边):三边的长度分别相等。
HL(高-腰-腰):直角三角形的斜边和一条直角边分别相等。
三、轴对称与中心对称1. 轴对称:存在一条直线,图形关于这条直线对称。
2. 中心对称:存在一个点C,图形关于点C对称。
3. 轴对称的性质:如果两个图形关于某条直线对称,那么这条直线就是它们的对称轴。
对称轴上的点到两个对称图形的距离相等。
4. 中心对称的性质:如果两个图形关于某一点对称,那么这个点就是它们的对称中心。
对称中心到两个对称图形的距离相等。
四、四边形1. 四边形的定义:由四条线段首尾顺次相接所组成的图形。
2. 四边形的分类:按对角线关系:平行四边形、矩形、菱形、正方形。
按边长关系:梯形、等腰梯形。
3. 平行四边形的性质:对边平行且相等。
初二数学必考的知识点总结一、代数1. 代数表达式代数表达式是由数字、字母和运算符号组成的表达式。
常见的代数表达式包括单项式、多项式和分式等。
2. 一元一次方程一元一次方程是指只含有一个未知数的一次方程,一般形式为ax+b=c,其中a、b、c为已知数,x为未知数。
3. 一元一次不等式一元一次不等式是指只含有一个未知数的一次不等式,一般形式为ax+b>c或ax+b<c,其中a、b、c为已知数,x为未知数。
4. 因式分解因式分解是将一个多项式分解成几个不可再分解的乘积的过程。
常见的因式分解包括提公因式法、两项和平方差公式、分组公式和公式法等。
5. 方程的解法方程的解法包括整式方程和分式方程的求解,常见的解法包括配方法、换元法、变形法和凑平方法等。
6. 平方根和平方根式平方根是指一个数的平方等于该数的非负数根,常用符号表示为√,平方根的性质包括非负、互为相反数、分配律和开方运算等。
7. 分式的加减乘除分式的加减乘除是指对分式进行运算的过程,常用的方法包括通分、约分、乘法法和倒数法等。
8. 二元一次方程组二元一次方程组是指含有两个未知数的一次方程组,一般形式为{ax+by=c{dx+ey=f其中a、b、c、d、e、f为已知数,x和y为未知数。
9. 初中代数学习技巧代数学习技巧包括掌握代数表达式、方程和不等式的基本概念和解题方法,培养代数思维和逻辑推理能力,加强基础知识的巩固和扩展,注重实际问题的转化和应用,提高解决问题的能力和素质。
二、几何1. 几何图形的认识几何图形是指由点、线、面组成的空间图形,常见的几何图形包括点、线、角、三角形、四边形、多边形、圆、球面、直线和平面等。
2. 几何图形的性质几何图形的性质包括点的图象、线的性质、角的性质、三角形的分类、四边形的分类、多边形的分类、圆的性质、球面的性质、直线的性质和平面的性质等。
3. 相似三角形相似三角形是指两个三角形的对应角相等,对应边成比例,常见的相似三角形包括AAA 相似定理、AA相似定理和SAS相似定理等。
初二数学知识点总结初二数学知识点总结上册知识点:第一章一次函数1.函数的定义,包括定义域、值域、表达式以及图像。
2.一次函数和正比例函数,包括它们的表达式、增减性以及图像。
3.从函数的角度看方程、方程组和不等式。
如果当自变量的值为a时,函数的值为b,则b被称为自变量等于a时的函数值。
形如y=kx(其中k是常数,且k≠0)的函数称为正比例函数,其中k被称为比例系数。
形如y=kx+b(其中k、b是常数,且k≠0)的函数称为一次函数。
正比例函数是一种特殊的一次函数。
当k>0时,y随x的增大而增大;当k<0时,y 随x的增大而减小。
一、常量和变量在一个变化过程中,数值发生变化的量被称为变量,而数值始终不变的量被称为常量。
二、函数的概念函数的定义:一般地,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定值,y都有唯一确定的值与之对应,那么就称x是自变量,y是x的函数。
三、函数中自变量取值范围的求法1)用整式表示的函数,自变量的取值范围是全体实数。
2)用分式表示的函数,自变量的取值范围是使分母不为0的一切实数。
3)用奇次根式表示的函数,自变量的取值范围是全体实数。
4)用偶次根式表示的函数,自变量的取值范围是使被开方数为非负数的一切实数。
5)对于与实际问题有关的函数,自变量的取值范围应使实际问题有意义。
四、函数图象的定义一般地,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么在坐标平面内由这些点组成的图形,就是这个函数的图象。
五、用描点法画函数的图象的一般步骤1.列表:表中给出一些自变量的值及其对应的函数值。
注意:列表时自变量由小到大,相差一样,有时需对称。
2.描点:在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点。
3.连线:按照横坐标由小到大的顺序把所描的各点用平滑的曲线连接起来。
六、函数有三种表示形式1)列表法2)图像法3)解析式法七、正比例函数与一次函数的概念一般地,形如y=kx(其中k是常数,且k≠0)的函数称为正比例函数,其中k被称为比例系数。
一般地,形如y=kx+b(其中k、b是常数,且k≠0)的函数称为一次函数。
当b=0时,y=kx+b即为y=kx,因此正比例函数是一次函数的特例。
八、正比例函数的图象与性质正比例函数y=kx(k是常数,k≠0)的图象是一条经过原点的直线,称为直线y=kx。
当k>0时,直线y=kx从第三象限向右上方上升,即随着x的增大,y也增大;当k<0时,直线y=kx从第二、四象限向右下方下降,即随着x的增大,y反而减小。
九、求函数解析式的方法待定系数法是一种求函数解析式的方法。
先设出函数解析式,再根据条件确定解析式中未知的系数,从而具体写出这个式子。
具体方法如下:1.对于一次函数y=ax+b,可以从“数”的角度看x为何值时函数y=ax+b的值为多少。
2.对于一元一次方程ax+b=0(a、b是常数,a≠0),可以从“形”的角度看,求直线y=ax+b与x轴交点的横坐标。
3.对于一次函数y=ax+b和一元一次不等式ax+b>0(a、b 是常数,a≠0),可以从“数”的角度看,x为何值时函数y=ax+b的值大于0.4.对于一次函数y=ax+b和一元一次不等式ax+b>0(a、b 是常数,a≠0),可以从“形”的角度看,求直线y=ax+b在x轴上方的部分(射线)所对应的横坐标的取值范围。
十、一次函数与正比例函数的图象与性质一次函数y=kx+b(k、b是常数,k≠0)的图象是一条直线,当b=0时,一次函数y=kx也叫正比例函数。
当k>0时,直线y=kx从第一、二、三象限向右上方上升,即随着x的增大,y也增大;当k<0时,直线y=kx从第一、三、四象限向右下方下降,即随着x的增大,y反而减小。
十一、一次函数与二元一次方程组解一元二次方程组可以从“数”的角度看,自变量x为何值时两个函数的值相等并求出这个函数值;也可以从“形”的角度看,确定两直线交点的坐标。
了解常见的统计图表有助于我们更直观地比较数据差异。
常见的统计图表包括条形图、扇形图、折线图、复合条形图和直方图。
条形图可以显示每组数据的具体数值,方便比较数据间的差别;扇形图则用扇形面积来表示部分在总体中所占的百分比,易于显示每组数据相对总数的大小;折线图则描述数据的变化趋势;直方图可以显示各组频数分布情况,易于显示各组之间频数的差别。
组中值是求出各小组两端点平均数的结果。
全等三角形是能够完全重合的两个三角形,它们的形状和大小完全相等,与位置无关。
全等三角形具有对应边相等、对应角相等、周长相等、面积相等和对应边上的对应中线、角平分线、高线分别相等的性质。
全等三角形的判定有边边边(SSS)、边角边(SAS)、角边角(ASA)、角角边(AAS)和斜边直角边(HL)五种方法。
证明两个三角形全等的基本思路是根据已知条件找到对应关系,再利用全等三角形的性质得出结论。
角的平分线是从一个角的顶点出发,将这个角分成两个相等的角的射线。
角的平分线上的点到角的两边的距离相等,到角的两边距离相等的点在角的平分线上。
2、判定:如果一个点到角的两边的距离相等,那么它在角的平分线上。
三、研究全等三角形需要注意以下几个问题:1)正确区分“对应边”和“对边”,以及“对应角”和“对角”的不同含义;2)在表示两个全等三角形时,要将对应顶点的字母写在对应的位置上;3)有三个角对应相等或有两边及其中一角对应相等的两个三角形不一定全等;4)时刻注意图形中的隐含条件,如“公共角”、“公共边”、“对顶角”;5)可以使用截长补短法来证明三角形全等。
第四章轴对称1、轴对称图形和关于直线对称的两个图形是不同的。
2、轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线。
如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连的线段的垂直平分线。
到线段两个端点距离相等的点在这条线段的垂直平分线上。
3、可以使用坐标来表示轴对称。
点(x,y)关于x轴对称的点的坐标是(x,-y),关于y轴对称的点的坐标是(-x,y),关于原点对称的点的坐标是(-x,-y)。
4、等腰三角形有以下性质:两个底角相等,顶角平分线、底边上的中线、底边上的高线互相重合。
一个三角形的两个相等的角所对的边也相等。
判定等腰三角形的方法是如果一个三角形有两个角相等,那么这两个角所对的边也相等。
5、等边三角形的三个内角都相等,都等于60度。
判定等边三角形的方法是三个角都相等的三角形是等边三角形,或者有一个角是60度的等腰三角形是等边三角形。
推论包括直角三角形中,如果有一个锐角是30度,那么他所对的直角边等于斜边的一半;在三角形中,大角对大边,大边对大角;经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线。
6、轴对称图形是指沿着一条直线折叠后能够完全重合的图形,这条直线就是它的对称轴。
如果一个图形能够与另一个图形完全重合,那么这两个图形关于这条直线对称。
折叠后重合的点是对应点,叫做对称点。
式中的数或字母叫做单项式的因式。
2、同类项是指含有相同因式的单项式。
同类项可以合并,即将它们的系数相加,保留相同的因式。
3、整式是由单项式相加或相减得到的式子。
整式中的每一项都可以看作是一个单项式。
4、整式的加减法就是将同类项合并后,再将系数相加或相减得到结果。
5、整式的乘法可以使用分配律,将每一项都乘以另一个整式中的每一项,然后将结果合并同类项。
6、乘法公式包括平方差公式和完全平方公式。
平方差公式可以用于求两个数的积,完全平方公式可以用于将一个二次多项式表示为平方的形式。
7、整式的除法可以使用长除法,将除数乘以一个合适的单项式,使得乘积与被除式的某一项相同,然后将它们相减,继续进行下一步计算,直到余数为零或次数小于除数的次数。
8、因式分解是将一个整式表示为若干个单项式的乘积的形式。
常用的方法包括提公因式法、公式法和十字相乘法。
1、一个单项式的系数是指其中的数字因数,而单项式的次数是指其中所有字母的指数之和。
2、多项式是几个单项式的和,其中不含字母的单项式称为常数项。
多项式的次数是指其中次数最高的单项式的次数。
3、单项式和多项式统称为整式。
4、同类项是指所含字母相同且相同字母的指数也相同的项。
5、合并同类项是指把多项式中的同类项合并成一项,即把它们的系数相加作为新的系数,而字母部分不变。
6、几个整式相加减,通常用括号把每一个整式括起来,再用加减号连接;然后去括号,合并同类项。
7、同底数幂相乘,底数不变,指数相加。
幂的乘方,底数不变,指数相乘。
积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘。
8、单项式与单项式相乘,把它们的系数、相同字母分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式。
9、单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。
10、多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
下册知识点:第一章分式1、分式的定义:如果A、B表示两个整式,并且B中含有字母,那么式子A/B叫做分式。
分式有意义的条件是分母不为零,分式值为零的条件是分子为零且分母不为零。
2、分式的基本性质:分式的分子与分母同乘或除以一个不等于零的整式,分式的值不变。
3、分式的通分和约分:关键是先分解因式。
4、分式的运算:分式乘法法则是分式乘分式,用分子的积作为积的分子,分母的积作为分母。
分式除法法则是分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
分式乘方要把分子、分母分别乘方。
分式的加减法则是同分母的分式相加减,分母不变,把分子相加减。
异分母的分式相加减,先通分,变为同分母分式,然后再加减。
的定义中k不能等于0,因此图像不会经过原点。
3、性质:1)反比例函数的定义域为x≠0,值域为y≠0.2)反比例函数的图像在第一象限和第三象限上方,第二象限和第四象限下方。
3)反比例函数的导数为y'=-k/x²,因此在定义域内单调递减。
4、应用:反比例函数常用于描述比例关系中的一种特殊情况。
例如,两个物体的距离与它们的速度成反比例关系。
又如,一定数量的物品,每天卖出的数量与售价成反比例关系。
在实际问题中,反比例函数的应用非常广泛,需要灵活运用。
直角三角形是一种特殊的三角形,它有一条直角边和两条直角边。
根据勾股定理,直角三角形的斜边长等于两直角边长平方和的平方根。
直角三角形的另外两个内角的和为90度,因为直角角度为90度。
直角三角形的面积等于两直角边的乘积除以2.1、直角三角形的两个锐角互余,即∠A+∠B=90°。
2、在直角三角形ABC中,∠A=30°,则BC=AB/2.3、在直角三角形ABC中,斜边AC上的中线CD等于AC的一半,即CD=AC/2.4、摄影定理:在直角三角形ABC中,斜边AC上的高线CD等于直角边AB和BC在AC上的摄影的比例中项,即CD²=AD·BD,AC²=AD·AB,BC²=BD·AB。