2012年北京燕山数学一模试题及答案
- 格式:doc
- 大小:846.00 KB
- 文档页数:10
十三、排列、组合及二项式定理第一部分 排列与组合6.(2012年海淀一模理6)从甲、乙等5个人中选出3人排成一列,则甲不在排头的排法种数是( D )A .12B .24C .36D .485.(2012年东城一模理5)某小区有排成一排的7个车位,现有3辆不同型号的车需要停放,如果要求剩余的4个车位连在一起, 那么不同的停放方法的种数为( C )A .16B .18C .24D .326.(2012年丰台一模理6)学校组织高一年级4个班外出春游,每个班从指定的甲、乙、 丙、丁四个景区中任选一个游览,则恰有两个班选择了甲景区的选法共有( C )种A.2243∙AB.2324A A ∙C.2243∙C D.2324A C ∙ 5.(2012年朝阳一模理5)有10件不同的电子产品,其中有2件产品运行不稳定.技术 人员对它们进行一一测试,直到2件不稳定的产品全部找出后测试结束,则恰好3次就结束 测试的方法种数是( C )A. 16B. 24C. 32D. 4812.(2012年房山一模12)如果在一周内(周一至周日)安排三所学校的学生参观某展览馆,每天最多只安排一所学校,要求甲学校连续参观两天,其余学校均只参观一天,那么不同的安排方法有 种.答案:120。
5.(2012年密云一模理5)某班级要从4名男生、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案种数为( A )A.14B.24C.28D.48第二部分 二项式定理10.(2012年西城一模理10)6(2)x -的展开式中,3x 的系数是_____.(用数字作答) 答案:160-。
3.(2012年丰台一模理3) 6+的二项展开式中,常数项是( C ) A.10 B.15 C.20 D.306.(2012年石景山一模理6)若21()n x x-展开式中的所有二项式系数和为512,则该展开式中的常数项为( B )A.84-B.84C.36-D.36。
1北京市燕山地区2013年初中毕业暨一模考试数学试卷 2013年5月学校 班级 姓名 成绩考 生 须 知1.本试卷共6页,共五道大题,25道小题,满分120分。
考试时间120分钟。
2.答题纸共6页,在规定位置准确填写学校名称、班级和姓名。
3.试题答案一律书写在答题纸上,在试卷上作答无效。
4.考试结束,请将答题纸交回,试卷和草稿纸可带走。
一、选择题(下面各题均有四个选项,其中只有一个....是符合题意的,请将正确答案前的字母写在答题纸上;本题共32分,每小题4分) 1.若实数a 与-3互为相反数,则a 的值为A .31B .0.3C .-3D .3 2.春节假期,全国收费公路7座以下小型客车实行免费通行.据交通运输部统计,春节期间,全国收费公路(除四川、西藏、海南外)共免收通行费846 000 000元.把 846 000 000用科学记数法表示应为A .0.846×108B .8.46×107C .8.46×108D .846×106 3.已知某多边形的每一个外角都是40°,则它的边数为A .7B .8C .9D .10 4.右图是某个几何体的三视图,则这个几何体是A .圆锥B .圆柱C .长方体D . 三棱锥 5.燕山地区现有小学7所,初中校4所,高中校1所,现从这些学校中随机抽取1所学校对学生进行视力调查,抽取的学校恰好为初中校的概率是 A .121 B .31C .127D .32 6.如图,在□ABCD 中,AD =6,点E 在边AD 上,且DE =3,连接BE 与对角线AC 相交于点M ,则MCAM的值为 A .12B .13C .14D .19俯视图左视图主视图DA EMBC27.在一次体育达标测试中,九年级(3)班的15名男同学的引体向上成绩如下表所示:成绩(个)8 9 11 12 13 15 人数123432这15名男同学引体向上成绩的中位数和众数分别是 A .12,13 B .12,12 C .11,12 D .3,4 8. 如图,点P 是⊙O 的弦AB 上任一点(与A ,B 均不重合),点C 在⊙O 上,PC ⊥OP ,已知AB =8,设BP =x ,PC 2=y , y 与x 之间的函数图象大致是A .B .C .D . 二、填空题(本题共16分,每小题4分) 9.分解因式:mn mn 43-= .10.把代数式x 2-4x -5化为(x -m )2+k 的形式,其中m ,k 为常数,则2m -k = .11.如图,在一间房子的两墙之间有一个底端在P 点的梯子,当它靠在一侧墙上时,梯子的顶端在A 点;当它靠在另一侧墙上时梯子的顶端在D 点.已知∠APB =45°,∠DPC =30°,点A 到地面的垂直距离为2.4米,则点D 到地面的垂直距离约是 米(精确到0.1).12.如图,已知直线1l :2+-=x y 与2l :2121+=x y ,过直线1l 与x 轴的交点1P 作x 轴的垂线交2l 于1Q ,过1Q 作x 轴的平行线交1l 于2P ,再过2P 作x 轴的垂线交2l 于2Q ,过2Q 作x 轴的平行线交1l 于3P ,……,这样一直作下去 ,可在直线l 1上继续得到点4P ,5P ,…,n P ,….设点n P 的横坐标为n x ,则2x = , 1+n x 与n x 的数量关系是 .三、解答题(本题共30分,每小题5分)CB AOPQ 3Q 2Q 1P 3P 2P 1l 2l 1yxO4yx8O16xy84O 16O 48xy16O48xy4PBCDA313.计算:013)(30cos 23127-+︒-⎪⎭⎫⎝⎛--π.14. 解不等式1233x x <+-错误!未找到引用源。
五、三角函数11.(2012年海淀一模理11)若1tan 2α=,则cos(2)απ2+= . 答案:45-。
5.(2012年西城一模理5)已知函数44()sin cos f x x x ωω=-的最小正周期是π,那么正数ω=( B )A .2B .1C .12 D .147.(2012年丰台一模理7)已知a b <,函数()=sin f x x ,()=cos g x x .命题p :()()0f a f b ⋅<,命题q :函数()g x 在区间(,)a b 内有最值.则命题p 是命题q 成立的( A )条件A.充分不必要B.必要不充分C.充要D.既不充分也不必要 4.(2012年门头沟一模理4)在ABC ∆中,已知4A π∠=,3B π∠=,1AB =,则BC 为( A )11C.311.(2012年东城11校联考理11)在ABC ∆中,角,,A B C 所对的边分别为c b a ,,,若sin A C =, 30=B ,2=b ,则边c = .答案:2。
11.(2012年房山一模11)已知函数()()ϕω+=x x f sin (ω>0, πϕ<<0)的图象如图所示,则ω=_ _,ϕ=_ _. 答案:58,910π。
6.(2012年密云一模理6) 已知函数sin(),(0,||)2y x πωϕωϕ=+><的简图如下图, 则ωϕ的值为( B ) A. 6π B. 6π C. 3π D. 3π15.(2012年海淀一模理15)在ABC ∆中,角A ,B ,C 的对边分别为,,a b c ,且A ,B ,C 成等差数列.(Ⅰ)若b =,3a =,求c 的值;(Ⅱ)设sin sin t A C =,求t 的最大值.解:(Ⅰ)因为,,A B C 成等差数列, 所以2B A C =+. 因为A B C ++=π, 所以3B π=.因为b =3a =,2222cos b a c ac B =+-,所以2340c c --=.所以4c =或1c =-(舍去).(Ⅱ)因为23A C +=π, 所以2sin sin()3t A A π=-1sin sin )2A A A =+11cos22()22A A -=+ 11sin(2)426A π=+-. … 因为203A π<<,所以72666A πππ-<-<.所以当262A ππ-=,即3A π=时,t 有最大值34.15.(2012年西城一模理15)在△ABC 中,已知sin()sin sin()A B B A B +=+-.(Ⅰ)求角A ;(Ⅱ)若||7BC =,20=⋅,求||AB AC +.解:(Ⅰ)原式可化为 B A B A B A B sin cos 2)sin()sin(sin =--+=.因为(0,π)B ∈, 所以 0sin >B , 所以 21cos =A . 因为(0,π)A ∈, 所以 π3A =.(Ⅱ)由余弦定理,得 222||||||2||||cos BC AB AC AB AC A =+-⋅.因为 ||7BC =,||||cos 20AB AC AB AC A ⋅=⋅=, 所以 22||||89AB AC +=.因为 222||||||2129AB AC AB AC AB AC +=++⋅=, 所以 ||129AB AC +=15.(2012年东城一模理15)已知函数22()(sin2cos2)2sin 2f x x x x =+-.(Ⅰ)求()f x 的最小正周期;(Ⅱ)若函数()y g x =的图象是由()y f x =的图象向右平移8π个单位长度,再向上平移1个单位长度得到的,当x ∈[0,4π]时,求()y g x =的最大值和最小值. 解:(Ⅰ)因为22()(sin 2cos2)2sin 2f x x x x =+-sin 4cos 4x x =+)4x π=+ ,所以函数()f x 的最小正周期为2π.(Ⅱ)依题意,()y g x ==[4()8x π-4π+]1+)14x π=-+.因为04x π≤≤,所以34444x πππ-≤-≤.当442x ππ-=,即316x π=时,()g x 1; 当444x ππ-=-,即0x =时, ()g x 取最小值0.15. (2012年丰台一模理15)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且sin cos cos a B b C c B -=.(Ⅰ)判断△ABC 的形状;(Ⅱ)若121()cos 2cos 232f x x x =-+,求()f A 的取值范围.解:(Ⅰ)(法1)因为 sin cos cos a B b C c B -=,由正弦定理可得 sin sin sin cos sin cos A B B C C B -=. 即sin sin sin cos cos sin A B C B C B =+, ……2分所以 sin()sin sin C B A B +=. …4分 因为在△ABC 中,A B C ++=π,所以 sin sin sin A A B = 又sin 0A ≠, ……5分 所以 sin 1B =,2B π=. 所以 △ABC 为2B π=的直角三角形.……6分 (法2)因为 sin cos cos a B b C c B -=,由余弦定理可得 222222sin 22a b c a c b a B b c ab ac+-+-=⋅+⋅, …4分即sin a B a =.因为0a ≠, 所以sin 1B =. ……5分 所以在△ABC 中,2B π=. 所以 △ABC 为2B π=的直角三角形. ……6分 (Ⅱ)因为121()cos 2cos 232f x x x =-+22cos cos 3x x =- …8分=211(cos )39x --. ………10分所以 211()(cos )39f A A =--.因为△ABC 是2B π=的直角三角形,所以 02A π<<,且0cos 1A <<, …11分所以 当1cos 3A =时,()f A 有最小值是19-. …12分所以()f A 的取值范围是11[,)93-. …13分15.(2012年朝阳一模理15)已知函数π()cos()4f x x =-.(Ⅰ)若()10f α=,求si n 2α的值;(II )设()()2g x f x f x π⎛⎫=⋅+ ⎪⎝⎭,求函数()g x 在区间ππ,63⎡⎤-⎢⎥⎣⎦上的最大值和最小值.解:(Ⅰ)因为π()cos()410f αα=-=,所以sin )210αα+=, 所以 7cos sin 5αα+=. 平方得,22sin 2sin cos cos αααα++=4925, 所以 24sin 225α=. ……6分 (II )因为()π()2g x f x f x ⎛⎫=⋅+⎪⎝⎭=ππcos()cos()44x x -⋅+=(cos sin )sin )22x x x x +⋅- =221(cos sin )2x x - =1cos 22x . …10分 当ππ,63x ⎡⎤∈-⎢⎥⎣⎦时,π2π2,33x ⎡⎤∈-⎢⎥⎣⎦. 所以,当0x =时,()g x 的最大值为12; 当π3x =时,()g x 的最小值为14-. ……13分15.(2012年东城11校联考理15)已知函数x x x x f ωωωcos sin 3cos )(2⋅-= )0(>ω的最小正周期是π,(1)求函数)(x f 的单调递增区间和对称中心;(2)若A 为锐角ABC ∆的内角,求)(A f 的取值范围.解:(1)x x x f ωω2sin 2322cos 1)(-+=21)32cos(++=πωx πωπ==22T 1=ω 21)32cos()(++=πx x fππππππππk x k Zk k x k +-≤≤+-∈≤+≤+-632,2322函数)(x f 的单调增区间为⎥⎦⎤⎢⎣⎡+-+-ππππk k 6,32,Z k ∈Z k k k x k x ∈+∴+=+=+),21,212(212,232πππππππ对称中心为令 ………7分(2)所以)(A f 的取值范围为 )1,21⎢⎣⎡- ………13分15.(2012年石景山一模理15)在ABC ∆中,角A ,B ,C 所对应的边分别为a ,b ,c ,且C b B c a cos cos )2(=-.(Ⅰ)求角B 的大小;(Ⅱ)若cos 22A a ==,求AB C ∆的面积.解:(Ⅰ)因为C b B c a cos cos )2(=-,由正弦定理,得C B B C A cos sin cos )sin sin 2(=-. …2分∴ A C B C B B C B A sin )sin(cos sin cos sin cos sin 2=+=+=.…4分 ∵ 0A π<<, ∴0sin ≠A ,121)32cos(2121)32cos(13432320<++≤-<+≤-<+<<<ππππππA A A A∴ 21cos =B . 又∵ π<<B 0 , ∴ 3π=B . ……6分(Ⅱ)由正弦定理BbA a sin sin =,得b = …8分由 cos A =可得4A π=,由3π=B ,可得sin C =, …11分∴113sin 22242s ab C +==⨯=. ……13分15.(2012年房山一模15)已知ABC ∆的三个内角A ,B ,C 所对的边分别是a ,b ,c ,tan tan tan A B A B +,,2=a c (Ⅰ)求tan()A B +的值; (Ⅱ)求ABC ∆的面积.解:(I )解tan tan tan A B A B +tan tan )A B =-tan tantan()1tan tan A BA B A B+∴+=-=………5分(II )由(I )知 60A B +=︒,120C ∴=︒ ……7分C ab b a c cos 2222-+=∴⎪⎭⎫⎝⎛-⨯⨯-+=21224192b b ∴3=b ……10分 ∴233221sin 21⨯⨯⨯==∆C ab S ABC 233=…13分15.(2012年密云一模理15) 已知函数()22sin sin()2f x x x x π=+⋅+.(I)求()f x 的最小正周期 ,最大值以及取得最大值时x 的集合.(II) 若A 是锐角三角形ABC ∆的内角,()05,7,f A b a ===,求ABC ∆的面积.解:(I):()22sin .sin(22sin .cos 2f x x x x x x x π=+++)32sin 2=2sin(2x x x π++ ……4分().f x π∴的最小正周期是 ……5分=+2,.322k k Z x πππ∈+令:+,.12x k k Z ππ=∈解得+,}.12()2,x k k Z f x x ππ∴=∈的最大值是取得最大值时的集合是{x| ……7分(II)()sin(2)032f A A πππ=+=∴,0<A<A=3……9分ABC ∆在中,2222.cos a b c bc A =+-,25240c c --=,解得83c c ==-或(舍) ……11分1.sin 2ABC S bc A ∆∴==……13分15.(2012年门头沟一模理15)已知:函数2()sincos222xxxf x ωωω=+(0)ω>的周期为π.(Ⅰ)求ω的值;(Ⅱ)求函数()f x 的单调递增区间.解:(Ⅰ)1()cos )sin 2f x x x ωω=-+ …………4分()sin()3f x x πω=-……… 6分 因为函数的周期为π所以2ω= ………7分(Ⅱ)由(Ⅰ)知 ()s i n (2)32f x x π=-+ ………8分当 222()232k x k k Z πππππ-≤-≤+∈ 时函数单增……………10分5()1212k x k k Z ππππ-≤≤+∈ …………12分所以函数()f x 的单增区间为5[,]1212k k ππππ-+,其中k Z ∈ ……13分。
二、函数(必修一) 10.(2012高考模拟)函数的图象大致是( C ) 11.已知函数,则对任意,若,下列不等式成立的是( D ) A. B. C. D. 7.(2012东城一模文科)已知函数其中的图象如右图所示,则函数的图象大致为( A ) A. B. C. D. 8. (2012东城一模文科)设集合,函数,且则的取值范围是 A. (] B.(] C.() D.[0,]8.满足,当时,.若函数至少有6个零点,则a的取值范围是( B )A . (1,5)B .C .D . 13.设函数,则实数的取值范围是 14.(2012石景山一模文科)集合 现给出下列函数:①,②,③,④, 若 时,恒有则所有满足条件的函数的编号是 . 答案: ①④ 8. (2012高考仿真文科)已知定义在区间上的函数的图像关于直线对称,当时,,如果关于的方程有解,记所有解的和为S, 则S不可能为( A ) A. B. C. D. 7. (2012朝阳一模文科)某工厂生产的种产品进入某商场销售,商场为吸引厂家第一年免收管理费,因此第一年种产品定价为每件70元,年销售量为11.8万件. 从第二年开始,商场对种产品 征收销售额的的管理费(即销售100元要征收元),于是该产品定价每件比第一年 增加了元,预计年销售量减少万件,要使第二年商场在种产品经营中收取的 管理费不少于14万元,则的最大值是( D ) A. B. C. D. 8. (2012朝阳一模文科)函数是定义在上的偶函数,且对任意的,都有.当时,.若直线与函数的图象有两个不同的公共点,则实数的值为( C ) A. B. C. 或 D. 或 13. (2012朝阳一模文科)已知函数则的值为 ; 函数恰有两个零点,则实数的取值范围是 . 答案14. (2012朝阳一模文科)已知集合,集合.若为坐标原点,,为集合所表示的平面区域与集合所表示的平面区域的边界的交点,则的面积与的关系式为 . 答案: 7. (2012东城示范校二模文)已知函数则下列结论正确的是C ) A. B. C. D.13. (2012东城示范校二模文)已知函数是偶函数,则的图象与轴交点纵坐标的最小值为. 16 14. (2012东城示范校二模文)函数的定义域为A,若且时总有, 则称为单函数.例如函数=2x+1()是单函数. 下列命题: ①函数(xR)是单函数; ②指数函数(xR)是单函数; ③若为单函数,且,则; ④在定义域上具有单调性的函数一定是单函数. 其中的真命题是 .(写出所有真命题的编号) ②③④ 4.(2012房山一模文科)下列函数中,既是偶函数又在单调递增的函数是( D ) A. B. C. D. 13.(2012房山一模文科)某工厂需要建造一个仓库,根据市场调研分析,运费与工厂和仓库之间的距离成正比,仓储费与工厂和仓库之间的距离成反比,当工厂和仓库之间的距离为4千米时,运费为20万元,仓储费用为5万元,当工厂和仓库之间的距离为___千米时,运费与仓储费之和最小,最小值为__万元. 答案:2,20; 14.(2012房山一模文科)设函数,,,(),则方程有___个实数根,方程有___个实数根. 答案:4, 7.(2012海淀一模文科)已知函数若,使得成立,则实数的取值范围是( A ) A. B. C. D. 或 13.(2012海淀一模文科)设某商品的需求函数为,其中分别表示需求量和价格,如果商品需求弹性大于1(其中,是的导数),则商品价格的取值范围是 . 答案: 14.(2012海淀一模文科)已知函数 则; 下面三个命题中,所有真命题的序号是 . 函数是偶函数; 任取一个不为零的有理数,对恒成立; 存在三个点使得为等边三角形. 答案:1 ①②③ 4.(2012门头沟一模文科)函数(且)的图象经过点,函数(且)的图象经过点,则下列关系式中正确的是( C ) A.B.C.D. 8. (2012门头沟一模文科)给出定义:若(其中为整数),则叫离实数最近的整数,记作,已知,下列四个命题: ①函数的定义域为,值域为; ②函数是上的增函数; ③函数是周期函数,最小正周期为1; ④函数是偶函数, 其中正确的命题的个数是( B ) A. 4B. 3 C.2D. 1 8.(2012密云一模文科)给出定义:若(其中m为整数),则m 叫做离实数x最近的整数,记作=m. 在此基础上给出下列关于函数的四个命题: ①函数y=的定义域为R,值域为; ②函数y=的图像关于直线()对称; ③函数y=是周期函数,最小正周期为1; ④函数y=在上是增函数. 其中正确的命题的个数为 ( C ) A.1 B.2 C. 3 D. 4 12.(2012密云一模文科)如图2所示,函数的图象在点P处的切线方程是,则 , . 答案:3;-1 14. (2012师大附文科) 设函数,,,,则方程有 个实数根。
顺义区2012届初三第一次统一练习 数学学科参考答案及评分细则二、填空题(本题共16分,每小题4分,)9.4;10.25()x x y -; 11.11.4; 12, 2)π+,π. 三、解答题(本题共30分,每小题5分) 13()12cos303-︒+--1213⎛⎫=+-- ⎪⎝⎭……………………………………………… 4分 113=+ 43= …………………………………………………………………… 5分 14.解: 221x y x y +=⎧⎨-=⎩①②①+②,得 33x =.1x =. …………………………………………………… 2分 把1x =代入①,得 12y +=.1y =. ………………………………………………………… 4分 ∴原方程组的解为 1,1.x y =⎧⎨=⎩ ………………………………………………… 5分15.证明:∵AB=AC ,∴B C ∠=∠. …………………………………………………………… 1分 在△ABD 和△ACE 中,,,,AB AC B C BD CE =⎧⎪∠=∠⎨⎪=⎩∴ △ABD ≌△ACE .……………………………………………………… 3分 ∴ AD=AE . ……………………………………………………………… 4分∴∠ADE =∠AED . ……………………………………………………… 5分16.解:6931x x x x -⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭2693x x x x x -+-=÷ …………………………………………………… 2分 2(3)3x xx x -=-3x =- ……………………………………………………………………… 4分当2012x =时,原式=201232009-=.…………………………………… 5分17.解:(1)∵点(4,)A m 在反比例函数4y x=(0x >)的图象上, ∴414m ==. …………………………………………………………… 1分 ∴(4,1)A .将(4,1)A 代入一次函数y x b =-+中,得 5b =.∴一次函数的解析式为5y x =-+. …………………………………… 2分(2)由题意,得 (0,5)B , ∴5OB =.设P 点的横坐标为P x .∵OBP △的面积为5, ∴1552p x ⨯=.…………………………………………………………… 3分 ∴2P x =±.∴点P 的坐标为(2,3)或(-2,7). ………………………………… 5分 18.解:设A 户型的每户窗户改造费用为x 元,则B 户型的每户窗户改造费用为(500)x -元. ……………………………… 1分 根据题意,列方程得5400004800005x x =-. 解得 4500x =.经检验,4500x =是原方程的解,且符合题意.…………………………… 4分 ∴5004000x -=.答:A 户型的每户窗户改造费用为4500元,B 户型的每户窗户改造费用为4000 元.…………………………………… 5分MF EDCBAFE DCO BA四、解答题(本题共20分,每小题5分)19.解:(1)∵在□ABCD 中,∠B=60°,AB=4,∠ACB=45°,∴∠D=60°,CD=AB=4,AD ∥BC . ……………………………… 1分 ∴∠DAC=45°. 过点C 作CM ⊥AD 于M , 在Rt △CDM 中,sin 4sin 6023CM CD D ==︒=cos 4cos602DM CD D ==︒=.………………………………… 2分在Rt △ACM中,∵∠MAC=45°, ∴AM CM==∴2AD AM DM =+=.…………………………………… 3分∵EF ⊥AD ,CM ⊥AD , ∴EF ∥CM .∴12EF CM ==在Rt △AEF 中,AF EF ==4分∴22DF AD AF =-=-=.……………………… 5分20.(1)证明:连结OD .∵AB 是⊙O 的直径,∴∠ADB=90°. ……………………………………………………… 1分 ∵∠A=30°, ∴∠ABD=60°.∴∠BDC =1302ABD ∠=︒. ∵OD=OB ,∴△ODB 是等边三角形. ∴∠ODB=60°.∴∠ODC=∠ODB+∠BDC =90°. 即OD ⊥DC .∴CD 是⊙O 的切线.…………………………………………………… 2分(2)解:∵OF ∥AD ,∠ADB=90°,∴OF ⊥BD ,∠BOE=∠A =30°. ……………………………………… 3分∴112DE BE BD ===. 在Rt △OEB中,OB=2BE=2,OE ==.………… 4分 ∵OD=OB=2,∠C=∠ABD -∠BDC =30°,∠DOF=30°, ∴CD =tan 30DF OD =︒=∴CF CD DF =-== ……………………………5分21.解:(1)此次共调查了100名学生. …………………………………………………1分(2)填表:…………………………………………………3分(3)补全统计图如下:到校方式条形统计图 到校方式扇形统计图.…………………………………………………………………………5分22.解:(1)四边形DFCE 的面积S = 6 ,△DBF 的面积1S = 6 ,△ADE 的面积2S = 32 . …………………………………… 3分(2)2S = 214S S (用含S 、1S 的代数式表示). ………… 4分 (3)□DEFG 的面积为12. ………………………………………… 5分五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23.解:(1)△=244(1)(3)k k k --+=2244812k k k --+=812k -+ ……………………………………………………………… 1分∵方程有两个不相等的实数根, ∴10,0.k -≠⎧⎨∆>⎩ 即 10,8120.k k -≠⎧⎨-+>⎩∴k 的取值范围是32k <且1k ≠. …………………………………… 3分 (2)当方程有两个相等的实数根时,△=812k -+=0.∴32k =. ………………………………………………………………… 4分 ∴关于y 的方程为2(6)10y a y a +-++=.∴2'(6)4(1)a a ∆=--+2123644a a a =-+--21632a a =-+2(8)32a =--.由a 为正整数,当2(8)32a --是完全平方数时,方程才有可能有整数根. 设22(8)32a m --=(其中m 为整数),32p q =(p 、q 均为整数), ∴22(8)32a m --=.即(8)(8)32a m a m -+--=.不妨设8,8.a m p a m q -+=⎧⎨--=⎩两式相加,得 162p q a ++=.∵(8)a m -+与(8)a m --的奇偶性相同,∴32可分解为216⨯,48⨯,(2)(16)-⨯-,(4)(8)-⨯-, ∴18p q +=或12或18-或12-.∴17a =或14或1-(不合题意,舍去)或2.当17a =时,方程的两根为1172y -±=,即12y =-,29y =-.…… 5分 当14a =时,方程的两根为822y -±=,即13y =-,25y =-.…… 6分当2a =时, 方程的两根为422y ±=,即13y =,21y =. ………… 7分24.解:(1)∵抛物线y =mx 2+2mx +n 经过点A (-4,0)和点B (0,3),∴1680,3.m m n n -+=⎧⎨=⎩ ∴3,83.m n ⎧=-⎪⎨⎪=⎩. ∴抛物线的解析式为:233384y x x =--+.………………………… 2分 (2)令3y =,得2333384x x --+=,得10x =,22x =-, ∵抛物线向右平移后仍经过点B ,∴抛物线向右平移2个单位.……… 3分∵233384y x x =--+ 233(21)388x x =-++++2327(1)88x =-++. ………… 4分∴平移后的抛物线解析式为2327(1)88y x =--+. …………………… 5分(3)由抛物线向右平移2个单位,得'(2,0)A -,'(2,3)B .∴四边形AA ’B ’B 为平行四边形,其面积'236AA OB ==⨯=.设P 点的纵坐标为P y ,由'OA P △的面积=6, ∴1'62P OA y =,即1262P y ⨯= ∴6P y =, 6P y =±.………………………………………………… 6分当6P y =时,方程2327(1)688x --+=无实根, 当6P y =-时,方程2327(1)688x --+=-的解为16x =,24x =-.∴点P 的坐标为(6,6)-或(4,6)--.……………………………… 7分25.解:(1)完成画图如图2,由BAC ∠的度数为 60°,点E 落在 AB 的中点处 ,容易得出BE 与DE 之间的数量关系 为 BE=DE ;…………… 3分(2)完成画图如图3.猜想:BE DE =.证明:取AB 的中点F ,连结EF .∵90ACB ∠=︒,30ABC ∠=︒,∴160∠=︒,12CF AF AB ==. ∴△ACF 是等边三角形.∴AC AF =. ① …… 4分∵△ADE 是等边三角形,∴260∠=︒, AD AE =. ②∴12∠=∠. ∴12BAD BAD ∠+∠=∠+∠.即CAD FAE ∠=∠.③ ………………………………………… 5分 由①②③得 △ACD ≌△AFE (SAS ). …………………………… 6分 ∴90ACD AFE ∠=∠=︒. ∵F 是AB 的中点,∴EF 是AB 的垂直平分线.∴BE=AE . ……………………………………………………… 7分 ∵△ADE 是等边三角形, ∴DE=AE .∴BE DE =. …………………………………………………… 8分EAB C (D )图221F EDB C A图3。
2012年北京各城区一模试题汇编第8题汇总:1.(12海淀一模)2.(12西城一模)对于实数c 、d ,我们可用min{ c ,d }表示c 、d 两数中较小的数,如min{3,1-}=1-.若关于x 的函数y = min{22x ,2()a x t -}的图象关于直线3x =对称,则a 、t 的值可能是A .3,6B .2,6- C.2,6 D .2-,63.(12丰台一模)如图,矩形ABCD 中,AB =3,BC =5,点P 是BC 边上的一个动点(点P 不与点B 、C 重合),现将△PCD 沿直线PD 折叠,使点C 落到点C’处;作∠BPC’的角平分线交AB 于点E .设BP =x ,BE =y ,则下列图象中,能表示y 与x 的函数关系的图象大致是A .B .C .D .E PC’A DBCA 、CA第8题图D7.(12延庆一模) 将图1围成图2的正方体,则图1中的红心“”标志所在的正方形是正方体中的A .面CDHEB .面BCEFC .面ABFGD .面ADHG8.(12房山一模) 如图,梯形ABCD 中,AB ∥CD ,∠A =30°,∠B =60°,AD =32,CD =2,点P 是线段AB 上一个动点,过点P 作PQ ⊥AB 于P ,交其它边于Q ,设BP 为x ,△BPQ 的面积为y ,则下列图象中,能表示y 与x 的函数关系的图象大致是( ).xy 6312O xy 6312O A Bxy 6312O xy 6312O C D9.(12密云一模)在正方体的表面上画有如图⑴中所示的粗线,图⑵是其展开图的示意图,但只在A 面上画有粗线,那么将 图⑴中剩余两个面中的粗线画入图⑵中,画法正确的是10.(12通州一模)如图,在平行四边形ABCD中,AC = 4,BD = 6,P是BD上的任一点,过P作EF∥AC,与平行四边形的两条边分别交于点E,F.设BP=x,EF=y,则能大致反映y与x之间关系的图象为()A B C D11.(12顺义一模)12.(12东城一模)如图,在正方形ABCD中,AB=3cm,动点M自A点出发沿AB方向以每秒1cm的速度向B点运动,同时动点N自A点出发沿折线AD—DC—CB以每秒3cm的速度运动,到达B点时运动同时停止.设△AMN的面积为y(cm2),运动时间为x(秒),则下列图象中能大致反映y与x之间的函数关系的是A B C D13.(12朝阳一模)已知关于x 的一元二次方程02=++n mx x 的两个实数根分别为a x =1,b x =2(b a <),则二次函数n mx x y ++=2中,当0<y 时,x 的取值范围是 A .a x < B .b x > C .b x a << D .a x <或b x >第12题汇总:1.(12海淀一模)2.(12西城一模)如图,直角三角形纸片ABC 中,∠ACB =90°,AC=8,BC =6.折叠该纸片使点B 与点C 重合,折痕与AB 、BC 的交点分别为D 、E . (1) DE 的长为 ;(2) 将折叠后的图形沿直线AE 剪开,原纸片被剪成三块,其中最小一块的面积等于 .3.(12丰台一模)在数学校本活动课上,张老师设计了一个游戏,让电动娃娃在边长为1的正方形的四个顶点上依次跳动.规定:从顶点A 出发,每跳动一步的长均为1.第一次顺时针方向跳1步到达顶点D ,第二次逆时针方向跳2步到达顶点B ,第三次顺时针方向跳3步到达顶点C ,第四次逆时针方向跳4步到达顶点C ,… ,以此类推,跳动第10次到达的顶点是 ,跳动第2012次到达的顶点是 .ADCB4.(12石景山一模)一个正整数数表如下(表中下一行中数的个数是上一行中数的个数的2倍):则第4行中的最后一个数是 ,第n 行中共有 个数, 第n 行的第n 个数是 .5.(12昌平一模)己知□ABCD 中,AD =6,点E 在直线AD 上,且DE =3,连结BE 与对角线AC 相交于点M ,则MCAM= .6.(12平谷一模)abc 是一个三位的自然数,已知195abc ab a --=,这个三位数是_____________;聪明的小亮在解决这种问题时,采取列成连减竖式的方法(见右图)确定要求的自然数,请你仿照小亮的作法,解决这种问题.如果abcd 是一个四位的自然数,且2993abcd abc ab a ---=那么,这个四位数是_____________.7.(12延庆一模) 将1、2、3、6按右侧方式排列.若规定(m,n )表示第m 排从左向右第n 个数,则(7,3)所表示的数是 ;(5,2)与(20,17)表示的两数之积是111122663263323第1排第2排第3排第4排第5排8.(12房山一模)如图,已知Rt △ABC 中,∠ACB =90°,AC =6,BC = 8,过直角顶点C 作CA 1⊥AB ,垂足为A 1,再过A 1作A 1C 1⊥BC ,垂足为C 1,过C 1作C 1A 2⊥AB ,垂足为A 2,再过A 2作A 2C 2⊥BC ,垂足为C 2,…,这样一直作下去,得到了一组线段CA 1,A 1C 1,C 1A 2,A 2C 2,…,A n C n ,则A 1C 1= ,A n C n = .9.(12密云一模)在∠A (0°<∠A <90°)的内部画线段,并使线段的两端点分别落在角的两边AB 、AC 上,如图所示,从点A 1开始,依次向右画线段,使线段与线段在两端点处互相垂直,A 1A 2为第1条线段.设AA 1=A 1A 2=A 2A 3=1,则∠A = ;若记线段A 2n-1A 2n 的长度为a n (n 为正整数),如A 1A 2=a 1,A 3A 4=a 2,则此时a 2= ,a n = (用含n 的式子表示).10.(12通州一模)已知如图,△ABC 和△DCE 都是等边三角形,若△ABC 的边长为1,则△BAE 的面积是 .四边形ABCD 和四边形BEFG 都是正方形,若正方形ABCD 的边长为4,则△FAC 的面积是 .……如果两个正多边形ABCDE …和BPKGY …是正n (n ≥3)边形,正多边形ABCDE …的边长是2a ,则△KCA 的面积是 .(结果用含有a 、n 的代数式表示)ABCA 1A 2A 3A 4A 5 C 1 23 4 5 12题图第12题图E11.(12顺义一模)12.(12东城一模) 如图,正方形ABCD 的边长为10,内部有6个全等的正方形,小正方形的顶点E 、F 、G 、H 分别落在边AD 、AB 、BC 、CD 上,则DE 的长为 .13.(12朝阳一模)如图,在正方形ABCD 中,AB =1,E 、F 分别是BC 、CD 边上点,(1)若CE =12CB ,CF =12CD ,则图中阴影部分的面积是 ;(2)若CE =1n CB ,CF =1nCD ,则图中阴影部分的面积是 (用含n 的式子表示,n 是正整数).第22题汇总: 1.(12海淀一模)A2.(12西城一模)阅读下列材料:问题:如图1,在正方形ABCD内有一点P,PA=5,PB=2,PC=1,求∠BPC的度数.小明同学的想法是:已知条件比较分散,可以通过旋转变换将分散的已知条件集中在一起,于是他将△BPC绕点B逆时针旋转90°,得到了△BP′A(如图2),然后连结PP′.请你参考小明同学的思路,解决下列问题:(1) 图2中∠BPC的度数为;(2) 如图3,若在正六边形ABCDEF内有一点P,且P A=132,PB=4,PC=2,则∠BPC的度数为,正六边形ABCDEF的边长为.图1 图3CB A D3.(12丰台一模) 将矩形纸片分别沿两条不同的直线剪两刀,可以使剪得的三块纸片恰能拼 成一个等腰三角形(不能有重叠和缝隙).小明的做法是:如图1所示,在矩形ABCD 中,分别取AD 、AB 、CD 的中点P 、E 、F ,并沿直线PE 、PF 剪两刀,所得的三部分可拼成等腰三角形△PMN (如图2). (1)在图3中画出另一种剪拼成等腰三角形的示意图;(2)以矩形ABCD 的顶点B 为原点,BC 所在直线为x 轴建立平面直角坐标系(如图4),矩形ABCD 剪拼后得到等腰三角形△PMN ,点P 在边AD 上(不与点A 、D 重合),点M 、N 在x 轴上(点M 在N 的左边).如果点D 的坐标为(5,8),直线PM 的解析式为=y kx b ,则所有满足条件的k 的值为 .图1 图2 图3图4 备用P E FDAPE FD A4.(12石景山一模)生活中,有人用纸条可以折成正五边形的形状,折叠过程是将图①中.(1)将,若将展开,展开后的平面图形是 ;(2)若原长方形纸条(图①)宽为2cm ,求(1)中展开后平面图形的周长(可以用三角函数表示).5.(12昌平一模) 问题探究:(1)如图1,在边长为3的正方形ABCD 内(含边)画出使∠BPC =90°的一个点P ,保留作图痕迹;(2)如图2,在边长为3的正方形ABCD 内(含边)画出使∠BPC =60°的所有的点P ,保留作图痕迹并简要说明作法;(3)如图3,已知矩形ABCD ,AB =3,BC =4,在矩形ABCD 内(含边)画出使∠BPC =60°,且使△BPC 的面积最大的所有点P ,保留作图痕迹.图① 图② 图③图3图2图1A DCBABCDD CBA图1图26.(12平谷一模)如图①,在矩形ABCD 中,将矩形折叠,使点B 落在AD (含端点)上,落点记为E ,这时折痕与边BC 或边CD (含端点)交于点F .然后再展开铺平,则以B E F 、、为顶点的BEF △称为矩形ABCD 的“折痕三角形”.(1)由“折痕三角形”的定义可知,矩形ABCD 的任意一个“折痕BEF △”一定是一个________三角形;(2)如图②,在矩形ABCD 中,24AB BC ==,,当它的“折痕BEF △”的顶点E 位于边AD 的中点时,画出这个“折痕BEF △”,并求出点F 的坐标;(3)如图③,在矩形ABCD 中,24AB BC ==,.当点F 在OC 上时,在图③中画出该矩形中面积最大的“折痕BEF △”,并直接写出这个最大面积.7.(12延庆一模)阅读下面材料:小红遇到这样一个问题,如图1:在△ABC 中,AD ⊥BC ,BD=4,DC=6,且∠BAC=45°,求线段AD 的长.图3小红是这样想的:作△ABC 的外接圆⊙O ,如图2:利用同弧所对圆周角和圆心角的关系,可以知道∠BOC=90°,然后过O 点作OE ⊥BC 于E ,作OF ⊥AD 于F ,在Rt △BOC 中可以求出⊙O 半径及 OE ,在Rt △AOF 中可以求出AF,最后利用AD=AF+DF 得以解决此题。
燕山初中数学毕业暨一模考试评卷参考2012.5.2一、 DBBC DAAD 二、三、13. 原式=5-22-1+2-1 ………………………………………4分 = 3-2. ………………………………………………5分 14. 解①得 x >-2, ……………………………………………1分解②得 x ≤3, ……………………………………………2分 ∴ 不等式组的解集是-2 < x ≤3 . ……………………………………………3分数轴上正确表示解集 ……………………………………………5分15. 证明:∵AD ∥BC ,∴ ∠CAD=∠BCA ,即∠EAD=∠BCA. ……………………1分在△ADE 和△CAB 中,又∵∠ADE=∠ADF=∠CAB , AE=BC ,∴△ADE ≌△CAB. …………………………………………3分∴ AD=AC. …………………………………………4分∴ △ACD 是等腰三角形. ……………………………………5分16. 原式=x1x -÷x 12x x 2+- ………………………………………1分=x1x -÷x )1x (2- ………………………………………2分=x1x -·2)1x (x - =1x 1- ……………………………………3分 由x 2 -1=0 ,得x=±1. ……………………………………4分 ∴当x=1时, 原式无意义;DC EA F B当x= -1时,原式= -21………………………………………5分 17. 设目前普通列车的运行速度是x 千米/时, ………………………………1分 依题意,得x280- 8x .2280= 23. ……………………………………2分 解得 x=120. ……………………………………3分 经检验, x=120是原分式方程的根. ……………………………………4分 答: 目前普通列车的运行速度是120千米/时. ………………………………5分18. ⑴证明:Δ= (4k+1)2-4k(3k+3) ……………………………………1分=(2k -1)2∵k 是整数,∴k ≠21,2k -1≠0. ∴Δ= (2k -1)2 >0 ∴方程有两个不相等的实数根. …………………………………2分⑵ y 是k 的函数;解方程得,x=2k)12k ()14k (2-±+.∴x=3,或x=1+k 1. ……………………………………………3分 ∵k 是整数, ∴k 1≤1,1+k1≤2<3.又∵x 1< x 2, ∴x 1=1+k1, x 2=3. …………………………………………4分∴ y=3-(1+k 1)=2-k1. ……………………………………………5分四、19.作BE ⊥CD 于E , ………………………………………………1分∵梯形ABCD 中,AB ∥CD ,AD ⊥AB ,∴四边形ABED 是矩形.∴DE=AB=2,CE=CD -DE=4-2=2. ………………………2分在Rt △BEC 中,又∵BC=4=2CE ,∴∠EBC=30°,CE=2,BE=23. …………………3分 ∴∠B=∠ABC=120°. ………………4分 在Rt △ADC 中,又∵AD=BE∴AC=22CD AD +=1612+=27. ………………………………………5分 20. ⑴ 32 ………………………………………………1分 ⑵ 补图 ………………………………………………2分 ⑶ 67.5° ………………………………………………3分 把扇形统计图补全 ………………………………………………4分 ⑷ 595 ………………………………………………5分21. ⑴证明:连结ON ,∵BP 与⊙O 相切于点N ,A BD E C∴ON ⊥BP, ∠ONP=90°. …………………………………………1分 ∵MN ∥OP,∴∠OMN=∠AOP, ∠MNO=∠NOP.又∵∠OMN =∠MNO, ∴∠AOP =∠NOP. 又∵OA=ON ,OP 公用, ∴△AOP ≌△NOP.∴∠OAP =∠ONP=90°.∴直线PA 与⊙O 相切. ………………………………………………2分.⑵ 设⊙O 的直径是2r.∵M 是AB 的中点,∴BM=2r ,OB=3r.∴BN=22ON OB -=28r =22r. ………………………………………3分 ∵∠PAB =∠ONB=90°,∴△PAB ∽△ONB.∴22r 24r NB AB ON PA ===. …………………………………………4分∴tan ∠AMN= tan ∠AOP=2ON PA OA PA ==. ……………………………5分22.(1)3或4 …………………………………………1分(2)4,或6,或7 ………………………………………3分 (3)11 ………………………………………………4分 (4)5051 …………………………………………5分 五、23.⑴ 图形大体正确,有画图痕迹 …………………………………………1分 ⑵ 由2x =x 2,得x 2=1. ………………………………………………2分 ∵点A 在第一象限,∴x=1.∴点A (1,2). …………………………………3分⑶ 设l 与x 轴交于点P ,与OA 交于点B. ∵ OM=1 ,AM=2 ,AM ⊥x 轴∴OA=5,OB=25………………………………4分 易证Rt △POB ∽Rt △AOM ,∴ OM OB OA OP =.∴OP=25×5=25. PNB M O A·yMO AxNPl B∴点P (25,0). ……………………………………5分 把点A 和P 的坐标分别代入y=kx+b ,得 ⎪⎩⎪⎨⎧=+=+.0b k 25,2b k ………………………………………………6分解得k =34-,b =310.又∵直线AN 必过点P , ∴直线AN 的解析式是y=34-x+310. ……………………………………7分24.⑴ 1,60° …………………………………………2分⑵ 不变化.证明:如图,点E 在AP 的延长线上,∠BPE=α<60°.(3分∵∠BPC=∠CPD+60°,∠DPA=∠CPD+60°, ∴∠BPC=∠DPA. 在△BPC 和△DPA 中, 又∵BP=DP ,PC=PA ,∴△BPC ≌△DPA. …………………………………………4分 ∴∠BCP=∠DAP. ∴∠AMC=180°-∠MCP -∠PCA -∠MAC= 120°-∠BCP -∠MAC=120°-(∠DAP +∠MAC )-∠PCA =120°-∠PAC= 60°,且与α的大小无关. ………………………………………6分⑶ 不变化,60° ………………………………………7分25.⑴ 由2a b -=21-,a=31,得b=31 ………………………………1分 把b =31和点A (1,21)代入y=31x 2+bx+c ,可求得c=61-.∴这条抛物线的解析式是y=31x 2+31x 61-. ………………………………2分⑵设点P (x 0,y 0),则y 0=31x 02+31x 061-.作PM ⊥AF 于M ,得 PF 2=PM 2+MF 2= (x 0+21)2+ (y 0-21)2 又∵y 0=31x 02+31x 061-=31(x 0+21)2-41∴(x 0+21)2=3y 0+43∴PF 2=3y 0+43+ y 02- y 0+41=( y 0+1)2.易知y 0≥-41,y 0+1>0. ∴PF= y 0+1. ……………………………………4分 又∵当直线l 经过点(0,-1)且与x 轴平行时, y 0+1即为点P 到直线l 的距离.∴存在符合题意的直线l . ………………………………………5分 ⑶ 是定值.证明:当PF ∥x 轴时,PF=QF=23,34QF 1PF 1=+. ……………………………6分当PF 与x 轴不平行时,作QN ⊥AF 于N ,∵ △MFP ∽△NFQ ,∴QFQNPF PM =. 再依据第⑵小题的结果,可得QFQF -23PF 23-PF =. ……………………………7分 整理上式,得34QF 1PF 1=+. …………………………………8分。
十五、算法初步
5.(2012年海淀一模理5)执行如图所示的程序框图,输出的k 值是( B ) A .4 B .5 C .6 D .7
2.(2012年西城一模理2)执行如图所示的程序框图,若输入2x =,则输出y 的值为( D ) A .2 B .5 C .11 D .23
4.(2012年东城一模理4)右图给出的是计算100
1
...81614121+
++++的值的一个程序框图,其中判断框内应填入的条件是( B )
A .50>i
B .25>i
C .50<i
D .25<i
13.(2012年丰台一模理13)执行如下图所示的程序框图,则输出的i 值为______.
答案:6.
11.(2012年朝阳一模理11)执行如图所示的程序框图,若输入k的值是4,则输出S的值是 .
答案:3 4
5.(2012年东城11校联考理5)执行如图所示的程序框图,若输出的结果是8,则判断框内m的取值范围是( B)
A.(30,42]
B.(42,56]
C.(56,72]
D.(30,72)
5.(2012年石景山一模理5)执行右面的框图,若输入的N是6,则输出p的值是( B )
A.120
B.720
C.1440
D.5040
5.(2012年房山一模理5)执行如图所示的程序框图,则输出的n的值为( C )
A.5
B.6
C.7
D.8 否是
4.(2012年密云一模理4)阅读右图所示的程序框图.若输入a=6,b=1,则输出的结果
是( B )
A.1 B.2
C.3 D.4。
北京市燕山区中考数学一模试题一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的. 1.5的相反数是A .51 B .5 C .-51D .-5 2.北京燕山石油化工有限公司是我们身边的大型国有企业,投产以来,已累计实现利税372亿元,给国家和人民做出了重大贡献,把该数据用科学记数法表示应为 A .3.72×109元 B .372×108元 C .3.72×108元D .3.72×1010元3.已知一个等腰三角形有两边的长分别为2和5,则它的周长为A .7B .9C .12D .9或124.某市去年九月份第一周连续七天的日平均气温分别为27,25,24,27,24, 28, 24(单位:℃). 这组数据的众数和中位数分别是A .24℃,25℃B .24℃,26℃C .24℃,27℃D .28℃,25℃ 5.下列计算中,正确的是A .()23a = a 5B .3x -2x=1C .2a ·3a = 6a 2D (x+y)2=x 2+y 26.若右图是某几何体的三视图,则这个几何体是A .直棱柱B .圆柱C .球D .圆锥7.某学校大厅的电子显示屏,每间隔2分钟显示一次“年、月、日、星期、时、分”等时间信息,显示时间持续30秒,在间隔时间则动态显示学校当日的其它信息.小明上午到校后,一走进大厅,显示屏上正好显示时间信息的概率是考 生 须 知1.本试卷共4页,共五道大题,25道小题,满分120分,考试时间120分钟。
2.在试卷和答题纸的密封线内认真填写学校名称、班级和姓名。
3.试题答案一律用黑色字迹签字笔书写在答题纸上,在试卷上作答无效。
4.答卷时不能使用计算器。
5.考试结束,请将本试卷和答题纸一并交回。
主视图 左视图俯视图A .21 B .31C .41D .51 8.类比二次函数图象的平移,把双曲线y=x1向左平移2个单位,再向上平移1个单位,其对应的函数解析式变为 A .2x 3x y ++=B .2x 1x y ++=C .2x 1x y -+=D .2x 1x y --= 二、填空题(本题共16分,每小题4分)9.函数y=12x -的自变量取值范围是 .10.已知⊙O 1、⊙O 2的半径分别是2cm 、3cm ,当它们相切时,圆心距O 1 O 2= .11.已知△ABC 中,D 、E 分别是两边AB 和AC 的中点,若△ABC 的面积是8cm 2,则四边形BCED 的面积是 cm 2.12.已知:点F 在正方形纸片ABCD 的边CD 上,AB=2,∠FBC=30°(如图1);沿BF 折叠纸片,使点C 落在纸片内点C '处(如图2);再继续以BC '为轴折叠纸片,把点A 落在三、解答题(本题30分,每小题5分) 13.计算:| 1-3|-(3.14-π) 0+(21)-1-4sin60 °. 14.解不等式232x 4125x ->-,并把它的解集在数轴上表示出来. 15.已知:如图,点D 在AB 的延长线上,AB =DE ,∠A=∠CBE =∠E. 判断△ABC 和△BDE 是否全等? 并证明你的结论. 16.当x =2011时,求代数式1x 2x1x 12--+的值.17.本学期我区中小学组织“社会大课堂”活动,某校安排初三年级学生去周口店“北京人遗址博物馆”参观学习.已知该校距离博物馆约10千米,由于事先租用的汽车少来了一辆,一部分学生只好骑自行车先走,过了20分钟,其余学生再乘汽车出发.汽车的速度是骑自行车学生速度的2倍,结果他们正好同时到达,求骑自行车学生的速度. 18.如图,某一次函数y=kx+b 的图象与一个A D A D D C 'F F F A 'B C B B 图1 图2 图3反比例函数的图象交于A、B两点,点A和点B关于直线y=x对称.(1)求出这个反比例函数的解析式;(2)直接写出点B的坐标;(3)求k和b的值.四、解答题(本题共19分,第19、20、21题各5分,第22题4分)19.在等腰梯形ABCD中,AD∥BC,∠ABC=60°,AB=AD,若它的周长为12 cm,求BC边的长.20.出于研究中小学生减负问题的需要,某地教研室对当地初二年级学生周一至周五每天完成课外作业的大致平均时间进行了抽样调查,下面是根据调查所得数据制作的统计表和组别序号第1组第2组第3组第4组第5组分组范围30分钟以下30~60分钟60~90分钟90~120分钟120分钟以上人数50 125 275 30(1)求一共调查了多少名学生?(2)该地区共有初二学生约8000人,请你根据抽样调查所得数据,估计该地区初二学生中,有多少人完成当天课外作业所需时间不少于90分钟?(3)请把表和图中的缺项补全.21.如图,等腰△ABC中,AE是底边BC上的高,点O在AE上,⊙O与AB和BC分别相切.(1)⊙O是否为△ABC的内切圆?请说明理由.(2)若AB=5, BC=4,求⊙O的半径.22.将正方形ABCD(如图1)作如下划分:第1次划分:分别联结正方形ABCD对边的中点(如图2),得线段HF和EG,它们交于点M,此时图2中共有5个正方形;第2次划分:将图2左上角正方形AEMH按上述方法再作划分,得图3,则图3中共有_______个正方形;若每次都把左上角的正方形依次划分下去,则第100次划分后,图中共有_______个正方形;继续划分下去,能否将正方形ABCD划分成有2011个正方形的图形?需说明理由.五、解答题(本题共23分,第23题8分,第24题8分,第25题7分)23.已知在同一直角坐标系中,直线l :y=x-3k+6与y 轴交于点P ,M 是抛物线C :y=x 2-2 (k+2) x+8k 的顶点.(1)求证:当k ≠2时,抛物线C 与x 轴必定交于两点;(2)A 、B 是抛物线c 与x 轴的两交点,A 、B 在y 轴两侧,且A 在B 的左边,判断:直线l 能经过点B 吗?(需写出判断的过程)(3)在(2)的条件下,是否存在实数k ,使△A BP 和△A BM 的面积相等?如果存在,请求出此时抛物线C 的解析式;若不存在,请说明理由. 24.已知:如图,等边△A BC 中,AB=1,P 是AB 边 上一动点,作PE ⊥BC ,垂足为E ;作EF ⊥AC , 垂足为F ;作FQ ⊥AB ,垂足为Q.(1)设BP=x ,AQ=y ,求y 与x 之间的函数关系式; (2)当点P 和点Q 重合时,求线段EF 的长; (3)当点P 和点Q 不重合,但线段PE 、FQ相交时,求它们与线段EF 围成的三角形 周长的取值范围. 25.已知:如图,在梯形ABCD 中,∠BCD=90°, tan ∠ADC=2,点E 在梯形内,点F 在梯形外,0.5CDABCE BE ==,∠EDC=∠FBC ,且DE=BF . (1)判断△ECF 的形状特点,并证明你的结论; (2)若∠BEC=135°,求∠BFE 的正弦值.燕山初四数学毕业考试评卷参考2011.5.4一、 DDCA CBDA二、 题号 9 10 11 12答案x ≥21 1cm 或5cm62-6A D A H D A H DE M G E M GB C B F C B F C 图1 图2 图3三、13. 原式=3-1-1+2-23 ………………………………………4分= -3. ………………………………………………5分 14. 5x-12>8x-6, ……………………………………………1分 -3x>6, ……………………………………………2分 x<-2.∴ 不等式的解集是x<-2. ……………………………………………3分 数轴上正确表示解集 ……………………………………………5分 15. 全等 ……………………………………………1分 证明:∵∠CBE =∠E ,∴ BC ∥DE. …………………………………………2分又∵点D 在AB 的延长线上,∴∠CBA=∠D. ……………………………………3分在△ABC 和△EDB 中,又∵∠A=∠E, AB=DE, ……………………………………4分 ∴△ABC ≌△EDB. ………………………………5分16. 原式=1)-x )(1x (2x -1x 1++ ………………………………………1分=1)-1)(x x (2x -1-x + (2)分=1)-1)(x x (1-x -+ (3)分= -1-x 1……………………………………4分∴当x=2011时,原式= -1-20111= -20101 ………………………………………5分17. 设骑自行车学生的速度是x 千米/时. ………………………………1分 依题意,得312x 10-x 10=. ……………………………………2分解得 x=15. ……………………………………3分 经检验, x=15是原分式方程的根. ……………………………………4分 答: 骑自行车同学的速度是15千米/时. ………………………………5分 18. ⑴ 由题意,可认定点A 的坐标是(-1, 2), 把x = -1, y=2代入y=xm , 解得m= -2.∴ 反比例函数的解析式是y= -x2. ………………………………2分 ⑵ 点B (2, -1). ……………………………………………3分 ⑶ 把点A(-1,2)、B (2, -1)分别代入y=kx+b , 得 ⎩⎨⎧-=+=+.122,b k -b k ……………………………………………4分解得,k= -1,b=1. ……………………………………………5分四、19. 能正确画出图形 ………………………………………………1分 作DE ∥AB 交BC 与E ,则∠DEC=∠B=60°, ………………………2分 又∵在等腰梯形ABCD 中,AD ∥BC. ∴ DE=AB =CD ,且AD=BE . ∴△CDE 是等边三角形. 又∵AB =AD ,∴CE=CD=AD=BE=AB. ………………………………………………3分 依题意,AB+AD+CD+CE+BE=12cm , ………………………………4分 即 5BE=12cm , ∴ BE=2.4cm∴ BC 边的长为4.8cm. ………………………………………………5分 20. ⑴ 500 ………………………………………………1分 ⑵ 4880 ………………………………………………2分 ⑶ 表中空格填“20” ………………………………………………3分 把扇形统计图补全 ………………………………………………5分21. ⑴ 是 …………………………………………1分 理由是:∵⊙O 与AB 相切,把切点记作D. 联结OD ,则OD ⊥AB 于D. 作OF ⊥AC 于F , ∵AE 是底边BC 上的高, ∴AE 也是顶角∠BAC 的平分线. ∴OF=OD=r 为⊙O 的半径. ∴⊙O 与AC 相切于F. 又∵ ⊙O 与BC 相切,∴⊙O 是△ABC 的内切圆. ………………………………………………2分⑵ ∵OE ⊥BC 于E , ∴点E 是切点,即OE=r. 由题意,AB=5,BE=21AB=2, ∴ AE=222-5=21. ………………………………………3分A DB EF∵Rt △AOD ∽Rt △ABE , ∴BEODAB OA =, ………………………………………………4分 即2r5r -21=.解得,r=7212.∴ ⊙O 的半径是7212. (5)分22. 第2次划分,共有9个正方形; …………………………………………1分第100次划分后,共有401个正方形; ………………………………………2分依题意,第n 次划分后,图中共有4n+1个正方形, …………………………3分而方程4n+1=2011没有整数解,所以,不能得到2011个正方形. …………………………………………4分五、23.⑴ 证明:在抛物线C 中, Δ=4 (k+2)2-32k =4k 2-16k+16 =4 (k-2)2 .………………………………………………1分∵当k ≠2时,4 (k-2)2>0,∴方程x 2-2(k+2) x+8k=0有两个不相等的实数根.∴ 当k ≠2时,抛物线C 与x 轴必定交于两点. …………………………2分 ⑵ 解方程x 2-2(k+2) x+8k=0,得 x 1=4,x 2=2k. ………………………………………………3分 ∵点A 、B 在y 轴两侧,且A 在B 的左边,∴k <0,点B (4,0). ………………………………………………4分 把点B (4,0)代入y=x-3k+6,得 k=310>0,与“k <0”不符.∴ 直线l 不可能经过点B. ………………………………………………5分 ⑶ y=x 2-2(k+2) x+8k =[x-(k+2)]2-(k-2)2,作MH ⊥x 轴于H ,则MH=(k-2)2. ………………………………………6分 ∵k <0, ∴-3k+6>0. ∴OP= -3k+6.由S △ABP =S △ABM ,得 -3k+6=(k-2)2…………………………………7分解得 k 1= -1,k 2= 2(舍去)∴存在实数k= -1,使得S △ABP =S △ABM .此时,抛物线C 的解析式是y=x 2-2x-8. …………………………………8分24.⑴∵△ABC 是等边三角形,AB=1.∴∠A=∠B=∠C=60°, BC=CA=AB=1. …………………………………1分又∵∠BEP=∠CFE=∠FQA=90°, BP=x.∴BE=21x, CE=1-21x, CF=21-41x, AF=1-(21-41x)=21+41x.∴AQ=21AF=21(21+41x),∴ y=81x+41. …………………………………………2分 ⑵由方程组⎪⎩⎪⎨⎧+==+.41x 81y 1,y x …………………………………………3分得x =32. ……………………………………………4分∴当点P 和点Q 重合时,x =32, ∴EF=3CF=3(21-41x)=33. …………………………………………5分⑶设线段PE 、FQ 相交于点M ,易证△MEF 是等边三角形, …………………………………………6分且当点P 和点A 重合时,EF 最短为43. ……………………………7分∴433≤ m <3. …………………………………………8分25.⑴ 是等腰直角三角形. …………………………………………1分证明:作AH ⊥CD 于H ,∵梯形ABCD 中,∠BCD=90°,tan ∠ADC=2,即∠ADC ≠90°.∴ AB ∥CD ,AH=BC ,AB=CH. …………………………………………2分又∵0.5CDAB,即CH+DH=2AB=2CH ∴ DH=CH ,CD=2DH. ∵ tan ∠ADC=DHAH=2, ∴ AH=2DH=CD=BC. …………………………………………3分 在△EDC 和△FBC 中, 又∵∠EDC=∠FBC ,DE=BF , ∴△EDC ≌△FBC. ∴CE=CF, ∠ECD=∠FCB. ∵∠ECD+∠ECB=∠BCD=90°, ∴∠FCB+∠ECB=90°,即∠ECF=90°.∴△ECF 是等腰直角三角形. ……………………………………4分 ⑵ ∵ 在等腰Rt △ECF 中,∠ECF=90°, ∴ ∠CEF=45°,CE=22EF. ………………………………………5分 又∵∠BEC=135°,CEBE=0.5 ,∴ ∠BEF=90°,EF BE=42. ………………………………………6分不妨设BE=2,EF= 4,则BF=18.∴sin ∠BFE=BF BE =182=31. ………………………………………7分。
俯视图正视图十八、空间几何体 第一部分 三视图4.(2012年西城一模理4)已知正六棱柱的底面边长和侧棱长相等,体积为3. 其三视图中的俯视图如图所示,则其左视图的面积是( A ) A .2 B .2 C .28cm D .24cm5.(2012年丰台一模理5)若正四棱锥的正视图和俯视图如右图所示,则该几何体的表面积是( B )A.4B.4+4+10.(2012年朝阳一模理10) 已知某几何体的三视图如图所示,则该几何体的体积为 . 答案:32正视图侧视图6.(2012年东城11校联考理6)一个几何体的三视图如图所示,则此几何体的体积是( B ) A .112 B.80 C.72 D.647.(2012年石景山一模理7)某几何体的三视图如图所示,则它的体积是( A )A.83+B.83+C.83+D.323俯视图 侧视图10.(2012年房山一模10)一个几何体的三视图如图所示,则这个几何体的体积为 . 答案:32。
11.(2012年密云一模理11)已知某几何体的三视图如右图所示,则该几何体的体积 为 . 答案:32。
第第11题图 第12题图C3.(2012年门头沟一模理3)己知某几何体的三视图如右图所示,则其体积为( B ) A.8 B.4 C.主视图 左视图俯视图第二部分 立体几何4.(2012年朝阳一模理4)已知平面α,直线,,a b l ,且,a b αα⊂⊂,则“l a ⊥且l b ⊥”是“l α⊥”的( B )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件3.(2012年东城11校联考理3)已知直线m ,n 与平面α,β,下列命题正确的是 ( D )A .βα//,//n m 且βα//,则n m //B .βα//,n m ⊥且β⊥α,则n m ⊥C .,βm n m =⊥α且βα⊥,则α⊥n D .βα⊥⊥n m ,且βα⊥,则n m ⊥4.(2012年石景山一模理4)设n m ,是两条不同的直线,γβα,,是三个不同的平面,下列命题正确的是( D )A.αα//,//,//n m n m 则若B.βαγβγα//,,则若⊥⊥C.n m n m //,//,//则若ααD.n m n m ⊥⊥则若,//,αα4.(2012年东城11校联考理4)甲从正四面体的四个顶点中任意选择两个顶点连成直线, 乙从该正四面体四个顶点中任意选择两个顶点连成直线,则所得的两条直线相互垂直的概率是( A ) A.61 B. 92 C. 185 D. 318.(2012年海淀一模理8)在正方体''''ABCD A B C D -中,若点P (异于点B )是棱上一点,则满足BP 与'AC 所成的角为45°的点P 的个数为( B )A .0B .3C .4D .616.(2012年海淀一模理16)在四棱锥P ABCD -中,AB //CD ,AB AD ^,4,2AB AD CD ===,PA ^平面ABCD ,4PA =. (Ⅰ)设平面PAB平面PCD m =,求证:CD //m ; (Ⅱ)求证:BD ⊥平面PAC ;(Ⅲ)设点Q 为线段PB 上一点,且直线QC 与平面PAC所成角的正弦值为3,求PQPB的值.A'B'C'D'ABCDPDCBA证明:(Ⅰ) 因为AB //CD ,CD ⊄平面PAB ,AB ⊂平面PAB ,所以CD //平面PAB . 因为CD ⊂平面PCD ,平面PAB平面PCD m =,所以CD //m .(Ⅱ):因为AP ^平面ABCD ,AB AD ^,所以以A 为坐标原点,,,AB AD AP 所在的直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,则(4,0,0)B ,(0,0,4)P,(0,D,(2,C . 所以(4,BD =-,(2,AC =,(0,0,4)AP =,所以(4)2000BD AC ⋅=-⨯+⨯=,(4)00040BD AP ⋅=-⨯++⨯=.所以 BD AC ⊥,BD AP ⊥.因为 AP AC A =,AC ⊂平面PAC ,PA ⊂平面PAC ,所以 BD ⊥平面PAC .(Ⅲ)解:设PQPBλ=(其中01λ#),(,,)Qxyz ,直线QC 与平面PAC 所成角为θ. 所以 PQ PB λ=.所以 (,,4)(4,0,4)x y z λ-=-.所以 4,0,44,x y z λλì=ïïï=íïï=-+ïïî即(4,0,44)Q λλ-+.所以(42,44)CQ λλ=---+.由(Ⅱ)知平面PAC的一个法向量为(4,BD =-.因为 sin cos ,CQ BD CQ BD CQ BDθ×=<>=×,所以3=. 解得 7[0,1]12λ=∈. 所以 712PQ PB =.17.(2012年西城一模理17)如图,四边形ABCD 与BDEF 均为菱形, ︒=∠=∠60DBF DAB ,且F A F C =.(Ⅰ)求证:AC ⊥平面BDEF ;(Ⅱ)求证:FC ∥平面EAD ;(Ⅲ)求二面角B FC A --的余弦值.证明:(Ⅰ)设AC 与BD 相交于点O ,连结FO .因为 四边形ABCD 为菱形,所以BD AC ⊥, 且O 为AC 中点.又 FC FA =,所以 AC FO ⊥. 因为 O BD FO = ,所以 ⊥AC 平面BDEF . (Ⅱ)因为四边形ABCD 与BDEF 均为菱形,所以AD //BC ,DE //BF ,所以 平面FBC //平面EAD . 又⊂FC 平面FBC ,所以FC // 平面EAD . 解:(Ⅲ)因为四边形BDEF 为菱形,且︒=∠60DBF ,所以△DBF 为等边三角形.因为O 为BD 中点,所以BD FO ⊥,故FO ⊥平面ABCD .由OF OB OA ,,两两垂直,建立如图所示的空间直角坐标系xyz O -. 设2=AB .因为四边形ABCD 为菱形,︒=∠60DAB ,则2=BD ,所以1OB =,OA OF ==所以 )3,0,0(),0,0,3(),0,1,0(),0,0,3(),0,0,0(F C B A O-. 所以 (3,0,CF =,(3,1,0)CB =.设平面BFC 的法向量为=()x,y,z n ,则有0,0.CF CB ⎧⋅=⎪⎨⋅=⎪⎩n n所以 ⎩⎨⎧=+=+.03,033y x z x 取1=x ,得)1,3,1(--=n .易知平面AFC 的法向量为(0,1,0)=v .由二面角B FC A --是锐角,得cos ,⋅〈〉==n v n v n v. 所以二面角B FC A --的余弦值为515. 17.(2012年东城一模理17)如图1,在边长为3的正三角形ABC 中,E ,F ,P 分别为AB ,AC ,BC 上的点,且满足1AE FC CP ===.将△AEF 沿EF 折起到△1A EF 的位置,使二面角1A EF B --成直二面角,连结1A B ,1A P .(如图2) (Ⅰ)求证:E A 1⊥平面BEP ;(Ⅱ)求直线E A 1与平面BP A 1所成角的大小.图1 图2证明:(Ⅰ)取BE 中点D ,连结DF .因为1AE CF ==,1DE =,所以2AF AD ==,而60A ∠=,即△ADF 是正三角形. 又因为1AE ED ==, 所以EF AD ⊥. 所以在图2中有1A E EF ⊥,BE EF ⊥. 所以1A EB ∠为二面角1A EF B --的平面角. 又二面角1A EF B --为直二面角, 所以1A E BE ⊥. 又因为BEEF E =,所以1A E ⊥平面BEF ,即1A E ⊥平面BEP .解:(Ⅱ)由(Ⅰ)可知1A E ⊥平面BEP ,BE EF ⊥,如图,以E 为原点,建立空间直角坐标系E xyz -,则(0,0,0)E ,1(0,0,1)A ,(2,0,0)B ,,0)F 在图1中,连结DP . 因为12CF CP FA PB ==,所以PF∥BE,且12PF BE DE==.所以四边形EFPD为平行四边形.所以EF∥DP,且EF DP=.故点P的坐标为(10). 图2所以1(2,0,1)A B=-,(BP=-,1(0,0,1)EA=.不妨设平面1A BP的法向量(,,)x y z=n,则10,0.A BBP⎧⋅=⎪⎨⋅=⎪⎩nn即20,0.x zx-=⎧⎪⎨-=⎪⎩令y=(3,6)=n.所以111cos,||||14EAEAEA⋅<>===⨯nnn故直线1A E与平面1A BP所成角的大小为3π.16. (2012年丰台一模理16)四棱锥P—ABCD中,底面ABCD是边长为2的菱形,侧面PAD⊥底面ABCD,∠B CD=60º,,E是BC中点,点Q在侧棱PC上.(Ⅰ)求证:AD⊥PB;(Ⅱ)若Q是PC中点,求二面角E-DQ-C的余弦值;(Ⅲ)若PQPCλ=,当PA // 平面DEQ时,求λ的值.证明:(Ⅰ)取AD中点O,连结OP,OB,BD.因为 PA=PD,所以 PO⊥AD.…………1分ED CBAQPPQ因为 菱形ABCD 中,∠B CD =60º, 所以 AB=BD ,所以 BO ⊥AD . …………2分 因为 BO ∩PO=O , …………3分 所以 AD ⊥平面POB .………4分 所以 AD ⊥PB . …………5分 解:(Ⅱ)由(Ⅰ)知BO ⊥AD ,PO ⊥AD .因为 侧面PAD ⊥底面ABCD , 且平面PAD ∩底面ABCD=AD ,所以PO ⊥底面ABCD . ………6分以O 为坐标原点,如图建立空间直角坐标系O-……7分则(1,0,0)D -,(E -,(0,0,1)P , (C -,因为Q 为PC 中点, 所以1()2Q -. ……8分 所以 DE =,1(0,)2DQ =, 所以平面DEQ 的法向量为1(1,0,0)n =. 因为 (DC =-,1(0,)2DQ =, 设平面DQC 的法向量为2(,,)n x y z =, 则220,DC n DQ n ⎧⋅=⎪⇔⎨⋅=⎪⎩0,10.22x y z ⎧-=+=⎪⎩ 令x =1y =,z =2(3,1,n =. …9分12121221cos ,7||||n n n n n n ⋅<>==.由图可知,二面角E-DQ-C 为锐角,所以余弦值为7. …10分 (Ⅲ)因为PQPCλ=,所以 PQ PC λ=, 由(Ⅱ)知(1)PC =--,(1,0,1)PA =-,C若设(,,)Q x y z ,则(,,1)PQ x y z =-,由 PQ PC λ=,得21x y z λλ=-⎧⎪=⎨⎪=-+⎩,在平面DEQ中,DE =,(1,,)(12,1)DQ x y z λλ=+=--,所以平面DEQ 法向量为1(1,0,21)n λλ=--, …12分 又因为 PA // 平面DEQ , 所以 10PA n ⋅=, ……13分 即(1)(1)(21)0λλ-+--=,得23λ=. 所以,当23λ=时,PA // 平面DEQ . …14分17.(2012年朝阳一模理17)在如图所示的几何体中,四边形ABCD 为平行四边形,=90ABD ∠︒,EB ⊥平面ABCD ,EF//AB ,=2AB,==1EB EF,=BC M 是BD 的中点.(Ⅰ)求证:EM//平面ADF ;(Ⅱ)求二面角D-AF-B 的大小;(Ⅲ)在线段EB 上是否存在一点P ,使得CP 与AF 所成的角为30︒?若存在,求出BP 的长度;若不存在,请说明理由.证明:(Ⅰ)取AD 的中点N ,连接MN,NF .在△DAB 中,M 是BD 的中点,N 是AD 的中点,所以1=2MN//AB,MN AB , 又因为1=2EF//AB,EF AB ,所以MN//EF 且MN =EF .所以四边形MNFE 为平行四边形, 所以EM//FN .又因为FN ⊂平面ADF ,⊄EM 平面ADF ,CA F EBMD NCA F EBMD故EM//平面ADF. … 4分解法二:因为EB⊥平面ABD,AB BD⊥,故以B为原点,建立如图所示的空间直角坐标系-B xyz. ……1分由已知可得(0,0,0),(0,2,0),(3,0,0),B A D3(3,-2,0),(,0,0)2C E F M(Ⅰ)3=(,0,-3)(3,-2,0)2EM,AD=,设平面ADF的一个法向量是()x,y,zn=.由0,0,ADAFnn⎧⋅=⎪⎨⋅=⎪⎩得32x-y=0,=0.⎧⎪⎨⎪⎩令y=3,则n=. …3分又因为3(=3+0-3=02EM n⋅=⋅,所以EM n⊥,又EM⊄平面ADF,所以//EM平面ADF. ……4分(Ⅱ)由(Ⅰ)可知平面ADF的一个法向量是n=.因为EB⊥平面ABD,所以EB BD⊥.又因为AB BD⊥,所以BD⊥平面EBAF.故(3,0,0)BD=是平面EBAF的一个法向量.所以1cos<=2BDBD,BDnnn⋅>=⋅,又二面角D-AF-B为锐角,故二面角D-AF-B的大小为60︒. …10分(Ⅲ)假设在线段EB上存在一点P,使得CP与AF所成的角为30︒.不妨设(0,0,t)P(0t≤≤,则=(3,-2,-),=PC AFt.所以2cos<2PC AFPC,AFPC AF⋅>==⋅,=,化简得35-=,解得0t=<.所以在线段EB上不存在点P,使得CP与AF所成的角为30︒.……14分17.(2012年东城11校联考理17)如图,四棱锥P ABCD -中,底面ABCD 是直角梯形,90DAB ∠=,//AD BC ,AD ⊥侧面PAB ,△PAB 是等边三角形,2==AB DA ,12BC AD =,E 是线段AB 的中点.(1)求证:CD PE ⊥;(2)求四棱锥P ABCD -的体积;(3)试问线段PB 上是否存在点F ,使二面角C DE F --的余弦值为41?若存在,确定点F 的位置;若不存在,说明理由.证明:(1)因为AD ⊥侧面PAB ,PE ⊂平面PAB , 所以AD PE ⊥.又因为△PAB 是等边三角形,E 是线段AB 的中点,所以PE AB ⊥. 因为ADAB A =,所以PE ⊥平面ABCD .而CD ⊂平面ABCD ,所以PE CD ⊥. ……4分解:(2)由(1)知PE ⊥平面ABCD ,所以PE 是四棱锥P ABCD -的高.由2==AB DA ,12BC AD =,可得1=BC . 因为△PAB 是等边三角形,可求得3=PE .所以332)21(213131=⨯⨯+⨯=⋅=-PE S V ABCD ABCD P .……8分(3)以E 为原点,建立如图所示的空间直角坐标系E xyz -.(0,1,0),(0,0,0)(01,0),(11,0),(2,1,0),(0,0A E B C D P --则有,,,设000(,,),F x y z PF PB=λ,则)3,1,0()3,,(--=-λzyx(0,)F-λ所以.设(,,x y z=)n为平面DEF的法向量,(2,1,0),(0,),ED EF==-λ0,0,EDEF⎧⋅=⎪⎨⋅=⎪⎩nn200.x yy z+=⎧⎪⎨-λ+=⎪⎩,即)x1y2z⎧⎪=⎪⎪=-⎨⎪⎪=⎪⎩,所以,(1,=-所以n.设平面CDE的法向量为(0,0,1=)m.1cos,4m n==所以.化简得01232=-+λλ.解得311=-=λλ(舍)或.所以存在点F,且PBPF31= .………13分17.(2012年石景山一模理17)如图,三棱柱111CBAABC-中,1AA⊥面ABC,2,==⊥ACBCACBC,13AA=,D为AC的中点.(Ⅰ)求证:11//BDCAB面;(Ⅱ)求二面角CBDC--1的余弦值;(Ⅲ)在侧棱1AA上是否存在点P,使得1BDCCP面⊥?请证明你的结论.B1 B证明:(I )连接B 1C ,与BC 1相交于O ,连接OD . …1分 ∵BCC 1B 1是矩形,∴O 是B 1C 的中点. 又D 是AC 的中点,∴OD//AB 1.∵AB 1⊄面BDC 1,OD ⊂面BDC 1,∴AB 1//面BDC 1. 解:(II )如图,建立空间直角坐标系, 则C 1(0,0,0),B (0,3,2), C (0,3,0),A (2,3,0), D (1,3,0),1(0,3,2)C B =,1(1,3,0)C D =,……5分设111(,,)n x y z =是面BDC 1的一个法向量,则110,0n C B n C D ⎧=⎪⎨=⎪⎩即1111320,30y z x y +=⎧⎨+=⎩,取11(1,,)32n =-.…7分 易知1(0,3,0)C C =是面ABC 的一个法向量. ……8分1112cos ,7n C C n C C n C C==-⨯.∴二面角C 1—BD —C 的余弦值为27. ……9分 (III )假设侧棱AA 1上存在一点P 使得CP ⊥面BDC 1.设P (2,y ,0)(0≤y ≤3),则 (2,3,0)CP y =-, …10分则110,0CP C B CP C D ⎧=⎪⎨=⎪⎩,即3(3)0,23(3)0y y -=⎧⎨+-=⎩. …12分解之3,73y y =⎧⎪⎨=⎪⎩∴方程组无解. ……13分∴侧棱AA 1上不存在点P ,使CP ⊥面BDC 1. …14分17.(2012年房山一模17)在直三棱柱111ABC A B C -中,1BC CC AB ===2 ,BC AB ⊥.点N M ,分别是1CC ,C B 1的中点,G 是棱AB 上的动点.(I )求证:⊥C B 1平面BNG ;(II)若CG //平面M AB 1,试确定G 点的位置,并给出证明;(III)求二面角1M AB B --的余弦值.证明:(I)∵在直三棱柱111ABC A B C -中,1CC BC =,点N 是C B 1的中点,∴C B BN 1⊥ …………1分BC AB ⊥,1BB AB ⊥,B BC BB = 1∴AB ⊥平面11BCC B …………2分⊂C B 1平面11BCC B∴AB C B ⊥1,即GB C B ⊥1 ……………3分 又B BG BN =∴⊥C B 1平面BNG …………4分(II )当G 是棱AB 的中点时,CG //平面M AB 1.……………5分 证明如下:连结1AB ,取1AB 的中点H ,连接GC HM HG ,,, 则HG 为B AB 1∆的中位线 ∴GH ∥1BB ,121BB GH =………6分 ∵由已知条件,11BCC B 为正方形 ∴1CC ∥1BB ,11BB CC = ∵M 为1CC 的中点,∴121CC CM =……7分 ∴MC ∥GH ,且GH MC = ∴四边形HGCM 为平行四边形 ∴GC ∥HM又 ∵M AB HM M AB GC 11,平面平面⊄⊂ ……8分 ∴CG //平面M AB 1 ………9分 解:(III) ∵ 直三棱柱111ABC A B C -且BC AB ⊥依题意,如图:以1B 为原点建立空间直角坐标系1B xyz -,…10分∴1(0,0,0)B ,(0,2,0)B ,)0,1,2(M ,(0,2,2)A ,1(2,0,0)C则1(0,2,2)B A =,)0,1,2(1=B 设平面1B AM 的法向量(,,)n x y z =,则1100n B A n B M ⋅=⋅⎧⎪=⎨⎪⎩,即00222x y z y ⎧⎨+=+=⎩,令1=x ,有)2,2,1(-=n ………12分 又平面1B AB 的法向量为11(2,0,0)BC =,∴11cos ,BC n <>=1111B C n B C n⋅⋅=31, ……13分设二面角1M AB B --的平面角为θ,且θ为锐角∴111cos cos ,3B C n θ=-=. ……14分16.(2012年密云一模理16)如图,已知E ,F 分别是正方形ABCD 边BC 、CD 的中点,EF 与AC 交于点O ,PA 、NC 都垂直于平面ABCD ,且4PA AB ==,2NC =,M 是线段PA 上一动点.(Ⅰ)求证:平面PAC ⊥平面NEF ;(Ⅱ)若//PC 平面MEF ,试求:PM MA 的值;(Ⅲ)当M 是PA 中点时,求二面角M EF N --的余弦值.证明:(Ⅰ)连结BD ,∵PA ⊥平面ABCD ,BD ⊂平面ABCD ,∴PA BD ⊥, 又∵BD AC ⊥,AC PA A =,∴BD ⊥平面PAC ,又∵E ,F 分别是BC 、CD 的中点,∴//EF BD , ∴EF ⊥平面PAC ,又EF ⊂平面NEF , ∴平面PAC ⊥平面NEF ; ……4分 解:(Ⅱ)建立如图所示的直角坐标系,则(0,0,4)P ,(4,4,0)C ,(4,2,0)E ,(2,4,0)F ,∴(4,4,4)PC =-,(2,2,0)EF =-,设点M 的坐标为(0,0,)m ,平面MEF 的法向量为(,,)n x y z =,则(4,2,)ME m =-,所以00n ME n EF ⎧⋅=⎪⎨⋅=⎪⎩,即420220x y mz x y +-=⎧⎨-+=⎩,令1x =,则1y =,6z m =,故6(1,1,)n m=,第16题图第16题图用心 爱心 专心∵//PC 平面MEF ,∴0PC n ⋅=,即24440m+-=,解得3m =, 故3AM =,即点M 为线段PA 上靠近P 的四等分点;故:1:3PM MA = ----8分(Ⅲ)(4,4,2)N ,则(0,2,2)EN =,设平面NEF 的法向量为(,,)m x y z =,则00m EN m EF ⎧⋅=⎪⎨⋅=⎪⎩,即220220y z x y +=⎧⎨-+=⎩,令1x =,则1y =,1z =-,即(1,1,1)m =-, 当M 是PA 中点时,2m =,则(1,1,3)n =,∴cos ,m n <>== ∴二面角M EF N --的余弦值为.----14分16.(2012年门头沟一模理16)如图,在多面体ABCD EF -中,四边形ABCD 为正方形,//EF AB ,EF EA ⊥,2AB EF =,090AED ∠=,AE ED =,H 为AD 的中点.(Ⅰ)求证://EH 平面FAC ;(Ⅱ)求证:EH ⊥平面ABCD ;(Ⅲ)求二面角A FC B --的大小.证明:(Ⅰ)ACBD O =,连结HO ,FO因为ABCD 为正方形,所以O 是AC 中点,EDABCFH用心 爱心 专心 22又H 是AD 中点, 所以1//,2OH CD OH CD =,1//,2EF AB EF AB =, 所以//EF OH 且EF OH =, 所以四边形EHOF 为平行四边形, 所以//EH FO ,又因为FO ⊂平面FAC ,EH ⊄平面FAC . 所以//EH 平面FAC .……………4分 证明:(Ⅱ)因为AE ED =,H 是AD 的中点, 所以EH AD ⊥……………6分又因为//AB EF ,EF EA ⊥,所以AB EA ⊥ 又因为AB AD ⊥ 所以AB ⊥平面AED , 因为EH ⊂平面AED , 所以AB EH ⊥,……………8分 所以EH ⊥平面ABCD .……………9分解:(Ⅲ)AC ,BD ,OF 两两垂直,建立如图所示的坐标系,设1EF =, 则2AB =,B,(C ,(0,0,1)F …………10分设平面BCF 的法向量为1(,,)n x y z =, (2,2,0),(2,0,1)BC CF =--=,110,0n BC n CF ⋅=⋅=所以 1(1,1n =- …………11分 平面AFC 的法向量为2(0,1,0)n = ………12分1212121cos ,2n n n n n n ⋅<>==⋅. ………13分二面角A FC B --为锐角,所以二面角A FC B --等于3π.……………14分。
GEB A顺义区2012届初三第一次统一练习数学试卷考生须知 1.本试卷共5页,共五道大题,25道小题,满分120分.考试时间120分钟. 2.在试卷和答题卡上准确填写学校名称、姓名和准考证号. 3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.4.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答. 5.考试结束,将本试卷、答题卡和草稿纸一并交回.一、选择题(本题共32分,每小题4分) 下面各题均有四个选项,其中只有一个..是符合题意的. 1.-3的相反数是A .3B .-3C .3±D .132.中国人民银行决定,从2012年2月24日起,下调存款类金融机构人民币存款准备金率0.5个百分点.本次下调后,央行一次性释放约4 000亿元人民币的资金.请把4 000亿元用科学记数法表示应为A .110.410⨯元B .11410⨯元C .114010⨯元D . 12410⨯元 3.下列图形中,是中心对称图形而不是轴对称图形的是A .等边三角形B .矩形C .菱形D .平行四边形 4.下列运算正确的是A .22423a a a +=B .2242a a a-=C .22422a a a=D .2222a a a ÷=5.某个公司有15名工作人员,他们的月工资情况如下表.则该公司所有工作人员的月工资的平均数、中位数和众数分别是 A .520,2 000,2 000 B .2 600, 800,800 C .1 240,2 000,800 D .1 240,800,800职务 经理 副经理 职员 人数 1 2 12 月工资(元)5 0002 000800EDBCA 6.如图,AB ∥CD ,点E 在AB 上,点F 在CD 上,且90F E G ∠=︒,55E F D ∠=︒,则A E G ∠的度数是A .25°B .35°C .45°D .55 °7.一个不透明的口袋里有4张形状完全相同的卡片,分别写有数字1,2,3,4,口袋外有两张卡片,分别写有数字2,3,现随机从口袋里取出一张卡片,求这张卡片与口袋外的两张卡片上的数能构成三角形的概率是A .14B .12C .34D .18.如图,在Rt △ABC 中,90A C B ∠=︒,60A ∠=︒,AC =2,D 是AB 边上一个动点(不与点A 、B 重合),E 是BC 边上 一点,且30C D E ∠=︒.设AD=x , BE=y ,则下列图象中, 能表示y 与x 的函数关系的图象大致是二、填空题(本题共16分,每小题4分)9.若2(2)0m n m ++-=,则m n -的值是 . 10.分解因式:3225105x x y xy -+= . 11.如图,用测角仪测得校园的旗杆顶点A 的仰角45α=︒,仪器高1.4C D =米,测角仪底部中心位置D 到旗杆根部B 的距离10B D =米,则旗杆AB 的高是 米.12.如图,菱形ABCD 中,AB =2 ,∠C =60°,我们把菱形ABCD 的对称中心称作菱形的中心.菱形ABCD 在直线l 上向右作无滑动的翻滚,每绕着一个顶点旋转60°叫一次操作,则经过1次这样的操作菱形中心O 所经过的路径长为 ;经过18次这样的操作菱形中心OOA B ClD αDCBA所经过的路径总长为 ;经过3n (n 为正整数)次这样的操作菱形中心O 所经过的路径总长为 .(结果都保留π)三、解答题(本题共30分,每小题5分) 13.计算:()1272cos 30(3)3--︒+--.14.解方程组:2,2 1.x y x y +=⎧⎨-=⎩15.已知:如图,在A B C △中,AB=AC ,点D 、E 在BC 上,且BD=CE .求证:∠ADE =∠AED .16.已知2012x =,求代数式6931x x x x -⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭的值.17.如图,在平面直角坐标系xOy 中,反比例函数4y x=(0x >)的图象与一次函数y x b =-+的图象的一个交点为(4,)A m . (1)求一次函数的解析式;(2)设一次函数y x b =-+的图象与y 轴交于点B ,P 为一次函数y x b =-+的图象上一点,若O B P △的面积为5,求点P的坐标.18.列方程或方程组解应用题:在城区改造项目中,区政府对某旧小区进行节能窗户改造.该小区拥有相同数量的A 、B 两种户型.已知所有A 户型窗户改造的总费用为54万元,所有B 户型窗户改造的总费用为48万元,且B 户型窗户的每户改造费用比A 户型窗户的每户改造费用便宜500元.问A 、B 两种户型的每户窗户改造费用各为多少元?ED CBAF EDA四、解答题(本题共20分,每小题5分)19.如图,在□ABCD 中,E 是对角线AC 的中点,EF ⊥AD 于F ,∠B=60°,AB=4,∠ACB=45°,求DF 的长.20.如图,C 是⊙O 的直径AB 延长线上一点,点D 在⊙O上,且∠A=30°,∠BDC =12A B D ∠.(1)求证:CD 是⊙O 的切线;(2)若OF ∥AD 分别交BD 、CD 于E 、F ,BD =2,求OE 及CF 的长.21.某中学准备搬迁新校舍,在迁入新校舍之前,同学们就该校学生如何到校问题进行了一次调查,并将调查结果制成了表格、条形统计图和扇形统计图(不完整),请你根据图表信息完成下列各题: (1)此次共调查了多少名学生?(2)请将表格填充完整;(3)请将条形统计图和扇形统计图补充完整.到校方式条形统计图到校方式扇形统计图22.问题背景(1)如图1,△ABC 中,DE ∥BC 分别交AB ,AC 于D ,E 两点,过点D 作DF ∥AC 交BC 于点F .请按图示数据填空:四边形DFCE 的面积S = ,步行 骑自行车 坐公共汽车 其他20FE DCO BA△DBF 的面积1S = , △ADE 的面积2S = .探究发现(2)在(1)中,若BF a =,FC b =,D G与BC 间的距离为h .直接写出2S = (用含S 、1S 的代数式表示).拓展迁移(3)如图2,□DEFG 的四个顶点在△ABC 的三边上,若△ADG 、△DBE 、△GFC 的面积分别为4、8、1,试利用..(2.)中的结论....求□DEFG 的面积,直接写出结果.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23.已知关于x 的方程032)1(2=+++-k kx x k .(1)若方程有两个不相等的实数根,求k 的取值范围;(2)当方程有两个相等的实数根时,求关于y 的方程2(4)10y a k y a +-++=的整数根(a 为正整数).24.如图,在平面直角坐标系xOy 中,抛物线y =mx 2+2mx +n 经过点A(-4,0)和点B (0,3). (1)求抛物线的解析式;(2)向右平移上述抛物线,若平移后的抛物线仍经过点B ,求平移后抛物线的解析式; (3)在(2)的条件下,记平移后点A 的对应点为A’,点B 的对应点为B’,试问:在平移后的抛物线上是否存在一点P ,使'O A P △的面积与四边形AA ’B ’B 的面积相等,若存在,求出点P 的坐标;若不存在,说明理由.25.问题:如图1, 在Rt △ABC 中,90C ∠=︒,30ABC ∠=︒,点D 是射线CB 上任意一点,△ADE是等边三角形,且点D 在AC B ∠的内部,连接BE .探究线段BE 与DE 之间的数量关系. 请你完成下列探究过程:先将图形特殊化,得出猜想,再对一般情况进图1D EBCA行分析并加以证明.(1) 当点D 与点C 重合时(如图2),请你补全图形.由BAC ∠的度数为 ,点E 落在 ,容易得出BE 与DE 之间的数量关系为 ;(2) 当点D 在如图3的位置时,请你画出图形,研究线段BE 与DE 之间的数量关系是否与(1)中的结论相同,写出你的猜想并加以证明.DBCAABC (D )图3图2顺义区2012届初三第一次统一练习数学试卷考生须知1.本试卷共5页,共五道大题,25道小题,满分120分.考试时间120分钟. 2.在试卷和答题卡上准确填写学校名称、姓名和准考证号. 3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.4.在答题卡上,选择题、作图题用2B 铅笔作答,其他试题用黑色字迹签字笔作答. 5.考试结束,将本试卷、答题卡和草稿纸一并交回.一、选择题(本题共32分,每小题4分) 下面各题均有四个选项,其中只有一个..是符合题意的. 1.-3的相反数是A .3B .-3C .3±D .132.中国人民银行决定,从2012年2月24日起,下调存款类金融机构人民币存款准备金率0.5个百分点.本次下调后,央行一次性释放约4 000亿元人民币的资金.请把4 000亿元用科学记数法表示应为A .110.410⨯元 B .11410⨯元 C .114010⨯元 D . 12410⨯元GEFDCB AEDBCA 3.下列图形中,是中心对称图形而不是轴对称图形的是A .等边三角形B .矩形C .菱形D .平行四边形 4.下列运算正确的是A .22423a a a +=B .2242a a a -=C .22422a a a =D .2222a a a ÷=5.某个公司有15名工作人员,他们的月工资情况如下表.则该公司所有工作人员的月工资的平均数、中位数和众数分别是 A .520,2 000,2 000 B .2 600, 800,800 C .1 240,2 000,800 D .1 240,800,8006.如图,AB ∥CD ,点E 在AB 上,点F 在CD 上,且90F E G ∠=︒,55E F D ∠=︒,则A E G ∠的度数是A .25°B .35°C .45°D .55 °7.一个不透明的口袋里有4张形状完全相同的卡片,分别写有数字1,2,3,4,口袋外有两张卡片,分别写有数字2,3,现随机从口袋里取出一张卡片,求这张卡片与口袋外的两张卡片上的数能构成三角形的概率是A .14B .12C . 34D .18.如图,在Rt △ABC 中,90A C B ∠=︒,60A ∠=︒,AC =2,D 是AB 边上一个动点(不与点A 、B 重合),E 是BC 边上 一点,且30C D E ∠=︒.设AD=x , BE=y ,则下列图象中, 能表示y 与x 的函数关系的图象大致是职务 经理 副经理 职员 人数 1 2 12 月工资(元)5 0002 000800二、填空题(本题共16分,每小题4分)9.若2(2)0m n m ++-=,则m n -的值是 . 10.分解因式:3225105x x y xy -+= . 11.如图,用测角仪测得校园的旗杆顶点A 的仰角45α=︒,仪器高1.4C D =米,测角仪底部中心位置D 到旗杆根部B 的距离10B D =米,则旗杆AB 的高是 米.12.如图,菱形ABCD 中,AB =2 ,∠C =60°,我们把菱形ABCD 的对称中心称作菱形的中心.菱形ABCD 在直线l 上向右作无滑动的翻滚,每绕着一个顶点旋转60°叫一次操作,则经过1次这样的操作菱形中心O 所经过的路径长为 ;经过18次这样的操作菱形中心O 所经过的路径总长为 ;经过3n (n 为正整数)次这样的操作菱形中心O 所经过的路径总长为 .(结果都保留π)三、解答题(本题共30分,每小题5分) 13.计算:()1272cos 30(3)3--︒+--.14.解方程组:2,2 1.x y x y +=⎧⎨-=⎩15.已知:如图,在A B C △中,AB=AC ,点D 、E 在BC 上,且BD=CE .求证:∠ADE =∠AED .16.已知2012x =,求代数式6931x x x x -⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭的值.17.如图,在平面直角坐标系xOy 中,反比例函数4y x=O A B ClDED CBAαDC BA(0x >)的图象与一次函数y x b =-+的图象的一个交点为(4,)A m . (1)求一次函数的解析式;(2)设一次函数y x b =-+的图象与y 轴交于点B ,P 为一次函数y x b =-+的图象上一点,若O B P △的面积为5,求点P 的坐标.18.列方程或方程组解应用题:在城区改造项目中,区政府对某旧小区进行节能窗户改造.该小区拥有相同数量的A 、B 两种户型.已知所有A 户型窗户改造的总费用为54万元,所有B 户型窗户改造的总费用为48万元,且B 户型窗户的每户改造费用比A 户型窗户的每户改造费用便宜500元.问A 、B 两种户型的每户窗户改造费用各为多少元?四、解答题(本题共20分,每小题5分)19.如图,在□ABCD 中,E 是对角线AC 的中点,EF⊥AD 于F ,∠B=60°,AB=4,∠ACB=45°,求DF 的长.20.如图,C 是⊙O 的直径AB 延长线上一点,点D 在⊙O上,且∠A=30°,∠BDC =12A B D ∠.(1)求证:CD 是⊙O 的切线;(2)若OF ∥AD 分别交BD 、CD 于E 、F ,BD =2,求OE 及CF 的长.21.某中学准备搬迁新校舍,在迁入新校舍之前,同学们就该校学生如何到校问题进行了一次调查,并将调查结果制成了表格、条形统计图和扇形统计图(不完整),请你根据图表信息完成下列各题: (1)此次共调查了多少名学生?(2)请将表格填充完整;(3)请将条形统计图和扇形统计图补充完整.到校方式条形统计图 到校方式扇形统计图步行 骑自行车 坐公共汽车 其他20F EDCBAFE DCO BA22.问题背景(1)如图1,△ABC中,DE∥BC分别交AB,AC于D,E两点,过点D作DF∥AC交BC于点F.请按图示数据填空:四边形DFCE的面积S=,△DBF的面积S=,1△ADE的面积S=.2探究发现(2)在(1)中,若BF a=,DG与BC间的=,FC b距离为h.直接写出S=(用含S、1S的代数式表2示).拓展迁移(3)如图2,□DEFG的四个顶点在△ABC的三边上,若△ADG、△DBE、△GFC的面积分别为4、8、1,试利.用.(2.)中的结论....求□DEFG的面积,直接写出结果.五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)23.已知关于x的方程0+-kkxxk.++23)1(2=(1)若方程有两个不相等的实数根,求k的取值范围;(2)当方程有两个相等的实数根时,求关于y的方程2(4)10y a k y a+-++=的整数根(a为正整数).24.如图,在平面直角坐标系xOy 中,抛物线y =mx 2+2mx +n 经过点A(-4,0)和点B (0,3). (1)求抛物线的解析式;(2)向右平移上述抛物线,若平移后的抛物线仍经过点B ,求平移后抛物线的解析式;(3)在(2)的条件下,记平移后点A 的对应点为A’,点B 的对应点为B’,试问:在平移后的抛物线上是否存在一点P ,使'O A P △的面积与四边形AA ’B ’B 的面积相等,若存在,求出点P 的坐标;若不存在,说明理由.25.问题:如图1, 在Rt △ABC 中,90C ∠=︒,30ABC ∠=︒,点D 是射线CB 上任意一点,△ADE是等边三角形,且点D 在AC B ∠的内部,连接BE .探究线段BE 与DE 之间的数量关系. 请你完成下列探究过程:先将图形特殊化,得出猜想,再对一般情况进行分析并加以证明.(1) 当点D 与点C 重合时(如图2),请你补全图形.由BAC ∠的度数为 ,点E 落在 ,容易得出BE 与DE 之间的数量关系为 ;(2) 当点D 在如图3的位置时,请你画出图形,研究线段BE 与DE 之间的数量关系是否与(1)中的结论相同,写出你的猜想并加以证明.DBCAABC (D )图3图2顺义区2012届初三第一次统一练习图1D EBCA数学学科参考答案及评分细则一、选择题(本题共32分,每小题4分)题 号 1 2 3 4 5 6 7 8 答 案ABDCDBCC二、填空题(本题共16分,每小题4分,)9.4; 10.25()x x y -; 11.11.4; 12.33π, (432)π+,2313n π+.三、解答题(本题共30分,每小题5分) 13.解:()1272cos 30(3)3--︒+--31332123⎛⎫=-⨯+-- ⎪⎝⎭ ……………………………………………… 4分 133313=-++4233=+ …………………………………………………………………… 5分14.解: 221x y x y +=⎧⎨-=⎩①②①+②,得 33x =.1x =. …………………………………………………… 2分 把1x =代入①,得 12y +=.1y =. ………………………………………………………… 4分 ∴原方程组的解为 1,1.x y =⎧⎨=⎩ ………………………………………………… 5分15.证明:∵AB=AC ,∴B C ∠=∠. …………………………………………………………… 1分 在△ABD 和△ACE 中,,,,AB AC B C BD C E =⎧⎪∠=∠⎨⎪=⎩∴ △ABD ≌△ACE .……………………………………………………… 3分∴AD=AE.………………………………………………………………4分∴∠ADE =∠AED.………………………………………………………5分16.解:6931xxx x-⎛⎫⎛⎫-÷-⎪ ⎪⎝⎭⎝⎭2693x x xx x-+-=÷……………………………………………………2分2(3)3x xx x-=-3x=-………………………………………………………………………4分当2012x=时,原式=201232009-=.……………………………………5分17.解:(1)∵点(4,)A m在反比例函数4yx=(0x>)的图象上,∴414m==.……………………………………………………………1分∴(4,1)A.将(4,1)A代入一次函数y x b=-+中,得5b=.∴一次函数的解析式为5y x=-+.……………………………………2分(2)由题意,得(0,5)B,∴5O B=.设P点的横坐标为Px.∵O B P△的面积为5,∴1552px⨯=.……………………………………………………………3分∴2Px=±.∴点P的坐标为(2,3)或(-2,7).…………………………………5分18.解:设A户型的每户窗户改造费用为x元,MF EDCBAFE DCO BA则B 户型的每户窗户改造费用为(500)x -元. ……………………………… 1分 根据题意,列方程得 5400004800005x x =-. 解得 4500x =.经检验,4500x =是原方程的解,且符合题意.…………………………… 4分 ∴5004000x -=.答:A 户型的每户窗户改造费用为4500元,B 户型的每户窗户改造费用为4000 元.…………………………………… 5分四、解答题(本题共20分,每小题5分)19.解:(1)∵在□ABCD 中,∠B=60°,AB=4,∠ACB=45°,∴∠D=60°,CD=AB=4,AD ∥BC . ……………………………… 1分 ∴∠DAC=45°. 过点C 作CM ⊥AD 于M , 在Rt △CDM 中,sin 4sin 6023C M C D D ==︒= ,cos 4cos 602D M C D D ==︒= .………………………………… 2分在Rt △ACM 中,∵∠MAC=45°, ∴23AM C M ==.∴232AD AM D M =+=+.…………………………………… 3分∵EF ⊥AD ,CM ⊥AD , ∴EF ∥CM . ∴132E F C M ==.在Rt △AEF 中,3AF EF ==.…………………………………… 4分 ∴232332D F AD AF =-=+-=+.……………………… 5分20.(1)证明:连结OD .∵AB 是⊙O 的直径,∴∠ADB=90°. ……………………………………………………… 1分 ∵∠A=30°, ∴∠ABD=60°. ∴∠BDC =1302A B D ∠=︒.∵OD=OB ,∴△ODB 是等边三角形.∴∠ODB=60°.∴∠ODC=∠ODB+∠BDC =90°. 即OD ⊥DC .∴CD 是⊙O 的切线.…………………………………………………… 2分(2)解:∵OF ∥AD ,∠ADB=90°,∴OF ⊥BD ,∠BOE=∠A =30°. ……………………………………… 3分 ∴112D E B E B D ===.在Rt △OEB 中,OB=2BE=2,223OE OB BE=-=.………… 4分∵OD=OB=2,∠C=∠ABD -∠BDC =30°,∠DOF=30°, ∴23C D =,2tan 3033D F O D =︒= .∴24233333C F C D D F =-=-=. ……………………………5分21.解:(1)此次共调查了100名学生. …………………………………………………1分(2)填表:…………………………………………………3分(3)补全统计图如下:到校方式条形统计图 到校方式扇形统计图.…………………………………………………………………………5分22.解:(1)四边形DFCE 的面积S = 6 ,△DBF 的面积1S = 6 ,步行骑自行车坐公共汽车其他2045 30 5△ADE 的面积2S = 32 . …………………………………… 3分(2)2S =214SS (用含S 、1S 的代数式表示). ………… 4分(3)□DEFG 的面积为12. ………………………………………… 5分五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23.解:(1)△=244(1)(3)k k k --+=2244812k k k --+=812k -+ ……………………………………………………………… 1分∵方程有两个不相等的实数根,∴10,0.k -≠⎧⎨∆>⎩ 即 10,8120.k k -≠⎧⎨-+>⎩∴k 的取值范围是32k <且1k ≠. …………………………………… 3分(2)当方程有两个相等的实数根时,△=812k -+=0. ∴32k =. ………………………………………………………………… 4分∴关于y 的方程为2(6)10y a y a +-++=.∴2'(6)4(1)a a ∆=--+2123644a a a =-+--21632a a =-+2(8)32a =--.由a 为正整数,当2(8)32a --是完全平方数时,方程才有可能有整数根. 设22(8)32a m --=(其中m 为整数),32p q = (p 、q 均为整数), ∴22(8)32a m --=.即(8)(8)32a m a m -+--=. 不妨设8,8.a m p a m q -+=⎧⎨--=⎩ 两式相加,得 162p q a ++=.∵(8)a m -+与(8)a m --的奇偶性相同,∴32可分解为216⨯,48⨯,(2)(16)-⨯-,(4)(8)-⨯-, ∴18p q +=或12或18-或12-.∴17a =或14或1-(不合题意,舍去)或2.当17a =时,方程的两根为1172y -±=,即12y =-,29y =-.…… 5分当14a =时,方程的两根为822y -±=,即13y =-,25y =-.…… 6分当2a =时, 方程的两根为422y ±=,即13y =,21y =. ………… 7分24.解:(1)∵抛物线y =mx 2+2mx +n 经过点A (-4,0)和点B (0,3),∴1680,3.m m n n -+=⎧⎨=⎩ ∴3,83.m n ⎧=-⎪⎨⎪=⎩.∴抛物线的解析式为:233384y x x =--+.………………………… 2分(2)令3y =,得2333384x x --+=,得10x =,22x =-,∵抛物线向右平移后仍经过点B ,∴抛物线向右平移2个单位.……… 3分 ∵233384y x x =--+233(21)388x x =-++++2327(1)88x =-++. ………… 4分∴平移后的抛物线解析式为2327(1)88y x =--+. …………………… 5分(3)由抛物线向右平移2个单位,得'(2,0)A -,'(2,3)B .∴四边形AA ’B ’B 为平行四边形,其面积'236A A O B ==⨯= . 设P 点的纵坐标为P y ,由'O A P △的面积=6, ∴1'62P O A y = ,即1262P y ⨯=∴6P y =, 6P y =±.………………………………………………… 6分 当6P y =时,方程2327(1)688x --+=无实根,当6P y =-时,方程2327(1)688x --+=-的解为16x =,24x =-.∴点P 的坐标为(6,6)-或(4,6)--.……………………………… 7分25.解:(1)完成画图如图2,由BAC ∠的度数为 60°,点E 落在 AB 的中点处 ,容易得出BE 与DE 之间的数量关系 为 BE=DE ;…………… 3分(2)完成画图如图3.猜想:BE D E =.证明:取AB 的中点F ,连结EF .∵90AC B ∠=︒,30ABC ∠=︒, ∴160∠=︒,12C F A F A B ==.∴△ACF 是等边三角形.∴AC AF =. ① …… 4分 ∵△ADE 是等边三角形,∴260∠=︒, AD AE =. ② ∴12∠=∠.∴12BAD BAD ∠+∠=∠+∠.即C A D F A E ∠=∠.③ ………………………………………… 5分 由①②③得 △ACD ≌△AFE (SAS ). …………………………… 6分 ∴90A C D A F E ∠=∠=︒. ∵F 是AB 的中点,∴EF 是AB 的垂直平分线.∴BE=AE . ……………………………………………………… 7分 ∵△ADE 是等边三角形, ∴DE=AE .∴BE D E =. …………………………………………………… 8分2012年延庆县初中毕业试卷 数 学一、选择题:(共8道小题,每小题4分,共32分)1. -3的绝对值是A .-3B .3C .13-D .132. 截至2011年底,我国铁路营业里程达到86 000公里,跃居世界第二位.将86 000用科学记数法表示为 A .50.8610⨯B .38610⨯C .48.610⨯D .58.610⨯EAB C (D )图221FEDB C A图33.下列运算中正确的是A .a 3a 2=a 6B .(a 3)4= a 7C .a 6 ÷ a 3 = a 2D .a 5 + a 5 =2 a 54. 一个布袋中有4个除颜色外其余都相同的小球,其中3个白球,1个红球.从袋中任意摸出1个球是白球的概率是 A .43 B .41 C .32 D .315. 若右图是某几何体的三视图,则这个几何体是A .直棱柱B .球C .圆柱D .圆锥 6.0312=++-y x ,则2()xy -的值为A .-6B . 9C .6D .-97. 如右图所示,已知AB ∥CD ,EF 平分∠CEG ,∠1=80°,则∠2的度数为A .20°B .40°C .50°D .60°8. 将图1围成图2的正方体,则图1中的红心“”标志所在的正方形是正方体中的A .面CDHEB .面BCEFC .面ABFGD .面ADHG二、填空题(共4道小题,每小题4分,共16分) 9. 若代数式3x -有意义,则实数x 的取值范围为.1 2G B DCAF E10. 分解因式:24ax a -=11.用配方法把422++=x x y 化为k h x a y ++=2)(的形式为12.将1、2、3、6按右侧方式排列.若规定(m,n )表示第m 排从左向右第n 个数,则(7,3)所表示的数是 ;(5,2)与(20,17)表示的两数之积是三、解答题(共5道小题,每小题5分,共25分) 13.(本题满分5分)计算: 01)3()21(60sin 227-++︒--π.14.(本题满分5分)化简求值:当22310x x ++=时 ,求2(2)(5)28x x x x -+++-的值.15.(本题满分5分)求不等式组⎩⎨⎧---≤-xx x x 15234)2(2<的整数解.16.(本题满分5分) 已知:如图,□ABCD 中,点E 是AD 的中点,延长CE 交BA 的延长线于点F .求证:AB=AF .17.(本题满分5分)已知A(n ,-2),B(1,4)是一次函数y=kx+b 的图象和反比例函数y=xm 的图象的两个交点,直线AB 与y 轴交于点C .(1)求反比例函数和一次函数的关系式; (2)求△AOC 的面积; (3)求不等式kx+b-xm <0的解集(直接写出答案).111122663263323第1排第2排第3排第4排第5排EBCDAFAFD OEBG C四、 解答题(共2道小题,共10分)18.(本题满分5分)如图,小明在楼上点A 处观察旗杆BC ,测得旗杆顶部B 的仰角为30°,测得旗杆底部C 的俯角为60°,已知点A 距地面的高AD 为12m .求旗杆的高度.19. (本题满分5分)已知:如图,在△ABC 中,AB=BC ,D 是AC 中点,BE 平分∠ABD 交AC 于点E ,点O 是AB 上一点,⊙O 过B 、E 两点, 交BD 于点G ,交AB 于点F .(1)求证:AC 与⊙O 相切; (2)当BD=6,sinC=53时,求⊙O 的半径.五、解答题(本题满分6分)20.2010年4月14日青海玉树发生7.1级地震,地震灾情牵动全国人民的心.某社区响应政府的号召,积极组织社区居民为灾区人民献爱心活动.为了解该社区居民捐款情况,对社区部分捐款户数进行分组统计(统计表如下),数据整理成如图所示的不完整统计图.已知A、B两组捐款户数直方图的高度比为1:5,请结合图中相关数据回答下列问题.图1ACDB图2FOAECD B图3ACDB⑴ A 组的户数是多少?本次调查样本的容量是多少? ⑵ 求出C 组的户数并补全直方图.⑶ 若该社区有500户住户,请估计捐款不少于300元的户数是多少?六、解答题(共2道小题,共9分)21. (本题满分5分)进入防汛期后,某地对河堤进行了加固.该地驻军在河堤加固的工程中出色完成了任务.这是记者与驻军工程指挥官的一段对话:22. (本题满分4分)阅读下面材料:小红遇到这样一个问题,如图1:在△ABC 中,A D ⊥BC ,BD=4,DC=6,且∠BAC=45°,求线段AD 的长.小红是这样想的:作△ABC 的外接圆⊙O ,如图2:利用同弧所对圆周角和圆心角的关系,可以知道∠BOC=90°,然后过O 点作OE ⊥BC 于E ,作OF ⊥AD 于F ,在Rt △BOC 中可以求出⊙O 半径及 OE ,在Rt △AOF 中可以求出AF,最后利用AD=AF+DF 得以解决此题。
1(2012西城一)18. 列方程(组)解应用题:为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场. 现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两个工厂了解情况,获得如下信息:信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品.2(2012海淀一)18. 三月植树节期间,某园林公司增加了人力进行园林绿化,现在平均每天比原计划多植树50棵,现在植树600棵所需的时间与原计划植树450棵所需的时间相同,问现在平均每天植树多少棵?3(2012朝阳一)19.为提高运输效率、保障高峰时段人们的顺利出行,地铁公司在保证安全运行的前提下,缩短了发车间隔,从而提高了运送乘客的数量. 缩短发车间隔后比缩短发车间隔前平均每分钟多运送乘客50人,使得缩短发车间隔后运送14400人的时间与缩短发车间隔前运送12800人的时间相同,那么缩短发车间隔前平均每分钟运送乘客多少人?4.(2012延庆一21. (本题满分5分)进入防汛期后,某地对河堤进行了加固.该地驻军在河堤加固的工程中出色完成了任务.这是记者与驻军工程指挥官的一段对话:5.(2012燕山一) 北京到石家庄的铁路里程约为280km , 2012年底京石高铁即将通车,其上运行的新型动车速度可比目前的普通列车提高1.8倍, 届时从北京到石家庄乘坐高铁新型动车将比现在乘坐普通列车少用一个半小时即可到达,求目前普通列车的运行速度.6.((2012怀柔一)某市在道路改造过程中,需要铺设一条污水管道,决定由甲、乙两个工程队来完成这一工程.已知甲工程队比乙工程队每天多铺设20米,且甲工程队铺设350米所用的天数与乙工程队铺设250米所用的天数相同. 求甲、乙工程队每天各铺设多少米?通过这段对话,请你求出该地驻军原来每天加固的米数.7.(2012通州一)2012年3月30日,对于北京球迷来说是一个美妙的夜晚:在篮球比赛中,北京篮球队战胜了广东篮球队,最终夺得了男篮总冠军;在足球比赛中,北京国安队战胜了天津泰达队.据统计两场比赛大约共有60000人到达现场观看比赛,其中观看足球比赛的人数比观看篮球比赛的人数的2倍还多6000人,求观看篮球和足球比赛的观众大约各有多少人?8.(2012东城一)食品安全是老百姓关注的话题,在食品中添加过量的添加剂对人体有害,但适量的添加剂对人体无害且有利于食品的储存和运输.某饮料加工厂生产的A、B两种饮料均需加入同种添加剂,A饮料每瓶需加该添加剂2克,B饮料每瓶需加该添加剂3克,已知270克该添加剂恰好生产了A、B两种饮料共100瓶,问A、B两种饮料各生产了多少瓶?9((2012大兴一)小明将一根长1.4米的细绳剪成3段,第一次剪下一段,第二次剪下的细绳比第一次剪下的细绳长0.2米,剩余的细绳长恰好是第一次剪下的细绳长的2倍,请问他剪下的三段细绳拉直后首尾顺次相接能否围成一个三角形?10(2012房山一)为响应低碳号召,肖老师上班的交通方式由自驾车改为骑自行车,肖老师家距学校15千米,因为自驾车的速度是骑自行车速度的4倍,所以肖老师每天比原来早出发45分钟,才能按原时间到校,求肖老师骑自行车每小时走多少千米.。
2012年中考数学第三轮专题复习—几何证明、计算题1.如图,在△ABC 中,AB=CB ,∠ABC=90º,D 为AB 延长线上一点,点E 在BC 边上,且BE=BD ,连结AE 、DE 、DC .(1) 求证:△ABE ≌△CBD ;(2) 若∠CAE=30º,求∠BCD 的度数.2.如图,梯形ABCD 中,AD ∥BC ,90A ∠=︒,BC=2,15ABD ∠=︒,60C ∠=︒.(1) 求∠BDC 的度数; (2) 求AB 的长.3.已知:如图,□ABCD 中,点E 是AD 的中点,延长CE 交BA 的延长线于点求证:AB=AF .4.如图,小明在楼上点A 处观察旗杆BC ,测得旗杆顶部B 的仰角为30°,测得旗杆底部C 的俯角为60°,已知点A 距地面的高AD 为12m .求旗杆的高度.5.已知:如图,在ABC △中,AB=AC ,点D 、E 在BC 上,且BD=CE .求证:∠ADE =∠AED .EB C DAFECBA2E ADCB6.如图,在□ABCD 中,E 是对角线AC 的中点,EF ⊥AD 于F ,∠B=60°,AB=4, ∠ACB=45°,求DF 的长.7.如图,在△ABC 和△ADE 中,AB =AC ,AD =AE ,BAC DAE ∠=∠,求证:△ABD ≌△ACE .8.已知如图,在△ABC 中,AB =AC ,∠ABC =α,将△ABC 以点B 为中心,沿逆时针方向旋转α度(0°<α<90°),得到△BDE ,点B 、A 、E 恰好在同一条直线上,连结CE .(1)则四边形DBCE 是_______形(填写:平行四边形、矩形、菱形、正方形、梯形)(2)若AB =AC =1,BC DBCE 的面积.9.已知:E 是△ABC 一边BA 延长线上一点,且AE =BC ,过点A 作AD ∥BC ,且使AD =AB ,联结ED . 求证:AC =DE .10.如图,在直角梯形ABCD 中,AD ∥BC ,∠ABC =90°,AD =DC ,联结AC ,过点D 作DE ⊥AC 于点F ,交BC 于点G ,交AB 的延长线于点E ,若AE =AC . ⑴求∠EAC 的度数 ⑵若AD =2,求AB 的长. 解:⑴ F EDCBABFGDCBAE初三一模 数学试卷 第3页(共5页)FE ACDB11.已知:如图,在△ABC 中,D 是BC 边的中点,点F 、E 分别在 AD 及其延长线上,且CF ∥BE .求证:CF=BE .12.如图,在四边形ABCD 中,AD DC ⊥,对角线AC CB ⊥,若AD =2,AC=3cos 5B =.试求四边形ABCD 的周长.13.已知:如图,AB ∥CD ,AB =CD ,点E 、F 在线段AD 上,且AF=DE .求证:BE =CF .14.如图,在ABCD 中,过点B 作BE ∥AC ,在BG 上取点E ,联结DE 交AC 的延长线于点F . (1)求证:DF =EF ;(2)如果AD =2,∠ADC =60°,AC ⊥DC 于点C ,AC =2CF ,求BE的长.15.如图,∠ACB =∠CDE =90°,B 是CE 的中点,∠DCE =30°,AC =CD .求证:AB ∥DE .FD CBA EGEDCBA第15题图4BAFCDEC16.如图,在直角梯形ABCD 中,AB ∥DC ,AB ⊥BC ,∠A =60°,AB =2CD ,E 、F 分别为AB 、AD 的中点,联结EF 、EC 、BF 、CF . (1)四边形AECD 的形状是 ; (2)若CD =2,求CF 的长.17. 如图,AC //FE , 点F 、C 在BD 上,AC=DF , BC=EF . 求证:AB=DE .18.如图,在四边形ABCD 中,∠ABC =90︒,∠CAB =30︒, DE ⊥AC 于E ,且AE=CE ,若DE=5,EB=12,求四边形ABCD 的周长.19.如图,点A 、F 、C 、D 在同一直线上,点B 和点E 分别在直线AD 的两侧,且AB DE =,BC EF ∥,求证:AC =DF .20.如图,直角梯形纸片ABCD 中,AD BC ∥,90A ∠=°,30C ∠=°.折叠纸片使BC 经过点D ,点C 落在点E 处,BF 是折痕,且8BF CF ==.(1)求BDF ∠的度数; (2)求AB 的长.F D CBAEDC BA初三一模 数学试卷 第5页(共5页)21.已知:如图,AB ∥ED ,AE 交BD 于点C ,且BC =DC . 求证:AB =ED .22. 已知:如图,在△ABC 中,∠ACB =90°,点E 为AB 的中点,过点E 作ED ⊥BC 于D ,F 在DE 的延长线上,且AF =CE ,若AB =6,AC =2,求四边形ACEF 的面积. 23.如图,已知△ABC 和△ADE 都是等边三角形,连结CD 、BE .求证:CD =BE .18.如图,在□ABCD 中,AB =5,AD =10,cos B =35,过BC 的中点E 作EF ⊥AB ,垂足为点F ,连结DF ,求DF 的长.2012年中考数学第三轮专题复习—几何证明、计算题答案1.(1)证明:如图1.∵ ∠ABC=90º,D 为AB 延长线上一点,∴ ∠ABE=∠CBD=90º . …………………………………………………1分EDCBAFEDCBA ED CBAF DCBA6在△ABE 和△CBD 中,⎪⎩⎪⎨⎧=∠=∠=,,,BD BE CBD ABE CB AB∴ △ABE ≌△CBD. …………………… 2分 (2)解:∵ AB=CB ,∠ABC=90º,∴ ∠CAB =45°. …….…………………… 3分 又∵ ∠CAE=30º,∴ ∠BAE =15°. ……………………………………………………………4分∵ △ABE ≌△CBD ,∴ ∠BCD =∠BAE =15°. ……………………………………………………5分2.解:(1)∵ 梯形ABCD 中,AD ∥BC ,90A ∠=︒,60C ∠=︒,∴ 90ABC ∠=︒,180120ADC C ∠=︒-∠=︒. 在Rt △ABD 中,∵90A ∠=︒,15ABD ∠=︒,∴ 75ADB ∠=︒.∴ 45BDC ADC ADB ∠=∠-∠=︒.…… 2分 (2)作BE CD ⊥于点E ,DF BC ⊥于点F .(如图3)在Rt △BCE 中,∵ BC=2,60C ∠=︒, ∴sin BE BC C =⋅=cos 1CE BC C =⋅=.∵ 45BDC ∠=︒, ∴DE BE ==∴1CD DE CE =+. …………………………………………… 3分∵ BC DF CD BE ⋅=⋅, ∴CD BE DF BC ⋅===. …………………………… 4分∵ AD ∥BC ,90A ∠=︒,DF BC ⊥,∴AB DF =. …………………………………………………… 5分3. 证明:∵四边形ABCD 是平行四边形,∴AB ∥CD 且AB=CD .∴∠F =∠2, ∠1=∠D . --------------- 1分 ∵E 为AD 中点,图3FB初三一模 数学试卷 第7页(共5页)MF EDCBA∴AE =ED . --------------- 2分在△AEF 和△DEC 中21F D AE ED ∠=∠⎧⎪∠=∠⎨⎪=⎩,,, ∴△AEF ≌△DEC . -------------- 3分 ∴AF =CD . --------------- 4分 ∴AB =AF . -------------- 5分4.解:过点A 作A E ⊥BC ,垂足为E ,得矩形ADCE ,∴CE=AD=12. --------------1分 Rt △ACE 中,∵∠EAC=60°,CE=12, ∴AE=4tan 60CE= ----------------------------------2分Rt △ABE 中,∵∠BAE=30°,BE=AEtan304=.----------------3分∴BC=CE+BE=16m.--------------------4分 答:旗杆的高度为16m. ---------------------5分5.证明:∵AB=AC , ∴BC ∠=∠. …………………………………………………………… 1分在△ABD 和△ACE 中,,,,AB AC B C BD CE =⎧⎪∠=∠⎨⎪=⎩∴ △ABD ≌△ACE .……………………………………………………… 3分 ∴ AD=AE . ……………………………………………………………… 4分∴∠ADE =∠AED . ……………………………………………………… 5分6.解:(1)∵在□ABCD 中,∠B=60°,AB=4,∠ACB=45°,∴∠D=60°,CD=AB=4,AD ∥BC . ……………………………… 1分 ∴∠DAC=45°. 过点C 作CM ⊥AD 于M , 在Rt △CDM 中,sin 4sin6023CM CD D ==︒=8cos 4cos 602DM CD D ==︒=.………………………………… 2分在Rt △ACM 中,∵∠MAC=45°,∴AM CM ==∴2AD AM DM =+=.…………………………………… 3分∵EF ⊥AD ,CM ⊥AD , ∴EF ∥CM .∴12EFCM == 在Rt △AEF中,AF EF = 4分∴22DF AD AF =-=.……………………… 5分7. 解: D A E B A C ∠=∠..........................................................................(3分)∴D A B EAC ∠=∠ .....................................................................(4分)在AEC ∆和ADB ∆中⎪⎩⎪⎨⎧=∠=∠=AC AB EAC DAB AE AD∴AEC ∆≌ADB ∆(SAS ) .............................................................(5分)8. (1)是 梯 形..............................................(1分)(2)过点A 做BC AF ⊥于点F ,过点D 做BC DH ⊥于点H ..............................................(2分) AC AB = =123==∴FC BF∴23c o s =α︒=∠30ABC ,︒=∠∴60DBC..............................................(3分)将ABC ∆以点B 为旋转中心逆时针旋转α度角(︒<<︒900α),得到BDE∆A B C ∆∴≌DBE ∆ 1==∴DE BD初三一模 数学试卷 第9页(共5页)23s i n =⋅∠=∴BD DBH DH ..............................................(4分) DBCE 梯形S ∴43323)3(121+=+=..............................................(5分)9. 证明:∵A D ∥BC∴∠EAD=∠B. …………1分 ∵AD=AB. …………2分 AE=BC. …………3分 ∴△ABC ≌△DAE.……4分 ∴AC =DE . ……………5分 10.解:⑴ 联结EC. ∵AD=DC D E ⊥AC 于点F ∴点F 是AC 中点 ∴D E 垂直平分AC ∴EC=EA----------------1分 又∵AE=AC ∴AE = EC =AC ∴△AEC 是等边三角形∴∠EAC=60°---------------------2分⑵ ∵D E ⊥AC 于点F ∴∠AFE=90° ∵∠EAC=60° ∴∠AEF=30° ∵AD ∥BC∴∠BAD=∠ABC=90° ∵AD=2 ∴AE=32------------------------------------------4分∵∠ABC=90° ∴CB ⊥AE又∵△AEC 是等边三角形 ∴AB=AE 21=3---------------------------------------------5分 E ADCB111.证明:∵D 是BC 的中点,∴BD =CD .-------------------1分又∵CF ∥BE ,∴∠E =∠1.------------------------------2分在△BED 和△CFD 中,E 1BDE CDF BD CD ∠=∠⎧⎪∠=∠⎨⎪=⎩---------------------------------------3分 ∴△BED ≌△CFD (AAS ) ------------------------------4分 ∴EB = CF ----------------------------------------------5分 12.解:在四边形ABCD 中,∵AD DC ⊥,对角线AC CB ⊥,∴∠ACB =∠D =90°.∴△ADC 和△ACB 都是直角三角形. 在Rt △ADC 中,∵AD =2,AC = 得DC =4. ---------------1分在Rt △ACB 中,∵BC AB =3cos 5B =.∴设3BC x =,5AB x =. ∴由勾股定理 得2225920xx -=.解得x =.----------------2分∴3BC x ==,5AB x == -------------------------------------------- 4分 ∴四边形ABCD周长为:6AB BC CD DA +++=. -----------------------5分13.证明:AF=DE , ∴ AF-EF=DE –EF .即 AE=DF .………………1分AB ∥CD ,∴∠A =∠D .……2分在△ABE 和△DCF 中 , AB =CD , ∠A =∠D , AE=DF .∴△ABE ≌△DCF .……….4分初三一模 数学试卷 第11页(共5页)∴ BE =CF .…………….5分 14. 解:联结BD 交AC 于点O . (1)∵□ABCD , ∴OB =OD ,…1分 ∵BG ∥AF , ∴DF =EF . ……2分(2)∵AC ⊥DC ,∠ADC =60°,AD =2, ∴AC =3. ……3分∵OF 是△DBE 的中位线, ∴BE = 2OF ..……4分 ∵OF = OC +CF , ∴BE = 2OC +2CF .∵□ABCD , ∴AC =2OC . ∵AC =2CF ,∴BE = 2AC=…… 5分15.证明:∵∠CDE=90°,∠DCE=30°∴CE 21DE=………………1分 ∵B 是CE 的中点, ∴CE 21CB=∴DE=CB ………………2分 在△ABC 和△CED 中⎪⎩⎪⎨⎧=∠=∠=DE CB CDE ACB CD AC ∴△ABC ≌△CED ………………3分 ∴∠ABC=∠E ………………4分 ∴AB ∥DE. ………………5分16.解:(1)四边形AECD 的形状是 平行四边形 …………1分(2)∵四边形AECD 是平行四边形,∴AE=CD=2, ∵E 是AB 的中点,∴AE=EB=2,AB=4. …………2分 ∵四边形AECD 是平行四边形,∴EC ∥AD , ∴∠BEC=∠A=60°. ∴EC=4,BC=32.∴ AD=EC=4, ………… 3分 ∵F 是AD 的中点,∴AF=2,OGEA BCD F12BAFCDE∴△AEF 是等边三角形,∴EF=2 ∴∠FEC=60°可证△ECF ≌△ECB ………… 4分 ∴FC=BC=32. …………5分17.证明:∵ AC //EF ,∴ ACB DFE ∠=∠. …………………………………1分在△ABC 和△DEF 中,⎪⎩⎪⎨⎧=∠=∠=,,,EF BC DFE ACB DF AC ∴ △ABC ≌△DEF . ………………………………4分 ∴ AB=DE . ……………………5分 18.解: ∵∠ABC =90︒,AE=CE ,EB =12,∴ EB=AE=CE =12. ……………1分∴ AC =AE+CE =24.∵在Rt △ABC 中,∠CAB =30︒,∴ BC=12,cos30AB AC =⋅︒=. ……………………2分∵ DE AC ⊥,AE=CE ,∴ AD=DC . ……………………………3分 在Rt △ADE 中,由勾股定理得 AD13=.∴DC =13.∴ 四边形ABCD 的周长=AB +BC +CD +DA=38+19.证明:∵ BC ∥EF ,∴ACB DFE =∠∠..............................................................2分 在ABC △和DEF ∆中,AB DE A D ACB DFE =⎧⎪∠=∠⎨⎪∠=∠⎩,,, ......................................................3分 ABC DEF ∴△≌△. ·································································································· 4分AC DF ∴=. 5分20.解:(1)∵ 30BF CF C ==,∠°,∴ ∠FBC =30°. ….…….…………..................................…………………………1分 由折叠可知:30EBF CBF ==∠∠°. ……………….........…...........................………..2分ABCDEF初三一模 数学试卷 第13页(共5页)∴ 60BFD =∠°.在BFD △中,180BDF BFD EBF =--∠°∠∠90=°...…..............................………………………3分 (2)过点D 作DM CB ⊥,垂足为M ,易知DM AB =.由(1)可知DBF △是直角三角形,且30DBF =∠°.8BF CF ==,142DF BF ∴==4812DC DF FC ∴=+=+=.………………....4分 ∵ Rt CMD △中,30C =∠°,162DM DC ∴==,6AB DM ∴==.…………….………………………………………………………….5分21.证明:∵AB ∥ED ,∴∠ABD=∠EDB. ………………………….1分 ∵BC=DC,∠ACB=∠DCE, ……………3分 ∴△ABC ≌△EDC. ………………….4分 ∴AB=ED . ………………………………5分22.解:过点E 作EH ⊥AC 于H∵∠ACB=90°, AE=BE, . ∴AE=BE=CE. ∴∠EAC=∠ECA.∵AF=CE,∴AE=AF, ∴∠F=∠FEA. ∵ED ⊥BC,∴∠BDF=90°,BD=DC. ∴∠BDF=∠ACB=90°.∴FD ∥AC. ……………………………1分 ∴∠FEA=∠EAC. ∴∠F=∠ECA. ∵AE=EA,∴△AEF ≌△EAC ……………………2分 ∴EF=AC∴四边形FACE 是平行四边形. ………………3分 ∵EH ⊥AC, ∴∠EHA=90°. ∵∠BCA=90°,∠EHA=∠BCA. ∴BC=24, EH ∥BC.∴AH=HC.EDCBAHFED CBA14∴EH=2221=BC …………………4分 ∴24222=⨯=⋅=EH AC S ACEF平行四边形…………………….5分23.证明:∵ △ABC 和△ADE 都是等边三角形,∴ AB =AC ,AE =AD ,∠DAE =∠CAB , ∵ ∠DAE -∠CAE =∠CAB -∠CAE , ∴ ∠DAC =∠EAB ,∴ △ADC ≌△AEB . ∴ CD =BE .24.解:延长DC ,FE 相交于点H .∵ 四边形ABCD 是平行四边形,∴ AB ∥DC ,AB =CD ,AD =BC . ∴ ∠B =∠ECH ,∠BFE =∠H . ∵ AB =5,AD =10, ∴ BC =10,CD =5. ∵ E 是BC 的中点, ∴ BE =EC =152BC =. ∴ △BF E ≌△CHE . ∴ CH =BF ,EF=EH . ∵ EF ⊥AB ,∴∠BFE =∠H =90°. 在Rt △BFE 中, ∵ cos B =BF BE=35, ∴ BF =CH =3.∴ EF4,DH =8. 在Rt △FHD 中,∠H =90°, ∴222DF FH DH =+=28+28=2×28.∴ DF……………………… 5分ED CBAHA BCDEF。
燕山2011-2012学年度第一学期期末试卷初四数学考生须知1.本试卷共4页,共五道大题,25个小题,满分120分;考试时间120分钟。
2.答题纸共6页,在规定位置认真填写学校名称、班级和姓名。
3.试题答案一律书写在答题纸上,在试卷上作答无效。
4.考试结束,请将答题纸交回,试卷和草稿纸可带走。
一、选择题(在下列各题的四个备选答案中,只有一个是符合题意的,请将正确答案前的字母写在答题纸上;本题共32分,每小题4分)1. 已知⊙O 的直径为3cm ,点P 到圆心O 的距离OP =2cm ,则点PA. 在⊙O 外B. 在⊙O 上C. 在⊙O 内D. 不能确定 2. 已知△ABC 中,∠C=90°,AC=6,BC=8, 则cosB 的值是A .0.6B .0.75C .0.8D .34 3.如图,△ABC 中,点 M 、N 分别在两边AB 、AC 上,MN ∥BC ,则下列比例式中,不正确的是A .B . C. D.4. 下列图形中,既是中心对称图形又是轴对称图形的是A . B. C. D.5. 已知⊙O 1、⊙O 2的半径分别是1cm 、4cm ,O 1O 2=10cm ,则⊙O 1和⊙O 2的位置关系是A .外离B .外切C .内切D .相交6. 某二次函数y=ax 2+bx+c 的图象如图所示,则下列结论正确的是A. a>0, b>0, c>0B. a>0, b>0, c<0C. a>0, b<0, c>0D. a>0, b<0, c<0 7.下列命题中,正确的是A .平面上三个点确定一个圆B .等弧所对的圆周角相等C .平分弦的直径垂直于这条弦D .与某圆一条半径垂直的直线是该圆的切线8. 把抛物线y =-x 2+4x -3先向左平移3个单位,再向下平移2个单位,则变换后的抛物线解析式是A .y =-(x +3)2-2B .y =-(x +1)2-1C .y =-x 2+x -5D .前三个答案都不正确二、填空题(本题共16分, 每小题4分)ACN M ByxO9.已知两个相似三角形面积的比是2∶1,则它们周长的比 _____ . 10.在反比例函数y =x1k 中,当x >0时,y 随 x 的增大而增大,则k 的取值范围是_________.11. 水平相当的甲乙两人进行羽毛球比赛,规定三局两胜,则甲队战胜乙队的概率是_________;甲队以2∶0战胜乙队的概率是________. 12.已知⊙O 的直径AB 为6cm ,弦CD 与AB 相交,夹角为30°,交点M 恰好为AB 的一个三等分点,则CD 的长为 _________ cm .三、解答题(本题共30分, 每小题5分)13. 计算:cos 245°-2tan45°+tan30°-3sin60°.14. 已知正方形MNPQ 内接于△ABC (如图所示),若△ABC 的面积为9cm 2,BC =6cm ,求该正方形的边长.15. 某商场准备改善原有自动楼梯的安全性能,把倾斜角由原来的30°减至25°(如图所示),已知原楼梯坡面AB 的长为12米,调整后的楼梯所占地面CD 有多长?(结果精确到0.1米;参考数据:sin25°≈0.42,cos25°≈0.91,tan25°≈0.47)16.已知:△ABC 中,∠A 是锐角,b 、c 分别是∠B 、∠C 的对边. 求证:△ABC 的面积S △ABC =21bcsinA . 17. 如图,△ABC 内接于⊙O ,弦AC 交直径BD 于点E ,AG ⊥BD 于点G ,延长AG 交BC 于点F . 求证:AB 2=BF·BC .18. 已知二次函数 y =ax 2-x +25的图象经过点(-3, 1).(1)求 a 的值;(2)判断此函数的图象与x 轴是否相交?如果相交,请求出交点坐标; (3)画出这个函数的图象.(不要求列对应数值表,但要求尽可能画准确) 四、解答题(本题共20分, 每小题5分)19. 如图,在由小正方形组成的12×10的网格中,点O 、M 和四边形ABCD 的顶点都在格点上.A M Q BNPCABC· DE F G OACD B30°(1)画出与四边形ABCD 关于直线CD 对称的图形;(2)平移四边形ABCD ,使其顶点B 与点M 重合,画出平移后的图形; (3)把四边形ABCD 绕点O 逆时针旋转90°,画出旋转后的图形.20. 口袋里有 5枚除颜色外都相同的棋子,其中 3枚是红色的,其余为黑色. (1)从口袋中随机摸出一枚棋子,摸到黑色棋子的概率是_______ ;(2)从口袋中一次摸出两枚棋子,求颜色不同的概率.(需写出“列表”或画“树状图”的过程)21. 已知函数y 1=-31x 2 和反比例函数y 2的图象有一个交点是 A (a ,-1).(1)求函数y 2的解析式;(2)在同一直角坐标系中,画出函数y 1和y 2的图象草图;(3)借助图象回答:当自变量x 在什么范围内取值时,对于x 的同一个值,都有y 1<y 2 ?22. 工厂有一批长3dm 、宽2dm 的矩形铁片,为了利用这批材料,在每一块上裁下一个最大的圆铁片⊙O 1之后(如图所示),再在剩余铁片上裁下一个充分大的圆铁片⊙O 2. (1)求⊙O 1、⊙O 2的半径r 1、r 2的长;(2)能否在剩余的铁片上再裁出一个与⊙O 2 同样大小的圆铁片?为什么?五、解答题(本题共22分, 第23、24题各7分,第25题8分)23.如图,在△ABC 中,AB =AC ,以AB 为直径的⊙O 分别交AC 、BC 于点M 、N ,在AC 的延长线上取点P ,使∠CBP =21∠A . (1)判断直线BP 与⊙O 的位置关系,并证明你的结论;A B D C O M· ·· · · · A·BCD1 O1 ABPCN M O·(2)若⊙O 的半径为1,tan ∠CBP =0.5,求BC 和BP 的长.24. 已知:如图,正方形纸片ABCD 的边长是4,点M 、N 分别在两边AB 和CD 上(其中点N 不与点C 重合),沿直线MN 折叠该纸片,点B 恰好落在AD 边上点E 处.(1)设AE =x ,四边形AMND 的面积为 S ,求 S 关于x 的函数解析式,并指明该函数的定义域;(2)当AM 为何值时,四边形AMND 的面积最大?最大值是多少? (3)点M 能是AB 边上任意一点吗?请求出AM 的取值范围.25. 在直角坐标系xOy 中,已知某二次函数的图象经过A (-4,0)、B (0,-3),与x 轴的正半轴相交于点C ,若△AOB ∽△BOC (相似比不为1). (1)求这个二次函数的解析式; (2)求△ABC 的外接圆半径r ;(3)在线段AC 上是否存在点M (m ,0),使得以线段BM 为直径的圆与线段AB 交于N点,且以点O 、A 、N 为顶点的三角形是等腰三角形?若存在,求出m 的值;若不存在,请说明理由.E B C C MNA D·。
北京市燕山区2011-2012学年度第一学期期末考试九年级数学试卷考生须知 1.本试卷共4页,共五道大题,25个小题,满分120分;考试时间120分钟。
2.答题纸共6页,在规定位置认真填写学校名称、班级和姓名。
3.试题答案一律书写在答题纸上,在试卷上作答无效。
4.考试结束,请将答题纸交回,试卷和草稿纸可带走。
一、选择题(在下列各题的四个备选答案中,只有一个是符合题意的,请将正确答案前的字母写在答题纸上;本题共32分,每小题4分)1. 已知⊙O 的直径为3cm ,点P 到圆心O 的距离OP =2cm ,则点PA. 在⊙O 外B. 在⊙O 上C. 在⊙O 内D. 不能确定 2. 已知△ABC 中,∠C=90°,AC=6,BC=8, 则cosB 的值是A .0.6B .0.75C .0.8D .34 3.如图,△ABC 中,点 M 、N 分别在两边AB 、AC 上,MN ∥BC ,则下列比例式中,不正确的是A .B . C. D.4. 下列图形中,既是中心对称图形又是轴对称图形的是A . B. C. D.5. 已知⊙O 1、⊙O 2的半径分别是1cm 、4cm ,O 1O 2=10cm ,则⊙O 1和⊙O 2的位置关系是A .外离B .外切C .内切D .相交6. 某二次函数y=ax 2+bx+c 的图象如图所示,则下列结论正确的是A. a>0, b>0, c>0B. a>0, b>0, c<0C. a>0, b<0, c>0D. a>0, b<0, c<0 7.下列命题中,正确的是A .平面上三个点确定一个圆B .等弧所对的圆周角相等C .平分弦的直径垂直于这条弦D .与某圆一条半径垂直的直线是该圆的切线8. 把抛物线y =-x 2+4x -3先向左平移3个单位,再向下平移2个单位,则变换后的抛物线解析式是A .y =-(x +3)2-2B .y =-(x +1)2-1C .y =-x 2+x -5D .前三个答案都不正确AC N M By xO二、填空题(本题共16分, 每小题4分)9.已知两个相似三角形面积的比是2∶1,则它们周长的比 _____ . 10.在反比例函数y =x1k 中,当x >0时,y 随 x 的增大而增大,则k 的取值范围是_________.11. 水平相当的甲乙两人进行羽毛球比赛,规定三局两胜,则甲队战胜乙队的概率是_________;甲队以2∶0战胜乙队的概率是________. 12.已知⊙O 的直径AB 为6cm ,弦CD 与AB 相交,夹角为30°,交点M 恰好为AB 的一个三等分点,则CD 的长为 _________ cm .三、解答题(本题共30分, 每小题5分)13. 计算:cos 245°-2tan45°+tan30°-3sin60°.14. 已知正方形MNPQ 内接于△ABC (如图所示),若△ABC 的面积为9cm 2,BC =6cm ,求该正方形的边长.15. 某商场准备改善原有自动楼梯的安全性能,把倾斜角由原来的30°减至25°(如图所示),已知原楼梯坡面AB 的长为12米,调整后的楼梯所占地面CD 有多长?(结果精确到0.1米;参考数据:sin25°≈0.42,cos25°≈0.91,tan25°≈0.47)16.已知:△ABC 中,∠A 是锐角,b 、c 分别是∠B 、∠C 的对边.求证:△ABC 的面积S △ABC =21bcsinA . 17. 如图,△ABC 内接于⊙O ,弦AC 交直径BD 于点E ,AG ⊥BD 于点G ,延长AG 交BC于点F . 求证:AB 2=BF·BC .18. 已知二次函数 y =ax 2-x +25的图象经过点(-3, 1). (1)求 a 的值;(2)判断此函数的图象与x 轴是否相交?如果相交,请求出交点坐标; (3)画出这个函数的图象.(不要求列对应数值表,但要求尽可能画准确)A M Q BNPCABC · DE FGOA30°四、解答题(本题共20分, 每小题5分)19. 如图,在由小正方形组成的12×10的网格中,点O 、M 和四边形ABCD 的顶点都在格点上.(1)画出与四边形ABCD 关于直线CD 对称的图形;(2)平移四边形ABCD ,使其顶点B 与点M 重合,画出平移后的图形; (3)把四边形ABCD 绕点O 逆时针旋转90°,画出旋转后的图形.20. 口袋里有 5枚除颜色外都相同的棋子,其中 3枚是红色的,其余为黑色. (1)从口袋中随机摸出一枚棋子,摸到黑色棋子的概率是_______ ;(2)从口袋中一次摸出两枚棋子,求颜色不同的概率.(需写出“列表”或画“树状图”的过程)21. 已知函数y 1=-31x 2 和反比例函数y 2的图象有一个交点是 A (a ,-1).(1)求函数y 2的解析式;(2)在同一直角坐标系中,画出函数y 1和y 2的图象草图;(3)借助图象回答:当自变量x 在什么范围内取值时,对于x 的同一个值,都有y 1<y 2 ?22. 工厂有一批长3dm 、宽2dm 的矩形铁片,为了利用这批材料,在每一块上裁下一个最大的圆铁片⊙O 1之后(如图所示),再在剩余铁片上裁下一个充分大的圆铁片⊙O 2. (1)求⊙O 1、⊙O 2的半径r 1、r 2的长;(2)能否在剩余的铁片上再裁出一个与⊙O 2 同样大小的圆铁片?为什么?A B D C O M··· · · · AB C D五、解答题(本题共22分, 第23、24题各7分,第25题8分)23.如图,在△ABC 中,AB =AC ,以AB 为直径的⊙O 分别交AC 、BC 于点M 、N ,在AC 的延长线上取点P ,使∠CBP =21∠A . (1)判断直线BP 与⊙O 的位置关系,并证明你的结论; (2)若⊙O 的半径为1,tan ∠CBP =0.5,求BC 和BP 的长.24. 已知:如图,正方形纸片ABCD 的边长是4,点M 、N 分别在两边AB 和CD 上(其中点N 不与点C 重合),沿直线MN 折叠该纸片,点B 恰好落在AD 边上点E 处. (1)设AE =x ,四边形AMND 的面积为 S ,求 S 关于x 的函数解析式,并指明该函数的定义域;(2)当AM 为何值时,四边形AMND 的面积最大?最大值是多少? (3)点M 能是AB 边上任意一点吗?请求出AM 的取值范围.25. 在直角坐标系xOy 中,已知某二次函数的图象经过A (-4,0)、B (0,-3),与x 轴的正半轴相交于点C ,若△AOB ∽△BOC (相似比不为1). (1)求这个二次函数的解析式; (2)求△ABC 的外接圆半径r ;(3)在线段AC 上是否存在点M (m ,0),使得以线段BM 为直径的圆与线段AB 交于N 点,且以点O 、A 、N 为顶点的三角形是等腰三角形?若存在,求出m 的值;若不存在,请说明理由.ABPCNM O· E B CC M NAD·参考答案2012.01. 08一、 ACCB DABB 二、 9.2:1 10. k< -1 11.21, 4112. 35三、13. 原式= 2)22(-2+33-3×23 =21-2 +33-23 ……………………………………4分= -3+33……………………………………………………5分14. 作AE ⊥BC 于E ,交MQ 于F.由题意,21BC ×AE=9cm 2 , BC=6cm . ∴AE=3cm.1分 设MQ= xcm , ∵MQ ∥BC ,∴△AMQ ∽△ABC. ……………………2分∴AEAF BCMQ =. ……………………3分又∵EF=MN=MQ ,∴AF=3-x. ∴3x-36x =. ……………………………………4分 解得 x=2.答:正方形的边长是2cm. …………………………5分 15. 由题意,在Rt △ABC 中,AC=21AB=6(米), …………………1分又∵在Rt △ACD 中,∠D=25°,CDAC =tan ∠D, ……………………………3分∴CD=︒tan256≈47.06≈12.8(米).答:调整后的楼梯所占地面CD 长约为12.8米. ……………………5分 16. 证明:作CD ⊥AB 于D ,则S △ABC =21AB×CD. ………………2分 ∵ 不论点D 落在射线AB 的什么位置, 在Rt △ACD 中,都有CD=ACsinA. …………………4分 又∵AC=b ,AB=c , ∴ S △ABC =21AB×ACsinA =21bcsinA. …………5分17. 证明:延长AF ,交⊙O 于H. ∵直径BD ⊥AH ,∴AB⌒ = BH ⌒ . ……………………2分A B N E P CAD BC H E G O F∴∠C=∠BAF. ………………………3分 在△ABF 和△CBA 中,∵∠BAF =∠C ,∠ABF=∠CBA ,∴△ABF ∽△CBA. …………………………………………4分 ∴ABBFCB AB,即AB 2=BF ×BC. …………………………………………5分 证明2:连结AD , ∵BD 是直径,∴∠BAG+∠DAG=90°. ……………………1分∵AG⊥BD,∴∠DAG+∠D=90°. ∴∠BAF =∠BAG =∠D. ……………………2分 又∵∠C =∠D , ∴∠BAF=∠C. ………………………3分…… 18. ⑴把点(-3,1)代入,得 9a+3+25=1, ∴a = -21. ⑵ 相交 ……………………………………………2分 由 -21x 2-x+25=0, ……………………………3分 得 x= - 1±6.∴ 交点坐标是(- 1±6,0). ……………………………4分 ⑶ 酌情给分 ……………………………………………5分19. 给第⑴小题分配1分,第⑵、⑶小题各分配2分.20. ⑴ 0.4 ……………………………………………2分 ⑵ 0.6 ……………………………………………4分 列表(或画树状图)正确 ……………………………………5分 21. ⑴把点A (a ,- 1)代入y 1= -2x 31,得 –1= -a 31, ∴ a=3. ……………………………………………1分 设y 2=x k,把点A (3,- 1)代入,得 k=–3, ∴ y 2=–x 3. ……………………………………2分⑵画图; ……………………………………3分yAD B CE G O F⑶由图象知:当x<0, 或x>3时,y 1<y 2. ……………………………………5分22. ⑴如图,矩形ABCD 中,AB= 2r 1=2dm ,即r 1=1dm. ………………………………1分BC=3dm ,⊙O 2应与⊙O 1及BC 、CD 都相切.连结O 1 O 2,过O 1作直线O 1E ∥AB ,过O 2作直线O 2E ∥BC ,则O 1E ⊥O 2E. 在Rt △O 1 O 2E 中,O 1 O 2=r 1+ r 2,O 1E= r 1– r 2,O 2E=BC –(r 1+ r 2).由 O 1 O 22= O 1E 2+ O 2E 2,即(1+ r 2)2 = (1– r 2)2+(2– r 2)2.解得,r 2= 4±23. 又∵r 2<2,∴r 1=1dm , r 2=(4–23)dm. ………………3分⑵不能. …………………………………………4分∵r 2=(4–23)> 4–2×1.75=21(dm), 即r 2>21dm.,又∵CD=2dm , ∴CD<4 r 2,故不能再裁出所要求的圆铁片. …………………………………5分23. ⑴相切. …………………………………………1分证明:连结AN ,∵AB 是直径,∴∠ANB=90°.∵AB=AC ,∴∠BAN=21∠A=∠CBP. 又∵∠BAN+∠ABN=180°-∠ANB= 90 ∴∠CBP+∠ABN=90°,即AB ⊥BP.∵AB 是⊙O 的直径,∴直线BP 与⊙O 相切. …………………………………………3分 ⑵∵在Rt △ABN 中,AB=2,tan ∠BAN= tan ∠CBP=0.5, 可求得,BN=52,∴BC=54. …………………………………………4分作CD ⊥BP 于D ,则CD ∥AB ,ABCD AP CP =. 在Rt △BCD 中,易求得CD=54,BD=58. …………………………………5分 代入上式,得2CP CP +=52.A DB CO 1 E O 2∴CP=34. …………………………………………6分 ∴DP=1516CD CP 22=-.∴BP=BD+DP=58+1516=38. …………………………………………7分24. ⑴依题意,点B 和E 关于MN 对称,则ME=MB=4-AM.再由AM 2+AE 2=ME 2=(4-AM)2,得AM=2-2x 81. ……………………1分 作MF ⊥DN 于F ,则MF=AB ,且∠BMF=90°. ∵MN ⊥BE ,∴∠ABE= 90°-∠BMN.又∵∠FMN =∠BMF -∠BMN=90°-∠BMN , ∴∠FMN=∠ABE. ∴Rt △FMN ≌Rt △ABE.∴FN=AE=x ,DN=DF+FN=AM+x=2-2x 81+x. ………………………2分 ∴S=21(AM+DN)×AD=(2-2x 81+2x)×4= -2x 21+2x+8.……………………………3分其中,0≤x <4. ………………………………4分⑵∵S= -2x 21+2x+8= -21(x-2)2+10,∴当x=2时,S 最大=10; …………………………………………5分 此时,AM=2-81×22=1.5 ………………………………………6分 答:当AM=1.5时,四边形AMND 的面积最大,为10.⑶不能,0<AM ≤2. …………………………………………7分25. ⑴∵△AOB ∽△BOC (相似比不为1),∴OAOBOB OC =. 又∵OA=4, OB=3, ∴OC=32×41=49. ∴点C(49, 0). …………………1分 设图象经过A 、B 、C 三点的函数解析式是y=ax 2+bx+c,则c= -3,且⎪⎩⎪⎨⎧=++=+-0.c b 49a 1681,0c 4b 16a 2分 即⎩⎨⎧=+=-16.12b 27a ,34b 16a解得,a=31, b=127. ∴这个函数的解析式是y =31x 2+127x -3. …………………3分 ⑵∵△AOB ∽△BOC (相似比不为1),∴∠BAO=∠CBO.又∵∠ABO+ ∠BAO =90°,∴∠ABC=∠ABO+∠CBO=∠ABO+∠BAO=90°. ………………4分 ∴AC 是△ABC 外接圆的直径. ∴ r =21AC=21×[49-(-4)]=825. ………………5分 ⑶∵点N 在以BM 为直径的圆上,∴ ∠MNB=90°. ……………………6分 ①. 当AN=ON 时,点N 在OA 的中垂线上, ∴点N 1是AB 的中点,M 1是AC 的中点. ∴AM 1= r =825,点M 1(-87, 0),即m 1= -87. ………………7分 ②. 当AN=OA 时,Rt △AM 2N 2≌Rt △ABO ,∴AM 2=AB=5,点M 2(1, 0),即m 2=1.③. 当ON=OA 时,点N 显然不能在线段AB 上. 综上,符合题意的点M (m ,0)存在,有两解: m= -87,或1. ……………………8分。
燕山2012年初中一模数 学 试 卷 2012年4月一、选择题(本题共32分,每小题4分)下面各题均有四个选项,其中只有一个是符合题意的. 1.无理数2的倒数是A. 22 B. -2 C. 21D. 22.在直角坐标系中,点M (1,-2011)关于原点的对称点坐标是A.(1,2011)B.(-1,-2011)C.(-1,2011)D.(-2011,1)3.受日本核事故影响,4月5日我国沿海某市监测出本市空气中,人工放射性核元素铯—137的浓度已达到0.0000839贝克/立方米,但专家说:不会对人体造成危害,无须采取防护措施. 将0.0000839用科学记数法表示应为A. 8.39×10-4B. 8.39×10-5C. 8.39×10-6D. 8.39×10-74.下列各命题正确的是A. 各角都相等的多边形是正多边形.B. 有一组对边平行的四边形是梯形.C. 对角线互相垂直的四边形是菱形.D. 有一边上的中线等于这边一半的三角形是直角三角形. 5.初四⑴班30名学生中有15名团员,他们都积极报名参加某项志愿者活动,根据要求,从该班团员中随机选取1名同学参加,则该班团员同学王小亮被选中的概率是A. 301B. 151C. 101 D. 216.某平行四边形的对角线长为x 、y, 一边长为6,则x 与y 的值可能是A. 4和7B. 5和7C. 5和8D. 4和177.如右图, 是一个下底小而上口大的圆台形容器,将水以恒速(即单位时间内注入水的体积相同)注入,设注水时间为t ,容器内对应的水高度为h ,则h 与t 的函数图象只可能是8.如图⑴是一个小正方体的表面展开图,小正方体从图⑵所示位置依次翻转到第1格、第2格、第3格,这时小正方体朝上一面的字是A. 腾B. 飞C. 燕D. 山考生须知1.本试卷共4页,共五道大题,25道小题,满分120分,考试时间120分钟。
2.在试卷和答题纸的密封线内认真填写学校名称、班级和姓名。
3.试题答案一律用黑色字迹签字笔书写在答题纸上,在试卷上作答无效。
4.答卷时不能使用计算器。
5.考试结束,请将本试卷和答题纸一并交回。
hh h ho t o t o t o t A. B. C. D.二、填空题(本题共16分,每小题4分) 9. 函数y =3x x+的自变量取值范围是________. 10.已知x= - 4是一元二次方程mx 2+5x=6m 的一个根,则另一个根是______11.学校本学期安排初二学生参加军训,李小明同学5次实弹射击的成绩(单位:环)如下:9,4,10,8,9. 这组数据的极差是_______(环);方差是________(环2)12.如图,点P 在第一象限,△ABP 是边长为2的等边三角形,当点A 在x 轴的正半轴上运动时,点B 随之在y 轴的正半轴上运动,运动过程中,点P 到原点的最大距离是________;若将△ABP 的PA 边长改为22,另两边长度不变,则点P 到原点的最大距离变为________. 三、解答题(本题30分,每小题5分)13.把多项式9mx 4-6mx 2+m 在实数范围内因式分解.14.解不等式组⎪⎩⎪⎨⎧+≤-<-);(1x 42x ,4213x 并写出不等式组的非负整数解.15.解方程1x 112x 1x +-=-+.16.已知:如图,在四边形ABCD 中,对角线AC 、BD 相交于点O ,∠ABC=∠BCD,AB=CD.求证:OA=OD.yBPO A xA D OB C B C O17.在支援灾区的活动中,初四⑵班每位同学都向灾区学校捐赠了图书,全班42人共捐图书260册,班长统计了全班的捐书情况,但表格被粗心的同桌马小虎用墨水污染了一部分,请你根据下表中的数据,分别求出该班捐献7册和8册图书的人数。
册数 4 5 6 7 8 11 人数 6812218.已知:如图,AB 是半圆的直径,AB=10,梯形ABCD 内 接于半圆,CE∥AD 交AB 于E ,BE=2,求∠A 的余弦值.四、解答题(本题共19分,第19、20、21题各5分,第22题4分) 19.如图,直立于地面的两根柱子相距4米,小芳的爸爸在 柱子间栓了一根绳子,给她做了一个简易的秋千,拴绳子 的位置A 、B 距离地面都是2.5米,绳子自然下垂近似抛 物线形状,最低点C 到地面的距离为0.9米,小芳站在距 离柱子1米的地方,头的顶部D 刚好触到绳子.⑴ 在图中添加直角坐标系,并求抛物线所表示的函数解析式; ⑵ 求小芳的身高.20.某校团委组织初四年级全体同学参加公民道德知识竞赛测试,规定满60分及格,满90分优秀. 团支部宣传委员 李小萌将本班共40名同学所得成绩(得分取整数),进 行整理后按分数段分成五组,并着手制作了一幅频数分 布直方图(如下图所示).⑴ 小萌绘制的图并不完整,请你补全; ⑵ 依据图示数据填空:在本次测试中,该班的及格率为______%,优秀率为_______%; ⑶ 该班成绩数据的中位数落在哪一个分数段内? 答:落在分数段__________内;⑷ 请你依据图示数据估算该班同学本次测试 成绩的平均分大约是多少?(列出算式即可)D CA E BEAEB21.已知:如图,AB是⊙O的直径,点C在⊙O上,△ABC的外角平分线BD交⊙O于D,DE与⊙O 相切,交CB的延长线于E.⑴ 判断直线AC和DE是否平行,并说明理由;⑵ 若∠A=30°,BE=1cm,分别求线段DE和 BD⌒的长(直接写出最后结果).22.现有一张正方形纸片,将它折两次(第一次折后也可打开铺平再折第二次),使得折痕将纸片分为面积相等且不重叠的四部分(称为一个操作),如图甲(虚线表示折痕).除图甲外,请你再给出三个不同的操作,分别将折痕画在图①至图③中.(规定:一个操作得到的四个图形和另一个操作得到的四个图形,如果能够“配对”得到四组全等的图形,那么就认为是相同的操作,如图乙和图甲是相同的操作)DEA O BC··图①图甲图②图③图乙五、解答题(本题共23分,第23题8分,第24题7分,第25题8分) 23.已知:如图,直线y =x 21+1与x 轴、y 轴的交点分别是A 和B ,把线段AB 绕点A 顺时针旋转90°得线段AB '.⑴ 在图中画出△ABB',并直接写出点A 和点B '的坐标; ⑵ 求直线AB '表示的函数关系式; ⑶ 若动点C (1,a )使得S △ABC =S △ABB',求a 的值.BAx O y ABxO24.已知:如图1,四边形ABCD 中,AC 平分∠BAD,∠B 和∠D 都是直角. ⑴ 求证:BC=CD.⑵ 若将原题中的已知条件“∠B 和∠D 都是直角”放宽为“∠B 和∠D 互为补角”,其余条件不变,猜想:BC 边和邻边CD 的长度是否一定相等?请证明你的结论.⑶ 探究:在⑵的情况下,如果再限制∠BAD=60°,那么相邻两边AB 、AD 和对角线AC 之间有什么确定的数量关系?需说明理由.25.已知抛物线y =k mx 43x 412+-,与直线l : y = x+m 的左交点是A ,抛物线与y 轴相交于点C ,直线l 与抛物线的对称轴相交于点E. ⑴ 直接写出抛物线顶点D 的坐标(用含m 、k 的式子表示); ⑵ 当m=2,k= -4时,求∠ACE 的大小;⑶ 是否存在正实数m=k ,使得抛物线在直线l 下方的一段弧上有且仅有两个点P 1和P 2,且∠A P 1E=∠A P 2E= 45°?如果存在,求m 的值和点P 1、P 2的坐标;如果不存在,请说明理由.ABCD图1燕山初四数学二模评卷参考2011.6.2一、 ACBD BCDB 二、题号 9 1011 12 答案x ≠-323 6,4.41+3, 1+5三、13.原式= m (9x 4-6 x 2+1) ………………………………………1分= m (3 x 2-1)2 ………………………………………………3分= m (3x+1)2 (3x -1) 2 . ………………………………………………5分 14.解①得 x<3; ……………………………………………1分解②得 x ≥-2 . ………………………………………………2分∴ 不等式组的解集是-2≤x<3. ……………………………………………3分 ∴ 不等式组的非负整数解是0,1,2 . ………………………………………5分 15. (x+1)2=(x -2) (x+1)-(x -2), ……………………………………………1分 x 2+2x+1= x 2-x -2 -x +2, …………………………………………2分 4x=-1, ……………………………………………3分x= -41. ……………………………………………4分经检验:x= -41是原分式方程的解. ……………………………………5分16.证法一:在△ABC 和△DCB 中, ∵AB=CD ,∠ABC =∠BCD ,BC 边公用,∴△ABC ≌△DCB . ………………………………1分 ∴AC=DB , ……………………………………2分 且∠ACB =∠DBC . ……………………………………3分 ∴ OB=OC . ……………………………………4分 ∴ OA=OD . ………………………………………5分 证法二:……(同证法一)∴△ABC ≌△DCB . ………………………………1分 ∴∠ACB =∠DBC . ………………………………2分 ∴∠ABO=∠DCO .又∵∠AOB=∠DOC , …………………………………3分 ∴△AOB ≌△DOC . ……………………………………4分 ∴ OA=OD . ………………………………………5分17.设该班捐献7册和8册图书的人数分别是x 、y ……………………………1分依题意,得 ⎩⎨⎧=+=+.1028y 7x ,14y x ……………………………………3分解得 x=10,y=4 ……………………………………4分 答: 该班捐献7册图书的有10人,捐献8册图书的有4人 . …………………5分18.由题意可知AB ∥CD ,且AD=BC , ……………………………1分 又∵CE ∥AD , ∴ CD=AE=AB-BE=8. ………………2分 把AB 的中点记作O ,G作OG ⊥CD 于G ,则DG=CG=4.∴ OG=22CG OC -=3. …………………………………3分 作DF ⊥OA 于F ,则DF= OG=3,AF=OA-OF= OA-DG =1. …………………………4分 ∴ AD=22DF AF +=10.∴∠A 的余弦cosA=101=1010. ……………………………………………5分四、19.⑴ 直角坐标系如图所示(有多种方法,本题请参照下面的解法及步骤酌情给分),则点B (2,2.5),且应设 抛物线为y=ax 2+0.9,………………1分 把点B (2,2.5)代入,得4a+0.9=2.5, ………………………2分 解得 a=0.4,∴y=0.4x 2+0.9. …………………………3分 ⑵ 把x= -1代入, 得y=0.4×1+0.9=1.3.∴小芳的身高是1.3米. ………………………………5分20.⑴ 补图 (略) ………………………………………………1分 ⑵ 95,10. ………………………………………………3分 ⑶ 79.5 ~89.5. ………………………………………………4分⑷ 大约是:4049518851075665255⨯+⨯+⨯+⨯+⨯分(可以有不同答案,只要合理即可) ………………………………………………5分21.⑴ 平行 ; …………………………………………1分 理由是:联结OD ,∵DE 与⊙O 相切,∴ OD ⊥DE . …………………………………………2分∵ OB=OD , ∴∠ODB=∠OBD . ∵ BD 是∠ABE 的平分线,即∠ABD=∠DBE , ∴ ∠ODB=∠DBE . ∴ OD ∥BE .∴ BE ⊥DE ,即DE ⊥CE .∵ AB 是⊙O 的直径,点C 在⊙O 上,∴AC ⊥CE .∴ AC ∥DE . ………………………………………………3分 ⑵ 3,32π. ………………………………………………5分22.说明:画出1解给1分,画出2解给2分,画出3解给4分 下面各图供参考:五、23.⑴ 画图基本准确. ………………………………………………1分xy点A (2,0)、点B '(3,2) . ………………………3分⑵ 把点A 、点B'的坐标分别代入y =kx+b ,得⎩⎨⎧=+=+.2b 3k ,0b 2k解得k=2,b= -4.∴直线AB '表示的函数关系式是y =2x -4 . ………………4分 ⑶ ∵△ABB '为等腰直角三角形,直角边AB=22OB OA +=5,∴ S △ABB '=2AB 21=25. ……………………………………5分在y =x 21-+1中,当x=1时,y=0.5. 即直线x=1与AB 交于点M (1,0.5). 又∵点A 和B 到CM 的距离之和显然为2,∴ S △ABC =21CM ×2= |a -0.5|=25. …………………………………6分解得,a=3,或-2. …………………………………8分24.⑴ 证明:∵AC 平分∠BAD ,∴∠BAC=∠DAC .又∵∠D =∠B=Rt ∠,AC 公用,∴△ABC ≌△ADC .∴ BC=CD . …………………………………………1分⑵ 一定相等 . ………………………………………………2分 证明:如图2,不妨设∠B 为锐角,作CE ⊥AB 于E ,则点E 必在线段AB 上 ∵∠B 和∠D 互为补角,∴∠D 是钝角,作CF ⊥AD 于F , 则点F 必在线段AD 的延长线上. ∴∠CDF 与∠ADC 互补. ∴∠B=∠CDF .又∵AC 是∠BAD 的平分线, ∴ CE=CF . ∴Rt △BCE ≌Rt △DCF∴ BC=CD . ………………………………………………4分 ⑶ AB+AD=3AC . ………………………………………………5分 理由是:图2中,由已知条件,易知AE=AF ,BE=DF . ∴AB+AD=(AE+BE )+(AF -DF )=AE+AF=2AE . 当∠BAD=60°时,∠CAE=30°,AE=23AC .B ' MEFAEGP 1D(P 2)∴AB+AD=2AE=3AC . ………………………………………………7分25. ⑴ (m 23,k -2m 169) . …………………………………………1分⑵ 当m=2,k= -4时,点C (0,-4), 直线DE 为x=3 .再由⎪⎩⎪⎨⎧--=+=②① .4x 23x 41y ,2x y 2 代①入②,得x 2-10x -24=0,解得,x 1= -2,x 2= 12.∴点A (-2,0)、点E (3,5). …………………………2分 设抛物线与x 轴的另一交点是B ,DE 与x 轴相交于点F (3,0), ∵CF=AF=EF=BF=5,且△ABE 是等腰直角三角形.∴点A 、B 、C 、E 都在⊙F 上,∠ACE=∠ABE=45°. ………………………4分 ⑶ 当m=k >0时, 由x+m= ,得x 1=0,x 2= 3m+4>0.∴点A (0,m ). …………………………………5分 显然,经过点A 且平行于x 轴的直线与抛物线的另一交点即为点P 1(3m ,m ). 又∵由题意,点P 2只能有一解,再结合抛物线的对称性,可知点P 2只能 重合于点D .设DE 与AP 1交于点G , 由DG=AG ,即m -(k -2m 169)=m 23,得m=38. ………………6分 ∴点P 1(8,38)、点P 2(4,-34). …………………………………8分k mx 43x 412+- ADECBF。