电磁感应综合问题8
- 格式:doc
- 大小:81.00 KB
- 文档页数:2
电磁感应综合练习题(基本题型)一、选择题: 1.下面说法正确的是( )A .自感电动势总是阻碍电路中原来电流增加B .自感电动势总是阻碍电路中原来电流变化C .电路中的电流越大,自感电动势越大D .电路中的电流变化量越大,自感电动势越大【答案】B2.如图9-1所示,M 1N 1与M 2N 2是位于同一水平面内的两条平行金属导轨,导轨间距为L 磁感应强度为B 的匀强磁场与导轨所 在平面垂直,ab 与ef 为两根金属杆,与导轨垂直且可在导轨上滑 动,金属杆ab 上有一伏特表,除伏特表外,其他部分电阻可以不计,则下列说法正确的是 ( ) A .若ab 固定ef 以速度v 滑动时,伏特表读数为BLvB .若ab 固定ef 以速度v 滑动时,ef 两点间电压为零C .当两杆以相同的速度v 同向滑动时,伏特表读数为零D .当两杆以相同的速度v 同向滑动时,伏特表读数为2BLv【答案】AC3.如图9-2所示,匀强磁场存在于虚线框内,矩形线圈竖直下落。
如果线圈中受到的磁场力总小于其重力,则它在1、2、3、4位置 时的加速度关系为 ( ) A .a 1>a 2>a 3>a 4 B .a 1 = a 2 = a 3 = a 4C .a 1 = a 2>a 3>a 4D .a 4 = a 2>a 3>a 1【答案】C4.如图9-3所示,通电螺线管两侧各悬挂一个小铜环,铜环平面与螺线管截面平行,当电键S 接通一瞬间,两铜环的运动情况是( ) A .同时向两侧推开 B .同时向螺线管靠拢C .一个被推开,一个被吸引,但因电源正负极未知,无法具体判断D .同时被推开或同时向螺线管靠拢,但因电源正负极未知,无法具体判断 【答案】 A图9-2图9-3图9-4图9-15.如图9-4所示,在U形金属架上串入一电容器,金属棒ab在金属架上无摩擦地以速度v向右运动一段距离后突然断开开关,并使ab停在金属架上,停止后,ab不再受外力作用。
电磁感应专题复习(重要)基础回顾(一)法拉弟电磁感应定律1、内容:电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比E=nΔΦ/Δt(普适公式)当导体切割磁感线运动时,其感应电动势计算公式为E=BLVsinα2、E=nΔΦ/Δt与E=BLVsinα的选用①E=nΔΦ/Δt计算的是Δt时间内的平均电动势,一般有两种特殊求法ΔΦ/Δt=BΔS/Δt即B不变ΔΦ/Δt=SΔB/Δt即S不变② E=BLVsinα可计算平均动势,也可计算瞬时电动势。
③直导线在磁场中转动时,导体上各点速度不一样,可用V平=ω(R1+R2)/2代入也可用E=nΔΦ/Δt 间接求得出 E=BL2ω/2(L为导体长度,ω为角速度。
)(二)电磁感应的综合问题一般思路:先电后力即:先作“源”的分析--------找出电路中由电磁感应所产生的电源,求出电源参数E和r。
再进行“路”的分析-------分析电路结构,弄清串、并联关系,求出相应部分的电流大小,以便安培力的求解。
然后进行“力”的分析--------要分析力学研究对象(如金属杆、导体线圈等)的受力情况尤其注意其所受的安培力。
按着进行“运动”状态的分析---------根据力和运动的关系,判断出正确的运动模型。
最后是“能量”的分析-------寻找电磁感应过程和力学研究对象的运动过程中能量转化和守恒的关系。
【常见题型分析】题型一楞次定律、右手定则的简单应用例题(2006、广东)如图所示,用一根长为L、质量不计的细杆与一个上弧长为L0 、下弧长为d0的金属线框的中点连接并悬挂于o点,悬点正下方存在一个弧长为2 L0、下弧长为2 d0、方向垂直纸面向里的匀强磁场,且d0 远小于L先将线框拉开到图示位置,松手后让线框进入磁场,忽略空气阻力和摩擦,下列说法中正确的是A、金属线框进入磁场时感应电流的方向为a→b→c→d→B、金属线框离开磁场时感应电流的方向a→d→c→b→C、金属线框d c边进入磁场与ab边离开磁场的速度大小总是相等D、金属线框最终将在磁场内做简谐运动。
电磁感应综合问题电磁感应综合问题,涉及力学知识(如牛顿运动定律、功、动能定理、动量和能量守恒定律等)、电学知识(如电磁感应定律、楞次定律、直流电路知识、磁场知识等)等多个知识点,其具体应用可分为以下两个方面:(1)受力情况、运动情况的动态分析。
思考方向是:导体受力运动产生感应电动势→感应电流→通电导体受安培力→合外力变化→加速度变化→速度变化→感应电动势变化→……,周而复始,循环结束时,加速度等于零,导体达到稳定运动状态。
要画好受力图,抓住 a =0时,速度v 达最大值的特点。
(2)功能分析,电磁感应过程往往涉及多种能量形势的转化。
例如:如图所示中的金属棒ab 沿导轨由静止下滑时,重力势能减小,一部分用来克服安培力做功转化为感应电流的电能,最终在R 上转转化为焦耳热,另一部分转化为金属棒的动能.若导轨足够长,棒最终达到稳定状态为匀速运动时,重力势能用来克服安培力做功转化为感应电流的电能,因此,从功和能的观点人手,分析清楚电磁感应过程中能量转化的关系,往往是解决电磁感应问题的重要途径.【例1】 如图1所示,矩形裸导线框长边的长度为2l ,短边的长度为l ,在两个短边上均接有电阻R ,其余部分电阻不计,导线框一长边与x 轴重合,左边的坐标x=0,线框内有一垂直于线框平面的磁场,磁场的感应强度满足关系)sin(l xB B 20π=。
一光滑导体棒AB 与短边平行且与长边接触良好,电阻也是R ,开始时导体棒处于x=0处,从t=0时刻起,导体棒AB 在沿x 方向的力F 作用下做速度为v 的匀速运动,求:(1)导体棒AB 从x=0到x=2l 的过程中力F 随时间t 变化的规律;(2)导体棒AB 从x=0到x=2l 的过程中回路产生的热量。
答案:(1))()(sin vl t R l vtv l B F 203222220≤≤=π (2)Rv l B Q 32320= 【例2】 如图2所示,两条互相平行的光滑金属导轨位于水平面内,它们之间的距离为l =0.2m ,在导轨的一端接有阻值为R=0.5Ω的电阻,在x ≥0处有一与水平面垂直的均匀磁场,磁感强度B=0.5T 。
电磁感应现象习题综合题附答案一、高中物理解题方法:电磁感应现象的两类情况1.如图所示,光滑的长平行金属导轨宽度d=50cm ,导轨所在的平面与水平面夹角θ=37°,导轨上端电阻R=0.8Ω,其他电阻不计.导轨放在竖直向上的匀强磁场中,磁感应强度B=0.4T .金属棒ab 从上端由静止开始下滑,金属棒ab 的质量m=0.1kg .(sin37°=0.6,g=10m/s 2)(1)求导体棒下滑的最大速度;(2)求当速度达到5m/s 时导体棒的加速度;(3)若经过时间t ,导体棒下滑的垂直距离为s ,速度为v .若在同一时间内,电阻产生的热与一恒定电流I 0在该电阻上产生的热相同,求恒定电流I 0的表达式(各物理量全部用字母表示).【答案】(1)18.75m/s (2)a=4.4m/s 2(3222mgs mv Rt【解析】【分析】根据感应电动势大小与安培力大小表达式,结合闭合电路欧姆定律与受力平衡方程,即可求解;根据牛顿第二定律,由受力分析,列出方程,即可求解;根据能量守恒求解;解:(1)当物体达到平衡时,导体棒有最大速度,有:sin cos mg F θθ= , 根据安培力公式有: F BIL =, 根据欧姆定律有: cos E BLv I R Rθ==, 解得: 222sin 18.75cos mgR v B L θθ==; (2)由牛顿第二定律有:sin cos mg F ma θθ-= ,cos 1BLv I A Rθ==, 0.2F BIL N ==, 24.4/a m s =;(3)根据能量守恒有:22012mgs mv I Rt =+ , 解得: 202mgs mv I Rt -=2.如图甲所示,MN 、PQ 两条平行的光滑金属轨道与水平面成θ = 30°角固定,M 、P 之间接电阻箱R ,导轨所在空间存在匀强磁场,磁场方向垂直于轨道平面向上,磁感应强度为B = 1T .质量为m 的金属杆ab 水平放置在轨道上,其接入电路的电阻值为r ,现从静止释放杆ab ,测得最大速度为v m .改变电阻箱的阻值R ,得到v m 与R 的关系如图乙所示.已知轨距为L = 2m ,重力加速度g 取l0m/s 2,轨道足够长且电阻不计.求:(1)杆ab 下滑过程中流过R 的感应电流的方向及R =0时最大感应电动势E 的大小; (2)金属杆的质量m 和阻值r ;(3)当R =4Ω时,求回路瞬时电功率每增加2W 的过程中合外力对杆做的功W . 【答案】(1)电流方向从M 流到P ,E =4V (2)m =0.8kg ,r =2Ω (3)W =1.2J 【解析】本题考查电磁感应中的单棒问题,涉及动生电动势、闭合电路欧姆定律、动能定理等知识.(1)由右手定则可得,流过R 的电流方向从M 流到P 据乙图可得,R=0时,最大速度为2m/s ,则E m = BLv = 4V (2)设最大速度为v ,杆切割磁感线产生的感应电动势 E = BLv 由闭合电路的欧姆定律EI R r=+ 杆达到最大速度时0mgsin BIL θ-= 得 2222sin sin B L mg mg v R r B Lθθ=+ 结合函数图像解得:m = 0.8kg 、r = 2Ω(3)由题意:由感应电动势E = BLv 和功率关系2E P R r =+得222B L V P R r=+则22222221B L V B L V P R r R r∆=-++ 再由动能定理22211122W mV mV =- 得22()1.22m R r W P J B L +=∆=3.图中装置在水平面内且处于竖直向下的匀强磁场中,足够长的光滑导轨固定不动。
电磁感应的综合问题解析必备知识清单1.电磁感应中的动力学与能量问题常出现的模型有两个:一是线框进出磁场;二是导体棒切割磁感线运动.两类模型都综合了电路、动力学、能量知识,有时还会与图像结合,所以解题方法有相通之处.可参考下面的解题步骤:2.求解焦耳热Q的三种方法(1)焦耳定律:Q=I2Rt,适用于电流、电阻不变;(2)功能关系:Q=W克服安培力,电流变不变都适用;(3)能量转化:Q=ΔE(其他能的减少量),电流变不变都适用.命题点精析(一)电磁感应中的图像问题1.题型简述借助图像考查电磁感应的规律,一直是高考的热点,此类题目一般分为两类:(1)由给定的电磁感应过程选出正确的图像;(2)由给定的图像分析电磁感应过程,定性或定量求解相应的物理量或推断出其他图像。
常见的图像有B-t图、E-t图、i-t图及Φ-t图等。
2.解题关键弄清初始条件、正负方向的对应变化范围、所研究物理量的函数表达式、进出磁场的转折点等是解决此类问题的关键。
3.解题步骤(1)明确图像的种类,判断其为B-t图还是Φ-t图,或者E-t图、I-t图等;(2)分析电磁感应的具体过程;(3)用右手定则或楞次定律确定方向的对应关系;(4)结合法拉第电磁感应定律、闭合电路欧姆定律、牛顿运动定律等知识写出相应的函数关系式;(5)根据函数关系式,进行数学分析,如分析斜率的变化、截距等;(6)画图像或判断图像。
4.常用方法(1)排除法:定性地分析电磁感应过程中物理量的变化趋势(增大还是减小)、变化快慢(均匀变化还是非均匀变化),特别是分析物理量的正负,以排除错误的选项。
(2)函数法:根据题目所给条件定量地写出两个物理量之间的函数关系,然后由函数关系对图像进行分析和判断。
典型例题例1两个底边和高都是L的等腰三角形内均匀分布方向如图1所示的匀强磁场,磁感应强度大小为B.一边长为L、电阻为R的正方形线框置于三角形所在平面内,从图示位置开始沿x轴正方向以速度v匀速穿过磁场区域.取逆时针方向感应电流为正,则线框中电流i随bc 边的位置坐标x变化的图象正确的是()图1【答案】C【解析】bc 边的位置坐标x 在0~L 过程,线框bc 边有效切割长度从0到L 再减到0,感应电流的方向为逆时针方向,感应电动势从0增加到BL v 再减到0,感应电流从0增加到BL v R再减到0;bc 边的位置坐标x 在L ~2L 过程中,bc 边进入右侧磁场切割磁感线产生顺时针方向的电流,ad 边在左侧磁场切割磁感线产生顺时针方向的电流,两电流同向,电流先增加后减小到0,最大值为2BL v R;bc 边的位置坐标x 在2L ~3L 过程,bc 边在磁场外,线框ad 边有效切割长度从0到L 再减到0,感应电流的方向为逆时针方向,感应电动势从0增加到BL v 再减到0,感应电流从0增加到BL v R再减到0,故C 正确,A 、B 、D 错误.练1(多选)如图,两条光滑平行金属导轨固定,所在平面与水平面夹角为θ,导轨电阻忽略不计。
电磁感应实验中的常见问题解答与技巧总结电磁感应是一门重要的物理学概念,它在日常生活和科学研究中都起着重要作用。
在进行电磁感应实验时,我们常常会遇到一些问题和困惑。
本文将针对电磁感应实验中的常见问题进行解答,并总结一些实验技巧,以帮助读者更好地理解和实施电磁感应实验。
一、实验设备和材料选择问题在进行电磁感应实验之前,选择合适的实验设备和材料是十分重要的。
有以下几个方面需要注意:1. 电源选择:根据实验需求,选择适当的直流电源或交流电源。
对于较小的实验,可以选择直流电源,而对于较大的实验,交流电源可能更为合适。
2. 导线材料选择:实验中的导线材料应具备良好的导电性和机械性能。
一般而言,铜导线是常用的选择,因其导电性能好且相对廉价。
3. 磁场产生装置选择:磁场产生装置可以选择电磁铁、永磁体等。
对于需要可变磁场的实验,电磁铁可能更为合适;而对于需要恒定磁场的实验,则可以选择永磁体。
二、实验操作问题解答实验操作是电磁感应实验的关键,下面解答一些常见的操作问题:1. 螺线管的选择和安装:螺线管是用于检测电磁感应的重要装置。
在实验中需要根据需求选择合适的螺线管,并正确安装。
一般而言,螺线管的匝数越多,检测效果越好。
2. 探头的选择和放置:在实验过程中,需要将探头与待测电路相连。
探头的选择应根据实验需求来确定,一般可选用剪短的导线头。
在接触探头时,应确保良好的接触,避免电路接触不良引起误差。
3. 测量仪器的使用:在电磁感应实验中,测量仪器的使用非常重要。
例如使用万用表测量电压、电流等。
在使用过程中,应正确选择量程,并注意保持仪器的精准度。
三、实验结果分析问题解答实验结果的分析是电磁感应实验的关键步骤,以下是一些实验结果分析的问题解答:1. 反向电动势问题:在实验中,有时会观察到电动势与预期方向相反的情况。
这可能是由于磁场方向、导线方向等因素引起的。
在分析实验结果时,应仔细考虑这些因素,以准确判断电动势的方向。
2. 电动势大小问题:电动势的大小与导线长度、磁场强度、运动速度等因素有关。
电磁感应实验中的常见问题导言:电磁感应是物理实验中重要的内容之一,通过研究电磁感应现象,可以深入了解电磁学原理。
然而,在进行电磁感应实验时,常会遇到一些问题,本文将对其中的一些常见问题进行探讨和解答。
问题一:为什么线圈的匝数对电磁感应实验的结果有影响?线圈的匝数是指线圈的圈数,即导线绕成的圈数。
在电磁感应实验中,线圈的匝数对实验结果有直接影响。
这是因为根据法拉第电磁感应定律,感应电动势与线圈的磁通量变化率成正比。
而线圈的匝数越多,单位长度内的导线总长度就越大,因此磁通量变化率也会更大,从而感应电动势就会增大。
问题二:为什么在电磁感应实验中使用闭合线路?在电磁感应实验中,我们通常会使用闭合线路。
这是因为根据法拉第电磁感应定律,感应电动势产生的条件是磁通量的变化。
如果线路是开路的,感应电动势产生后无法形成电流流动的闭合回路,电流就无法产生。
而使用闭合线路可以确保感应电动势产生后,电流能够形成闭合回路,从而使电流能够流动起来。
问题三:为什么在电磁感应实验中要改变线圈的磁通量?改变线圈的磁通量是电磁感应实验的关键步骤之一。
根据法拉第电磁感应定律,感应电动势与磁通量的变化率成正比。
通过改变线圈的磁通量,可以使感应电动势产生,并引发电流的流动。
常见的改变线圈磁通量的方法包括改变磁场的强弱、改变线圈的位置和形状等。
问题四:为什么在电磁感应实验中感应电动势的极性有时会颠倒?在电磁感应实验中,有时会发现感应电动势的极性与预期不符,甚至会发生颠倒。
这是因为感应电动势的极性和磁场变化的方向有关。
根据楞次定律,磁场变化趋向消除产生它的原因,因此感应电动势产生的方向会使电流产生一个磁场,与原磁场相互作用。
当原磁场改变方向时,感应电动势的极性也会随之改变。
问题五:如何确保电磁感应实验的准确性?在进行电磁感应实验时,为了确保实验结果的准确性,可以采取一些措施。
首先,要保证线圈绕制的均匀性和紧密性,以减小感应电动势的误差。
其次,应尽可能消除传感器漂移和环境电磁干扰对实验结果的影响。
专项四电磁感应综合问题电磁感应综合问题,涉及力学知识〔如牛顿运动定律、功、动能定理、动量和能量守恒定律等〕、电学知识〔如电磁感应定律、楞次定律、直流电路知识、磁场知识等〕等多个知识点,其具体应用可分为以下两个方面:〔1〕受力情况、运动情况的动态分析。
思考方向是:导体受力运动产生感应电动势→感应电流→通电导体受安培力→合外力变化→加速度变化→速度变化→感应电动势变化→……,周而复始,循环结束时,加速度等于零,导体达到稳定运动状态。
要画好受力图,抓住a =0时,速度v 达最大值的特点。
〔2〕功能分析,电磁感应过程往往涉及多种能量形势的转化。
例如:如下图中的金属棒ab 沿导轨由静止下滑时,重力势能减小,一部分用来克服安培力做功转化为感应电流的电能,最终在R 上转转化为焦耳热,另一部分转化为金属棒的动能、假设导轨足够长,棒最终达到稳定状态为匀速运动时,重力势能用来克服安培力做功转化为感应电流的电能,因此,从功和能的观点人手,分析清晰电磁感应过程中能量转化的关系,往往是解决电磁感应问题的重要途径、【例1】如图1所示,矩形裸导线框长边的长度为2l ,短边的长度为l ,在两个短边上均接有电阻R ,其余部分电阻不计,导线框一长边与x 轴重合,左边的坐标x=0,线框内有一垂直于线框平面的磁场,磁场的感应强度满足关系)sin(l xB B 20π=。
一光滑导体棒AB 与短边平行且与长边接触良好,电阻也是R ,开始时导体棒处于x=0处,从t=0时刻起,导体棒AB 在沿x 方向的力F 作用下做速度为v 的匀速运动,求:〔1〕导体棒AB 从x=0到x=2l 的过程中力F 随时间t 变化的规律;〔2〕导体棒AB 从x=0到x=2l 的过程中回路产生的热量。
答案:〔1〕)()(sin v l t R l vtv l B F 203222220≤≤=π 〔2〕Rv l B Q 32320= 【例2】如图2所示,两条互相平行的光滑金属导轨位于水平面内,它们之间的距离为l =0.2m ,在导轨的一端接有阻值为R=0.5Ω的电阻,在x ≥0处有一与水平面垂直的均匀磁场,磁感强度B=0.5T 。
电磁感应综合问题分析一、电磁感应中的电路和图像问题1.粗细均匀的电阻丝围成的正方形线框置于有界匀强磁场中,磁场方向垂直于线框平面,其边界与正方形线框的边平行.现使线框以同样大小的速度沿四个不同方向平移出磁场,如图所示,则在移出过程中线框一边a 、b 两点间的电势差绝对值最大的是( )2.如图所示,MN 、PQ 是间距为L 的平行金属导轨,置于磁感应强度为B 、方向垂直导轨所在平面向里的匀强磁场中,M 、P 间接有一阻值为R 的电阻.一根与导轨接触良好、有效阻值为R 2的金属导线ab 垂直导轨放置,并在水平外力F 的作用下以速度v 向右匀速运动,则(不计导轨电阻) ( )A .通过电阻R 的电流方向为P →R →MB .a 、b 两点间的电压为BL vC .a 端电势比b 端电势高D .外力F 做的功等于电阻R 上产生的焦耳热3.一矩形线圈abcd 位于一随时间变化的匀强磁场内,磁场方向垂直线圈所在的平面向里(如图甲所示),磁感应强度B 随时间t 变化的规律如图乙所示.以I 表示线圈中的感应电流(图甲中线圈上箭头方向为电流的正方向),则下列选项中能正确表示线圈中电流I 随时间t 变化规律的是( )4.如图所示,两个相邻的有界匀强磁场区域,方向相反,且垂直纸面,磁感应强度的大小均为B ,以磁场区左边界为y 轴建立坐标系,磁场区域在y 轴方向足够长,在x 轴方向宽度均为a .矩形导线框ABCD 的CD 边与y 轴重合,AD 边长为a .线框从图示位置水平向右匀速穿过两磁场区域,且线框平面始终保持与磁场垂直,线框中感应电流i 与线框移动距离x 的关系图象正确的是(以逆时针方向为电流的正方向)( )5.如图所示,两根足够长的光滑金属导轨水平平行放置,间距为l=1 m,cd间、de间、cf 间分别接阻值为R=10 Ω的电阻.一阻值为R=10 Ω的导体棒ab以速度v=4 m/s匀速向左运动,导体棒与导轨接触良好;导轨所在平面存在磁感应强度大小为B=0.5 T、方向竖直向下的匀强磁场.下列说法中正确的是()A.导体棒ab中电流的流向为由b到aB.cd两端的电压为1 VC.de两端的电压为1 VD.fe两端的电压为1 V6.如图甲所示,圆形导线框固定在匀强磁场中,磁感线的方向与导线框所在平面垂直.规定磁场的正方向垂直纸面向里,磁感应强度B随时间变化的规律如图乙所示.若规定顺时针方向为感应电流i的正方向,下列各图中正确的是()7.如图甲所示,水平面上的两光滑金属导轨平行固定放置,间距d=0.5 m,电阻不计,左端通过导线与阻值R=2 Ω的电阻连接,右端通过导线与阻值R L=4 Ω的小灯泡L连接.在CDFE矩形区域内有竖直向上的匀强磁场,CE长l=2 m,有一阻值r=2 Ω的金属棒PQ放置在靠近磁场边界CD处.CDFE区域内磁场的磁感应强度B随时间变化规律如图乙所示.在t=0至t=4 s内,金属棒PQ保持静止,在t=4 s时使金属棒PQ以某一速度进入磁场区域并保持匀速运动.已知从t=0开始到金属棒运动到磁场边界EF处的整个过程中,小灯泡的亮度没有发生变化.求:(1)通过小灯泡的电流;(2)金属棒PQ在磁场区域中运动的速度大小.二、电磁感应中的动力学和能量问题8.如图所示,两足够长平行金属导轨固定在水平面上,匀强磁场方向垂直导轨平面向下,金属棒ab 、cd 与导轨构成闭合回路且都可沿导轨无摩擦滑动,两金属棒ab 、cd 的质量之比为2∶1.用一沿导轨方向的恒力F 水平向右拉金属棒cd ,经过足够长时间以后( )A .金属棒ab 、cd 都做匀速运动B .金属棒ab 上的电流方向是由b 向aC .金属棒cd 所受安培力的大小等于2F/3D .两金属棒间距离保持不变9.如图所示电路,两根光滑金属导轨平行放置在倾角为θ的斜面上,导轨下端接有电阻R ,导轨电阻不计,斜面处在竖直向上的匀强磁场中,电阻可忽略不计的金属棒ab 质量为m ,受到沿斜面向上且与金属棒垂直的恒力F 的作用.金属棒沿导轨匀速下滑,则它在下滑高度h 的过程中,以下说法正确的是( )A .作用在金属棒上各力的合力做功为零B .重力做的功等于系统产生的电能C .金属棒克服安培力做的功等于电阻R 上产生的焦耳热D .金属棒克服恒力F 做的功等于电阻R 上产生的焦耳热10.如图所示,相距为L 的两条足够长的光滑平行金属导轨与水平面的夹角为θ,上端接有定值电阻R ,匀强磁场垂直于导轨平面,磁感应强度为B .将质量为m 的导体棒由静止释放,当速度达到v 时开始匀速运动,此时对导体棒施加一平行于导轨向下的拉力,并保持拉力的功率恒为P ,导体棒最终以2v 的速度匀速运动.导体棒始终与导轨垂直且接触良好不计导轨和导体棒的电阻,重力加速度为g .下列选项正确的是( )A .P =2mg v sin θB .P =3mg v sin θC .当导体棒速度达到v 2时加速度大小为g 2sin θ D .在速度达到2v 以后匀速运动的过程中,R 上产生的焦耳热等于拉力所做的功11.如图,两根足够长光滑平行金属导轨PP ′、QQ ′倾斜放置,匀强磁场垂直于导轨平面,导轨的上端与水平放置的两金属板M 、N 相连,板间距离足够大,板间有一带电微粒,金属棒ab 水平跨放在导轨上,下滑过程中与导轨接触良好,现同时由静止释放带电微粒和金属棒ab ,则( )A .金属棒ab 最终可能匀速下滑B .金属棒ab 一直加速下滑C .金属棒ab 下滑过程中M 板电势高于N 板电势D .带电微粒不可能先向N 板运动后向M 板运动12.如图甲所示,足够长的光滑平行金属导轨MN 、PQ 竖直放置,其宽度L =1 m ,一匀强磁场垂直穿过导轨平面,导轨的上端M 与P 之间连接阻值为R =0.40 Ω的电阻,质量为m =0.01 kg 、电阻为r =0.30 Ω的金属棒ab 紧贴在导轨上.现使金属棒ab 由静止开始下滑,下滑过程中ab 始终保持水平,且与导轨接触良好,其下滑距离x 与时间t 的关系如图乙所示,图象中的OA段为曲线,AB段为直线,导轨电阻不计,g=10 m/s2(忽略ab棒运动过程中对原磁场的影响),求:甲乙(1)磁感应强度B的大小;(2)金属棒ab在开始运动的1.5 s内,通过电阻R的电荷量;(3)金属棒ab在开始运动的1.5 s内,电阻R上产生的热量.。
构建知识网络:考情分析:楞次定律、法拉第电磁感应定律是电磁学部分的重点,也是高考的重要考点。
高考常以选择题的形式考查电磁感应中的图像问题和能量转化问题,以计算题形式考查导体棒、导线框在磁场中的运动、电路知识的相关应用、牛顿运动定律和能量守恒定律在导体运动过程中的应用等。
备考时我们需要重点关注,特别是导体棒的运动过程分析和能量转化分析。
重点知识梳理:一、感应电流1.产生条件闭合电路的部分导体在磁场内做切割磁感线运动穿过闭合电路的磁通量发生变化2.方向判断右手定则:常用于切割类楞次定律:常用于闭合电路磁通量变化类3.“阻碍”的表现阻碍磁通量的变化增反减同阻碍物体间的相对运动来拒去留阻碍原电流的变化自感现象二、电动势大小的计算适用过程表达公式备注n匝线圈内的磁通量发生变化E=nΔΦΔt(1)当S不变时,E=nSΔBΔt;(2)当B不变时,E=nBΔSΔt导体做切割磁感线的运E=Blv (1)E=Blv的适用条件:动v⊥l,v⊥B;(2)当v与B平行时:E=0导体棒在磁场中以其中一端为圆心转动垂直切割磁感线三、电磁感应问题中安培力、电荷量、热量的计算1.导体切割磁感线运动,导体棒中有感应电流,受安培力作用,根据E=Blv,I=ER,F=BIl,可得F=B2l2v/R.2.闭合电路中磁通量发生变化产生感应电动势,电荷量的计算方法是根据E=ΔΦΔt,I=ER,q=IΔt则q=ΔΦ/R,若线圈匝数为n,则q=nΔΦ/R.3.电磁感应电路中产生的焦耳热,当电路中电流恒定时,可以用焦耳定律计算,当电路中电流发生变化时,则应用功能关系或能量守恒定律计算.四、自感现象与涡流自感电动势与导体中的电流变化率成正比,比例系数称为导体的自感系数L。
线圈的自感系数L 与线圈的形状、长短、匝数等因数有关系。
线圈的横截面积越大,匝数越多,它的自感系数就越大。
带有铁芯的线圈其自感系数比没有铁芯的大得多。
【名师提醒】典型例题剖析:考点一:楞次定律和法拉第电磁感应定律【典型例题1】(2016·浙江高考)如图所示,a、b两个闭合正方形线圈用同样的导线制成,匝数均为10匝,边长l a=3l b,图示区域内有垂直纸面向里的匀强磁场,且磁感应强度随时间均匀增大,不考虑线圈之间的相互影响,则()A.两线圈内产生顺时针方向的感应电流B.a、b线圈中感应电动势之比为9∶1C.a、b线圈中感应电流之比为3∶4D .a 、b 线圈中电功率之比为3∶1【答案】B【变式训练1】(2015·江苏高考)做磁共振(MRI)检查时,对人体施加的磁场发生变化时会在肌肉组织中产生感应电流.某同学为了估算该感应电流对肌肉组织的影响,将包裹在骨骼上的一圈肌肉组织等效成单匝线圈,线圈的半径r =5.0 cm ,线圈导线的截面积A =0.80 cm 2,电阻率ρ=1.5 Ω·m.如图所示,匀强磁场方向与线圈平面垂直,若磁感应强度B 在0.3 s 内从 1.5 T 均匀地减为零,求:(计算结果保留一位有效数字)(1)该圈肌肉组织的电阻R ;(2)该圈肌肉组织中的感应电动势E ;(3)0.3 s 内该圈肌肉组织中产生的热量Q. 【答案】:(1)6×103Ω(2)4×10-2V(3)8×10-8J【解析】:(1)由电阻定律R =ρ2πrA ,代入数据解得R =6×103Ω(2)感应电动势E =ΔB Δt πr 2,代入数据解得E =4×10-2V(3)由焦耳定律得Q =E2RΔt ,代入数据解得Q =8×10-8J【名师提醒】1.灵活应用楞次定律中“阻碍”的推广含义:(1)阻碍原磁通量的变化——“增反减同”;(2)阻碍相对运动——“来拒去留”;(3)阻碍原电流的变化(自感现象)——“增反减同”;(4)使线圈平面有扩大或缩小的趋势——“增缩减扩”。
[电磁感应] 电磁感应综合问题包含次级知识点:电路问题、图像问题、动力学问题、能量问题【知识点总结】本部分内容包含:电磁感应中的动力学问题、电磁感应中的能量问题、电磁感应中的图像问题,电磁感应的电路问题,在利用能的转化和守恒定律解决电磁感应的问题时,要注意分析安培力做功的情况,因为安培力做的功是电能和其他形式的能之间相互转化的“桥梁”。
考点1. 电磁感应中的动力学问题1.电磁感应中产生的感应电流在磁场中将受到安培力的作用,因此,电磁感应问题往往跟力学问题联系在一起,解决这类电磁感应中的力学问题,不仅要应用电磁学中的有关规律,如楞次定律、法拉第电磁感应定律、左右手定则、安培力的计算公式等,还要应用力学中的有关规律,如牛顿运动定律、动量定理、动能定理、动量守恒定律、机械能守恒定律等。
要将电磁学和力学的知识综合起来应用。
2.电磁感应与动力学、运动学结合的动态分析,思考方法是:电磁感应现象中感应电动势→感应电流→通电导线受安培力→合外力变化→加速度变化→速度变化→感应电动势变化→……周而复始地循环,循环结束时,加速度等于零,导体达到稳定状态.考点2.带电粒子在复合场中的运动实例1.在电磁感应现象中,切割磁感线的导体或磁通量发生变化的回路将产生感应电动势,该导体或回路就相当于电源,将它们接上电阻等用电器,便可对用电器供电,在回路中形成电流;将它们接上电容器,便可使电容器充电,因此电磁感应问题又往往跟电路问题联系在一起。
解决这类问题,不仅要考虑电磁感应中的有关规律,如右手定则、楞次定律和法拉第电磁感应定律等,还要应用电路中的有关规律,如欧姆定律、串联、并联电路电路的性质等。
2. 解决电磁感应中的电路问题,必须按题意画出等效电路图,将感应电动势等效于电源电动势,产生感应电动势的导体的电阻等效于内电阻,求电动势要用电磁感应定律,其余问题为电路分析及闭合电路欧姆定律的应用。
3. 一般解此类问题的基本思路是:①明确哪一部分电路产生感应电动势,则这部分电路就是等效电源②正确分析电路的结构,画出等效电路图③结合有关的电路规律建立方程求解.考点3.电磁感应中的能量问题1. 产生和维持感应电流的存在的过程就是其它形式的能量转化为感应电流电能的过程。
电磁感应综合问题1.掌握应用动量定理处理电磁感应问题的思路。
2.掌握应用动量守恒定律处理电磁感应问题的方法。
3.熟练应用楞次定律与法拉第电磁感应定律解决问题。
4.会分析电磁感应中的图像问题。
5.会分析电磁感应中的动力学与能量问题。
电磁感应中的动力学与能量问题1(2024·河北·模拟预测)如图甲所示,水平粗糙导轨左侧接有定值电阻R =3Ω,导轨处于垂直纸面向外的匀强磁场中,磁感应强度B =1T ,导轨间距L =1m 。
一质量m =1kg ,阻值r =1Ω的金属棒在水平向右拉力F 作用下由静止开始从CD 处运动,金属棒与导轨间动摩擦因数μ=0.25,金属棒的v -x 图像如图乙所示,取g =10m/s 2,求:(1)x =1m 时,安培力的大小;(2)从起点到发生x =1m 位移的过程中,金属棒产生的焦耳热;(3)从起点到发生x =1m 位移的过程中,拉力F 做的功。
【答案】(1)0.5N ;(2)116J ;(3)4.75J 【详解】(1)由图乙可知,x =1m 时,v =2m/s ,回路中电流为I =E R +r =BLv R +r=0.5A安培力的大小为F 安=IBL =0.5N (2)由图乙可得v =2x金属棒受到的安培力为F A =IBL =B 2L 2v R +r=x2(N )回路中产生的焦耳热等于克服安培力做的功,从起点到发生x =1m 位移的过程中,回路中产生的焦耳热为Q =W 安=F A x =0+0.52×1J =0.25J金属棒产生的焦耳热为Q 棒=r R +rQ =116J(3)从起点到发生x =1m 位移的过程中,根据动能定理有W F -W 安-μmgx =12mv 2解得拉力F 做的功为W F =4.75J1.电磁感应综合问题的解题思路2.求解焦耳热Q 的三种方法(1)焦耳定律:Q =I 2Rt ,适用于电流恒定的情况;(2)功能关系:Q =W 克安(W 克安为克服安培力做的功);(3)能量转化:Q =ΔE (其他能的减少量)。
高考物理电磁感应现象压轴难题综合题含答案解析一、高中物理解题方法:电磁感应现象的两类情况1.如图所示,水平放置的两根平行光滑金属导轨固定在平台上导轨间距为1m ,处在磁感应强度为2T 、竖直向下的匀强磁场中,平台离地面的高度为h =3.2m 初始时刻,质量为2kg 的杆ab 与导轨垂直且处于静止,距离导轨边缘为d =2m ,质量同为2kg 的杆cd 与导轨垂直,以初速度v 0=15m/s 进入磁场区域最终发现两杆先后落在地面上.已知两杆的电阻均为r =1Ω,导轨电阻不计,两杆落地点之间的距离s =4m (整个过程中两杆始终不相碰)(1)求ab 杆从磁场边缘射出时的速度大小; (2)当ab 杆射出时求cd 杆运动的距离;(3)在两根杆相互作用的过程中,求回路中产生的电能.【答案】(1) 210m/s v =;(2) cd 杆运动距离为7m ; (3) 电路中损耗的焦耳热为100J . 【解析】 【详解】(1)设ab 、cd 杆从磁场边缘射出时的速度分别为1v 、2v设ab 杆落地点的水平位移为x ,cd 杆落地点的水平位移为x s +,则有2h x v g =2h x s v g+=根据动量守恒012mv mv mv =+求得:210m/s v =(2)ab 杆运动距离为d ,对ab 杆应用动量定理1BIL t BLq mv ==设cd 杆运动距离为d x +∆22BL xq r r∆Φ∆== 解得1222rmv x B L ∆=cd 杆运动距离为12227m rmv d x d B L+∆=+= (3)根据能量守恒,电路中损耗的焦耳热等于系统损失的机械能222012111100J 222Q mv mv mv =--=2.如图,在地面上方空间存在着两个水平方向的匀强磁场,磁场的理想边界ef 、gh 、pq 水平,磁感应强度大小均为B ,区域I 的磁场方向垂直纸面向里,区域Ⅱ的磁场方向向外,两个磁场的高度均为L ;将一个质量为m ,电阻为R ,对角线长为2L 的正方形金属线圈从图示位置由静止释放(线圈的d 点与磁场上边界f 等高,线圈平面与磁场垂直),下落过程中对角线ac 始终保持水平,当对角线ac 刚到达cf 时,线圈恰好受力平衡;当对角线ac 到达h 时,线圈又恰好受力平衡(重力加速度为g ).求:(1)当线圈的对角线ac 刚到达gf 时的速度大小;(2)从线圈释放开始到对角线ac 到达gh 边界时,感应电流在线圈中产生的热量为多少?【答案】(1)1224mgR v B L = (2)322442512m g R Q mgL B L=- 【解析】 【详解】(1)设当线圈的对角线ac 刚到达ef 时线圈的速度为1v ,则此时感应电动势为:112E B Lv =⨯感应电流:11E I R=由力的平衡得:12BI L mg ⨯= 解以上各式得:1224mgRv B L =(2)设当线圈的对角线ac 刚到达ef 时线圈的速度为2v ,则此时感应电动势2222E B Lv =⨯感应电流:22E I R=由力的平衡得:222BI L mg ⨯= 解以上各式得:22216mgRv B L =设感应电流在线圈中产生的热量为Q ,由能量守恒定律得:22122mg L Q mv ⨯-=解以上各式得:322442512m g R Q mgL B L =-3.电源是通过非静电力做功把其它形式的能转化为电势能的装置,在不同的电源中,非静电力做功的本领也不相同,物理学中用电动势E 来表明电源的这种特性。
专题08电磁感应的综合应用(电路问题、图像问题、动力学问题)(原卷版)考点分类:考点分类见下表考点内容常见题型及要求 考点一 电磁感应中的电路问题 选择题、 计算题 考点二 电磁感应的图像问题 选择题、计算题 考点三 电磁感应中的动力学问题 选择题、计算题考点一: 电磁感应中的电路问题1.分析电磁感应电路问题的基本思路(1)确定电源:用法拉第电磁感应定律和楞次定律或右手定则确定感应电动势的大小和电源“正负”极,电源内部电流从低电势流向高电势;(2)分析电路结构:根据“等效电源”和电路中其他元件的连接方式画出等效电路.注意区别内外电路,区别路端电压、电动势;(3)利用电路规律求解:根据E=BLv 或E=n t∆Φ∆ 结合闭合电路欧姆定律、串并联电路知识和电功率、焦耳定律等关系式联立求解.2.电磁感应电路的几个等效问题考点二电磁感应的图像问题1.图像问题类型类型据电磁感应过程选图像据图像分析判断电磁感应过程求解流程2.解题关键弄清初始条件、正负方向的对应变化范围、所研究物理量的函数表达式、进出磁场的转折点等是解决此类问题的关键.3.解决图像问题的一般步骤(1)明确图像的种类,即是B-t图还是Φ-t图,或者E-t图、I-t图等;(2)分析电磁感应的具体过程;(3)用右手定则、楞次定律、左手定则或安培定则确定有关方向的对应关系;(4)结合法拉第电磁感应定律、欧姆定律、牛顿运动定律等知识写出函数关系式;(5)根据函数关系式,进行数学分析,如分析斜率的变化、截距等;(6)画图像或判断图像.考点三:电磁感应中的动力学问题1.两种状态及处理方法状态特征处理方法平衡态加速度为零根据平衡条件列式分析根据牛顿第二定律进行动态分析非平衡态加速度不为零或结合功能关系进行分析2.力学对象和电学对象的相互关系3.用“四步法”分析电磁感应中的动力学问题典例精析★考点一:电磁感应中的电路问题◆典例一:(2018·芜湖模拟)如图所示,在匀强磁场中竖直放置两条足够长的平行导轨,磁场方向与导轨所在平面垂直,磁感应强度大小为B0,导轨上端连接一阻值为R的电阻和开关S,导轨电阻不计,两金属棒a和b的电阻都为R,质量分别为ma=0.02 kg和mb=0.01 kg,它们与导轨接触良好,并可沿导轨无摩擦地运动,若将b棒固定,开关S断开,用一竖直向上的恒力F拉a棒,稳定后a棒以v1=10 m/s的速度向上匀速运动,此时再释放b棒,b 棒恰能保持静止.(g=10 m/s2)(1)求拉力F的大小;(2)若将a棒固定,开关S闭合,释放b棒,求b棒滑行的最大速度v2;(3)若将a棒和b棒都固定,开关S断开,使磁感应强度从B0随时间均匀增加,经0.1 s后磁感应强度增大到2B0时,a棒受到的安培力大小正好等于a棒的重力,求两棒间的距离.◆典例二:(2017·唐山模拟)在同一水平面上的光滑平行导轨P 、Q 相距l =1 m ,导轨左端接有如图所示的电路。
电磁感应实验中的常见问题解答与技巧总结电磁感应实验是物理学中重要的实验之一,通过该实验可以观察到磁场与电流之间存在的相互作用现象。
然而,在进行电磁感应实验过程中,常常会遇到一些问题和困惑。
本文将针对这些常见问题进行解答,并总结一些实验技巧,以便读者能够更好地完成电磁感应实验。
一、电磁感应实验常见问题解答问题一:实验中用哪种导线较好?回答:在电磁感应实验中,一般使用铜导线。
铜导线具有电导率高、热稳定性好、抗腐蚀等优点,因此适合用于电磁感应实验。
此外,导线的长度和截面积也会对实验结果产生影响,可根据实验需求选择合适的导线。
问题二:如何减小外界磁场对实验的干扰?回答:外界磁场可能会对电磁感应实验结果产生干扰,为了减小这种干扰,可以通过以下几种方法来操作:1. 选择一个尽可能密闭的环境,减少外部磁场的干扰;2. 避免靠近有磁性材料或电器设备的区域进行实验;3. 使用磁屏蔽材料将实验区域屏蔽起来,以减少外界磁场的干扰。
问题三:实验中如何测量磁感应强度?回答:可以使用霍尔效应或霍尔元件来测量磁感应强度。
霍尔效应是指当导体中有电流通过时,垂直于电流方向的磁场会引起电势差的现象。
霍尔元件则是一种能够测量磁场的器件,利用其输出的电压信号可以间接测量磁场强度。
二、电磁感应实验技巧总结1. 合理选择实验装置:在进行电磁感应实验时,应根据实验目的和要求,选择合适的实验装置。
例如,对于测量电磁感应产生的电势差,可以选择恒磁场实验装置,以减少外界干扰。
2. 注意电路接法:在连接电路时,应保证电路中没有接触不良或断开的情况,以确保电流的连续性。
此外,电路中的接触电阻应尽量减小,以保证实验结果的准确性。
3. 控制实验条件:在进行电磁感应实验时,应尽量控制实验条件的一致性。
例如,保持磁场强度、角度、速度等参数的稳定,以避免实验结果的误差。
4. 观察仪器读数:在进行实验时,应仔细观察仪器的读数,并及时记录。
同时,要注意使用合适的单位来表示实验数据,以便后续的数据分析和处理。
高考物理诊断卷电磁感应综合问题(八)
5. (2005江苏物理卷) (16分)如图所示,固定的水平光滑金属导轨,间距为L ,左端接有阻值为R 的电阻,处在方向竖直、磁感应强度为B 的匀强磁场中,质量为m 的导体棒与固定弹簧相连,放在导轨上,导轨与导体棒的电阻均可忽略.初始时刻,弹簧恰处于自然长度,导体棒具有水平向右的初速度v 0.在沿导轨往复运动的过程中,导体棒始终与导轨垂直并保持良好接触.
(1)求初始时刻导体棒受到的安培力.
(2)若导体棒从初始时刻到速度第一次为零时,弹簧的弹性势能为E p ,则这一过程中安培力所做的功W 1和电阻R 上产生的焦耳热Q 1分别为多少?
(3)导体棒往复运动,最终将静止于何处?从导体棒开始运动直到最终静止的过程中,电阻R 上产生的焦耳热Q 为多少?
17.(16分)(2005·广东物理)如图
13所示,一半径为r 的圆形导线
框内有一匀强磁场,磁场方向垂直
于导线框所在平面,导线框的左端
通过导线接一对水平放置的平行金属板,两板间的距离为d ,板长为l ,t =0时,磁场的磁感应强度B 从B 0开始均匀增大,同时,在板2的左端且非常靠近板2的位置有一质量为m 、带电量为-q 的液滴以初速度v 0水平向右射入两板间,该液滴可视为质点。
⑴要使该液滴能从两板间射出,磁感应强度随时间的变化率K 应满足什么条件?⑵要使该液滴能从两板间右端的中点射出,磁感应强度B 与时间t 应满足什么关系?
1..(2004·天津理综)磁流体发电是一种新型发电方式,图1和图2是其工作原理示意图。
图1中的长方体是发电导管,其中空部分的长、高、宽分别为l、a、b,前后两个侧面是绝缘体,上下两个侧面是电阻可略的导体电极,这两个电极与负载电阻R L相连。
整个发电导管处于图2中磁场线圈产生的匀强磁场里,磁感应强度为B,方向如图1所示。
发电导管内有电阻率为ρ的高温、高速电离气体沿导管向右流动,并通过专用管道导出。
由于运动的电离气体受到磁场作用,产生了电动势。
发电导管内电离气体流速随磁场有无而不同。
设发电导管内电离气体流速处处相同,且不存在磁场时电离气体流速为v0,电离气体所受摩擦阻力总与流速成正比,发电导管两端的电离气体压强差△p维持恒定,求:(1)不存在磁场时电离气体所受的摩擦阻力F多大;
(2)磁流体发电机的电动势E的大小;
(3)磁流体发电机发电导管的输入功率P。