Evaluation of ENVISAT ASAR data for sea surface wind retrieval in Hong Kong coastal waters of Ch
- 格式:pdf
- 大小:260.83 KB
- 文档页数:6
··基金项目:国家社会科学基金项目“环保督察背景下地方政府生态文明绩效考核———问责联动机制研究”(18BGL207)作者简介:谭娉婷(1997-),女,湖南长沙人,海南大学公共管理学院硕士研究生,研究方向为行政管理;韩晓莉(1971-),女,湖北襄阳人,海南大学公共管理学院教授,海南公共治理研究中心研究员,研究方向为政府生态治理、行政管理改革。
一、引言习近平总书记指出“要建立科学合理的考核评价体系,并对那些损害生态环境的领导干部,要真追责、敢追责、严追责,做到终身追责”[1],环境绩效考核问责是环境治理中的重要一环,是政府进行环境保护、促进绿色发展的重要推动力,对环境治理体系建设和环境治理绩效改善发挥重要作用。
厘清环境绩效考核问责是环境治理的前提,总结环境绩效考核与问责中的经验与不足,可以为现实情况提供指导,为具体行动提供依据,加强环境治理体系建设。
如何在比较与借鉴中完善环境绩效的考核问责,是值得我们探讨的问题。
本文将中外环境绩效考核问责进行比较,选取发达国家对于环境绩效考核问责的研究作为对象,发达国家绩效管理起步早,对环境绩效考核问责的实践经验与研究经验也较为成熟,他们的经验能为中国环境绩效考核问责提供良好的经验启示。
笔者采用中国知网全文数据库,限定核心期刊范围,以“环境绩效”为主题,对近十年(2010年至今)的文献进行检索,检索到803篇文献,再以“考核”与“问责”为主题,筛选出文献50篇,其中针对企业考核问责的研究数为26篇,针对政府的研究文献数为24篇。
外文文献选取了Emerald 管理学、工程学数据库(emerald insight ),将检索词限制在与“eco ⁃logical civilization ”“ecological performance evaluation ”相似的“environmental accountability ”“environmental performance e ⁃valuation ”中,选定学科“environment and society ”,从2000年至2020年,共检索出51篇文献。
Long-term evaluation of safety and efficacy of the Remeex re-adjustable sling for recurrent stress incontinence and sphincteric deficiencyA multicentric Study.Ll. Amat, S. DatiHospital Sant Joan de Deu, Barcelona, SpainPoliclinico Casilino, Roma, Italy.Introduction and objectivesFrom June 2000, 127 female patients were operated with the TRT (Tension free Readjustable Tape) in our centres. The procedure, main technical points, as well as the good results obtained in terms of efficacy and safety, has been presented in previous abstracts. In this communication, we present the long-term results in 127 patients with a minimal follow-up of 48 months.Methods127 patients classified by clinical criteria, Q-tip and urodynamics, into ISD (85 cases) and recurrent hyper-mobility SUI (42 cases) underwent the TRT procedure. Outcome measures included urodynamic assessment of cure, and the King´s Health Questionnaire.ResultsAfter a mean follow up period of 50 months (range 48-78), 112 patients (88.2%) are objectively cured of stress incontinence, 4 (3.15%) additional patients are satisfied and refused re-adjustment, 8 patients (6.2%) patients are on the waiting list for a further readjustment, and 3 patients are considered failures due to complications (2 for abdominal seroma and 1 for vaginal sling extrusion).23 patients (18.1%) show some evidence of urge incontinence, 12 of them (9.4%) had previous mixed incontinence, and 11 (8.6%) present de-novo detrusor overactivity incontinence.9 cases (7,1%) required re adjustment of the sling months after the initial procedure. 116 (91.3%) are satisfied with the result of the surgery based on the questionnaire. The varitensor has been withdrawn in one case due to infection but continence was preserved. No other adverse events or complications were seen.ConclusionsThe Remeex adjustable sling system provides a good cure rate for recurrent SUI and ISD with a low complication rate at long-term follow-up. The correct sling urethral support level is easily achieved during the early postoperative period, and when necessary, one is able to convert failures into cures. Increasing and decreasing the sling support level was successful in achieving clinical improvements. The problems of obstruction and recurrent incontinence during the follow up period were resolved successfully in every case, by re-accessing the adjusting varitensor under local anesthesia.。
必要的证据类群的环境条件,或影响是可靠的指标PJ古德塞尔,AJ安德伍德,MG查普曼生态影响的沿海城市,海洋生态实验室A11,悉尼大学,悉尼,新南威尔士州2006年,澳大利亚研究中心/10.1016/j.marpolbul.2008.10.011,如何来引用或链接使用DOI关键词:抽象使用类群对环境的影响的指标是广泛的。
指标的选择,因为他们被认为是容易测量,敏感的压力,在可预见的方式对压力做出反应。
在这里,我们检讨这些准则解决的一些特性类群之间的关系和环境变量,他们都应该表示的性质。
这是非常重要的指标测量的变量强烈和一致的相关性(空间和时间)的环境变量的水平。
必须做适当的实验,以证明所观察到的相关关系是因果关系,或相关的不能被视为足以确定一个有用的指标。
最后,有必要建立类群直接回应,他们都应该表示在环境变量的变化。
被认为是适当的方法来建立这些标准,我们评估的研究中,这些标准有或没有得到满足。
关键词指标品种;生态指标;环境指标;相关1。
介绍采样物理-化学的或非生物的变量来检测在某些环境条件的变化或影响是有问题的。
污染物可能,例如,存在于有毒的数量,或生物累积,从而产生不利的生物效应。
可能,但是,污染物的浓度太小,被检测到使用化学或物理的措施(苏特尔,2001)。
此外,污染(化学变量)是没有污染-这是一个测量污染[Wilhm和多里斯,1968] 和[1995] GESAMP,生物/生态响应。
类似地,干扰(如通过物理变量测量)是不相同的作为冲击-这是,再次,对干扰的响应(萨瑟兰,1990年)。
因此,许多人已经认识到需要测量环境的污染和使用生物,而不是物理化学指标的影响。
的环境状态提供指示所认为的有机体,种群动态的变化或行为或病理反应的生物,但它是太困难,价格昂贵,费时或其他原因无法直接测量(凯恩斯和van der schalie,1980] ,[朗德尔等人,1988] 和[卡里格纳恩和维拉德,2002])。
成都医学院学报 2018 年第13 卷第4 期Voumal of Chengdu Medical College,2018,Vol. 13,No. 4• 467 •网络出版地址:h ttp:///kcms/detail/51.1705. R.20171221.1158.006. htmldoi:10.3969/j.issn.1674-2257.2018. 04.020•论著•吸入糖皮质激素对慢性阻塞性肺疾病患者肺癌发生风险影响的系统评价X柯华,陈维永成都市第七人民医院(成都610021)【摘要】目的系统评价吸入糖皮质激素(ICS)对慢性阻塞性肺疾病(COPD)患者肺癌的预防作用,为临床决 策提供参考+方法计算机检索C ochrane libra:r y、Pubme d、EMba S e、CBM、CNKI、VIP、万方等数据库,检索COPD患者接受ICS治疗并报道肺癌发生或死亡风险的研究,检索时间截至2017年3月。
由2名评价者按纳入、排除标准,进行文献筛选、资料提取并评价方法学质量后,采用RevMan5.3软件进行系统评价。
结果共纳入8项研究,其中5项随机对照研究,3项观察性研究+1)随机对照研究显示,ICS暴露不能降低COPD患者肺癌的发生与死亡风险&)观察性研究显示,ICS暴露可降低COPD患者肺癌的发生风险,高剂量的ICS效应更加明显;3)随机对照研究显示,ICS治疗组与对照组安全性差异无统计学意义(P>0. 05)+结论观察性研究表明,接受ICS治疗的COPD患者肺癌发生风险有所下降,然而随机对照试验的结果是相反的。
考虑到纳入研究的局限性,未来期待随访时间更长、人口更多的纵向队列设计研究来证实ICS暴露与COPD患者肺癌之间的关系+【关键词】M t a分析;吸入性糖皮质激素;慢性阻塞性肺疾病患者;肺癌【中图分类号】R734 【文献标志码】AA System Evaluation of Effect of I nhaled Corticosteroids on Lung Cancer Risk in Patients with Chronic ObstructivePulmonary Disease K e H u a,Chen W eiyong. C hengd uN o.7 Peoples H o sp ita l,Chengdu610021, China 【Abstract】Objective To system atically evaluate the preventive effect o f inhaled corticosteroids (IC S) on the lung cancer ris k in patients w ith chronic obstructive pulm onary disease (C O PD) and provide references fo r the clinical deci T h e data o f the studies about the COPD patients receiving the ICS treatm ent w ith the lung cancer were searched in the databases including Cochrane lib ra ry,Pubm ed,EM base,C B M,C N K I,V IP,and W anfang,a the search ended in M arch o f 2017. Two independent reviewers screened the literature according to the inclusion and exclusioncriteria , extracted the data and assessed the methodology. T h en the software o f R evM an 5. 3 was used to make an systematicevaluation Results E ig h t studies including five randomized controlled trials and three observational studies were included in thestudy. Th e results o f randomized controlled tria ls showed th a t ICS couldn't low er the ris k o f lung cancer and death in COPDpatients,w hile the results of observational studies showed that ICS could lo w rr the ris k o f lu had better effect. T h e results o f randomized controlled tria ls showed that there was no significant difference in safety between theICS treatm ent group and the control group (P>0. 05). Conclusion T h e results o f observational studies s receiving ICS have a decreased incidence o f lung cancer,w hile the results o f randomized controlled tria ls were the opposite.Considering the lim itations o f inclusion studies , the lo n g itu d in d cohort study designed fo r longer f needed to confirm the correlation between ICS and lung cancer in COPD patients.【Key words】M e ta-a n a ly s is; In h a le d c o rtic o s te ro id s;C h ro n ic o b s tru c tiv e p u lm o n a ry disease ( C O P D);L u n g cancer随着人口寿命延长和老龄化加剧,越来越多的 人患有多种慢性病,研究[1]显示,65岁以上的新发癌症患者中,60U的患者至少患有1种其他严重的 疾病,其中,最为常见的是慢性阻塞性肺疾病(chronic obstructive pulmonary disease,COPD)+预计2020年COPD将成为全球第三大死亡原因。
一. 遥感博导一强烈推荐宫鹏教授/主任宫鹏,1965年生。
1990年获加拿大滑铁卢大学博士,美国伯克利加州大学环境科学、政策与管理教授,中国科学院遥感应用研究所研究员,北京师范大学兼职教授,南京大学国际地球系统科学研究所所长、南京大学教授。
1994年创办了国际杂志《Geographic Information Sciences》任主编,1998年以来任《International Journal of Remote Sensing》编辑,曾任《Canadian Journal of Remote Sensing》编辑,是这两份国际著名杂志创办以来的第一个华人编辑。
科学出版社特邀编辑、高等教育出版社“当代科学前沿论丛”顾问等职。
近十年里主持60余项科研项目、资助额达800余万美元。
研究兴趣包括遥感生态测量学、遥感信息提取、地球空间信息技术在环境变化、城市扩展及流行病模拟中的应用。
发表各类论文、书籍及研究报告300余篇(其中SCI论文90余篇),应邀在近20个国家做100余场学术报告。
曾获美国摄影测量与遥感学会1994年的年度最高奖Talbert Abrams大奖等数项奖励。
1998年首批国家自然科学基金委30位杰出青年科学基金(B类)获得者之一。
1999年被聘为中国科学院首批(33位)海外评审专家,2004年被科技部聘为首批海外顾问专家(9名)。
是第三版《遥感手册》“居住区遥感”和“高光谱遥感”两个分册的主要撰稿人之一。
二极力推荐柳钦火研究员柳钦火,男,研究员,博士生导师,1968年生。
1988年毕业于西南交通大学,获学士学位,1994年获北京大学地图学与遥感专业硕士学位,1997年获北京大学大气物理专业博士学位,1997年入中科院遥感所博士后流动站工作,1998年至1999年在法国农科院生态实验站和美国波士顿大学遥感中心开展合作研究,1999年8月起任遥感所副研究员,2001年至今在遥感所任中国科学院遥感信息科学重点实验室遥感信息特性领域创新研究员。
A Monetary Evaluation of Ecosystem ServicesEsteban RamosEmily RexerIshan SaranEmory UniversityAtlanta,GAUSAAdvisor:Lars RuthottoSummaryWe create an ecosystem service valuation model to understand the true cost of land-use projects by modeling the value of the unaffected ecosystem services and the extent to which they would be impacted by potential land-use development.We achieve this by considering variables from the land-use project and the ecosystem of the specific location.To measure how eco-friendly the area of the project is,we consider biome, proximity to urban centers,precipitation,cost of energy in the region,and canopy coverage.We divide ecosystem services into direct use services and indirect use services.We draw upon a variety of well-established methods for valuation, including market-based valuation,replacement cost,avoided costs,and ben-efit transfer.We also utilize two data sets:The Economics of Ecosystems and Biodiversity Valuation Database(TEEB)and Energy Society’s Database.We test our model on six case studies.For each,wefind the total mone-tary costs of the ecosystem services affected by land-use projects.Project Ecological Cost(USD)Road construction in Cairo,Egypt$219Housing in Washington,USA$502Facebook MPK20in California,USA$19,110Road construction in Hobart,Australia$1.7millionV´ıa Verde Pipeline in Puerto Rico$642millionNicaragua Canal Project$3.16billionFinally,we project our model as a function of time into the future and perform a sensitivity analysis by varying our initial parameters.Our model is robust to reasonable perturbations within an order of magnitude.The UMAP Journal40(2–3)(2019)185–199.c Copyright2019by COMAP,Inc.All rights reserved. Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice.Abstracting with credit is permitted,but copyrights for components of this work owned by others than COMAP must be honored.To copy otherwise, to republish,to post on servers,or to redistribute to lists requires prior permission from COMAP.IntroductionOur task is to create a valuation model of ecological services to quan-tify the economic costs of environmental degradation caused by land-use development.Our model considers a potential project,takes into account many as-pects of the location of the project,and returns a monetary value that is estimated to be the value of the ecological service.This model’s purpose is to assist people in understanding the ecological cost of land-use projects in monetary terms.The main challenge faced in creating this model is assigning a monetary value to services that do not posses this value intrinsically.To overcome this difficulty,we utilize multiple established approaches and synthesizes them into a single model.We model land-use development projects of varying sizes in different locations.To evaluate the effectiveness and implications of our model,we perform sensitivity analysis and project our model into the future.Definitions•Ecological(or Ecosystem)Services are any services provided by an ecosystem which could be beneficiary to humans.Ecological services can be categorized into use(those which can be directly or indirectly used by humans)and non-use(those which cannot be used by humans). Controversy often arises with non-use ecological services,since it is con-tentious to place a price on that which offers no value.We consider non-use ecological services as“subservices”[Ecosystem Services Partnership 2019;van der Ploeg and de Groot2010].The ecological services that we consider include–carbon sequestration,–waterfiltration,–flood prevention,–erosion prevention,–recreation,–biodiversity protection,–fire prevention,–timber,–fuel wood and charcoal,–eco-tourism,–micro-climate regulation,–biochemicals,–natural irrigation,–plants and vegetable food,–hydroelectricity,–deposition of nutrients,–gas regulation,–soil formation,–cultural use,–drainage,and–science/research.•Valuation of a given service is the monetary value assigned to it.Since the value of a service must be of greater than or equal value than the price for consumers to purchase it,any monetary estimation of an eco-logical service will underestimate the true value of the service.•Direct Use services are measurable services produced by the ecosystem that directly benefit humans,such as carbon sequestration and ground water recharge.•Indirect Use services are services that don’t directly benefit humans but augment the benefits of direct use services,e.g.,biodiversity.The difficulty of measuring such services often results in calculating their demand-side valuation,i.e.,the value that the service provides for hu-mans.We use as sources for these values The Economics of Ecosys-tems and Biodiversity(TEEB)Database[Ecosystem Services Partnership 2019;van der Ploeg and de Groot2010],a database of ecosystem ser-vices values from many ecosystem valuation studies.The values used were calculated based on three well-established methods for ecosystem valuation:benefit transfer,direct market pricing,and replacement cost techniques.•Biome is the naturally occurringflora and fauna occupying a habitat and can be broadly categorized into terrestrial and marine[Kendeigh 1961].We consider only terrestrial.The biome types that we consider are:–tropical forests,–inland wetlands,–coastal wetlands,–cultivated areas,–woodlands,–deserts,–forests,and–grasslands.Assumptions•Clean water is accessible,and uncontaminated water sources vary lit-tle among one another.Since water can be piped or trucked in,we assume that it is accessible;in our model,we consider the distance to clean water.•Areas in the same ecosystem classification are equally productive.Even in ecosystems that are in the same classification,there can be huge va-riety.We assume that each biome is relatively uniform throughout,so that grouping by biome is sufficient to differentiate among projects.•Any impact scales linearly.An increase in the area linearly affects the factors used to calculate the monetary representation of the ecological cost.For example,if one tree sequesters N kg of CO2,then two trees sequester2N kg of CO2.•Energy costs accurately reflect the value of ecological services and ac-curately translate the costs of those services in different regions with differing energy costs.We translate some ecological costs into mone-tary value by calculating the approximate energy of ecological services and using the energy cost in the region.We assume that it is possible to estimate a conversion factor.•There is a non-linear inversely proportional relationship between the distance from an urban area and the value of ecosystem service[Trisos 2015;Zari2018].Therefore,we assume a relationship between urban-ization and ecosystem services.This means that access to clean water, biodiversity,and other similar services are affected by urban proximity.ModelModel VariablesWe use different methods to evaluate the monetary cost of varying eco-logical services,depending on the service.We use the equations below for carbon sequestration and waterfiltration and purification.Where we cannot estimate the direct cost of a service,we use costs from the TEEB Database[Ecosystem Services Partnership2019].cost(D,S i,P urban,E)=D+X i S i!(1+P urban)(1 E),where•D is the monetary value of direct use factors for the project,•S i is the i th service,•P urban is an index of proximity of the project to an urban setting,and•E is the eco-friendly index for the project.To avoid double-counting,we discard any values from the TEEB data set that deal with carbon sequestration,water purification,water filtration,and any ambiguities related to water or carbon dioxide purification.The urban proximity index and the eco-friendly index both range from 0to 1and are weighting factors that affect the final cost.•Urban proximity index:A value of 0corresponds to a location very close to an urban setting,defined as 5km or less.A value of 1corre-sponds to a rural location at least 50km from an urban environment.Urban areas have irrigation services and other utilities already in place.In rural settings,the landscape needs to be torn apart more to get the resources necessary,which leads to more damage to the ecosystem ser-vices that the land provides.We use a logarithmic scale because previ-ous literature indicates that this relationship is nonlinear [Zari 2018].•Eco-friendly index:A value of 0corresponds to a company that puts no effort into reducing its carbon footprint or using other environmentally-friendly practices.A value of 1corresponds to a company able to “live”in the ecosystem without damaging any of the services.For example,the Apple Park in California,USA would have a relatively high eco-friendly index,since it is the world’s largest naturally-ventilated building,with 7,000trees planted around campus and 100%renewable energy power-ing the campus [Miller 2018].For our six case studies,we estimate an index value.In reality,before a construction project is started,the com-pany can use a source for determining relative eco-friendliness,such as the 2017State of Green Business Index [Makover et al.2018].Further Equations•Total Cost of Direct Use Services We use a summation model with a time step of one year for the use of ecological features [Yang et al.2018].D (C,W )=C +W.We add together the monetary cost C of the energy used by carbon se-questration and the monetary cost W of the energy used to filter water;this is the total cost of the direct use services.•Energy of Carbon Sequestration The energy E C of carbon sequestra-tion per square meter of canopy cover is calculated by multiplying the energy E CO 2of carbon sequestration per pound of CO 2by the conver-sion factor E T and then by the energy efficiency p of photosynthesis.E C =E CO 2E T p.Table1.Symbols,definitions,and constants.Symbol DefinitionD(C,W)Monetary value(USD)of direct use services from an ecologi-cal area using energy calculations.C(A,F%,E$)Monetary value(USD)of carbon taken out of the atmosphere by plantsW(P w,A,E$)Monetary value(USD)of waterfiltered by the soil S List of ecosystem services in the TEEB dataset.P urban Index of urban proximity(0–1),with0being near an urban area and1being in a rural/remote areaE Eco-friendly indexA Area of the land-use project(m2).F%Canopy Percentage:Percentage of foliage coverage of1m2of land(%).E$Monetary value of energy varying depending on location (USD/Joule).u Urban proximity(m).P w Precipitation(mm/yr)b Biome,with data from TEEB Database[Ecosystem ServicesPartnership2019]Constant ValueE C Energy of carbon per square meter of canopy cover(117J/m2).p Energy efficiency of photosynthesis:26%[Lambers and Bassham2018].t Time(yr).E CO2Energy of CO2:5.045⇥106Jlb CO2[Evans n.d.]E T Energy of CO2per square meter:48lbs CO21m2[Lambers andBassham2018]E m Solar transformity:amount of energy required to produce1gof clean groundwater from soil due to rainfall:22.83J g[Yanget al.2018]⇢H2O Density of water:997kgm3。
环境污染与防治第43卷第1期2021年1月化剂类物质,其来源为墙布、地毯等装修材料#该方法操作简单,环境友好性强,使大规模进行室内空气中SVOCs污染的调研成为可能,可为制定室内空气中SVOCs标准限值提供依据,从而加强企业在生产环节中对产品SVOCs释放量的控制和管理。
参考文献:*1+WESCHLER C J.Changes in indoor pollutants since the1950s [J].Atmospheric Environment,2009,43(1):153-169.*+庄晓虹,胡筱敏,孙承智.室内空气中挥发性有机物的释放特征分析*+ •环境污染与防治,008,0(12):102-105.[3]WESTJ J,COHEN A,DENTENER F,t al.What we breatheimpacts our health:improving understanding of the link between air pollution and health E J+•Environmental Science&Technology,016,50(10):4895-4904.[4]WANG L X,ZHAO B,LIU C,et al.Indoor SVOC pollution inChina:a review[J].Chinese Science Bulletin,2010,55(10):1469-1478.[5]YE W,LITTLE J C,WON D,et al.Screening-level estimates ofindoorexposureto volatileorganiccompoundsemitedfrombuilding materials[J].BuildingandEnvironment2014"75:58-66.[6]ZHANG Y"XIONGJ"MOJetal.Understandingandcontrol-lingairborneorganiccompoundsintheindoorenvironment:masstransferanalysisandapplications[J].IndoorAir201626(1):39-60.[7]XU Y"ZHANGJ.UnderstandingSVOCs[J].AshraeJournal"201153(12)121-126.[]徐海霞,陶文铨•我国室内空气中半挥发性有机化合物的来源和污染现状[]•环境与健康杂志,2013,30(11)1030-1033. [9]BARTKOW M E"BOOIJ K"KENNEDY K E et al Passive airsamplingtheoryforsemivolatileorganiccompounds[J]Chem-osphere200560(2)170-176'[10]BORRASE SANCHEZP"MUNOZ A etalDevelopmentofagaschromatography-massspectrometry methodforthede-terminationofpesticidesingaseousandparticulatephasesintheatmosphere[J]AnalyticaChimicaActa2011699(1):57-65'[11]HURST C H,WAXMAN D J.Activation of PPAR alpha andPPAR gamma by environmentalphthalate monoesters[J].ToxicologicalSciences200374(2):297-308.[12]HOTCHKISS A K,PARKS S L G,OSTBY J L,et al.A mixture of the*antiandrogens-linuron and butyl benzylphthaHateaHterssexuaHdiferentiationofthe maHeratinacu-muHativefashion[J].BioHogyof Reproduction"2004"71(6):1852-1861.[13]MATSUMOTO M"KOIZUMI M H"EMA M.ProtentionaHadverseefectsofphthaicacidestersonhumanheaHth:are-viewofrecentstudiesonreproduction[J].ReguHatory Toxi-coHogyandPharmacoHogy200850(1):37-49.编辑:黄苇(收稿日期:2020-03-02)(上接第72页)[3]GB/T14848—2017,地下水质量标准[S].[4]HJ25.3—2019,建设用地土壤污染风险评估技术导则[S].[5]张晶,杨玉飞,杨金忠,等.造粒飞灰沥青混凝土路面利用的地下水环境风险评估[]•环境污染与防治,019,1(1):89-94.[6]裴芳,罗泽娇,彭进进,等.某炼油厂退役场地土壤与浅层地下水酚类污染特征研究[]•环境科学201233(12):4251-4255.[7]邓一荣,陆海建,董敏刚,等.粤港澳大湾区典型化工场地苯系物污染特征及迁移规律[+•环境科学,2019,40(12) =5615-5622'[8]HERS D I,TRUESDALE R S.Evaluation of empirical dataandmodelingstudiestosupportsoilvaporintrusionscreeningcriteria for petroleum hydrocarbon compounds[R]'Washing-ton"DC:USEPA2013'[9]HJ25.6—2019,污染地块地下水修复和风险管控技术导则[S]'[0]姜林,钟茂生,贾晓洋,等•基于地下水暴露途径的健康风险评价及修复案例研究[]•环境科学2012,33(10):33293335. [31]FAN C H"WANG GS"CHEN Y C etalRiskassessmentofexposureto volatile organiccompoundsin groundwaterinTaiwan[J]ScienceoftheTotalEnvironment2009"407(7):2165-2174'[2]谷庆宝,郭观林,周友亚,等.污染场地修复技术的分类、应用与筛选方法探讨[]•环境科学研究200821(2):197202. [33]DENNIS A T Remediation technologies screening matrixandreference guide:version'[J].Remediation Journal,1997,8(1)115-121[34]USEPA Howtoevaluatealternativecleanuptechnologiesforundergroundstoragetanksites:aguideforcorrectiveactionplanreviewers[R]Washington,DC:USEPA,2004[5]赵勇胜.地下水污染场地风险管理与修复技术筛选[].吉林大学学报(地球科学版),2012,42(5):1426-1433.[6]靳超,左锐,王金生,等.傍河污染场地地下水修复技术筛选:J].北京师范大学学报(自然科学版),017,3(6):689-697.[7]鄂佳楠,周睿,郑龙日,等.基于蒙特卡罗法和层次分析法的污染场地地下水修复技术筛选方法研究[].环境污染与防治,2017,39(5):499-503,509编辑:胡翠娟(收稿日期:2020-11-03)《环境污染与防治》增刊2021年度征稿启事为更好地满足全国生态环境科研及管理人员在生态保护、环境科研、环保技术及环境管理等方面的交流需求,并为广大生态环境从业人员发表学术论文提供更多机会和更大空间,本刊定于2021年4月出版增刊1期。
一. 遥感博导一强烈推荐宫鹏教授/主任宫鹏,1965年生。
1990年获加拿大滑铁卢大学博士,美国伯克利加州大学环境科学、政策与管理教授,中国科学院遥感应用研究所研究员,北京师范大学兼职教授,南京大学国际地球系统科学研究所所长、南京大学教授。
1994年创办了国际杂志《Geographic Information Sciences》任主编,1998年以来任《International Journal of Remote Sensing》编辑,曾任《Canadian Journal of Remote Sensing》编辑,是这两份国际著名杂志创办以来的第一个华人编辑。
科学出版社特邀编辑、高等教育出版社“当代科学前沿论丛”顾问等职。
近十年里主持60余项科研项目、资助额达800余万美元。
研究兴趣包括遥感生态测量学、遥感信息提取、地球空间信息技术在环境变化、城市扩展及流行病模拟中的应用。
发表各类论文、书籍及研究报告300余篇(其中SCI论文90余篇),应邀在近20个国家做100余场学术报告。
曾获美国摄影测量与遥感学会1994年的年度最高奖Talbert Abrams大奖等数项奖励。
1998年首批国家自然科学基金委30位杰出青年科学基金(B类)获得者之一。
1999年被聘为中国科学院首批(33位)海外评审专家,2004年被科技部聘为首批海外顾问专家(9名)。
是第三版《遥感手册》“居住区遥感”和“高光谱遥感”两个分册的主要撰稿人之一。
二极力推荐柳钦火研究员柳钦火,男,研究员,博士生导师,1968年生。
1988年毕业于西南交通大学,获学士学位,1994年获北京大学地图学与遥感专业硕士学位,1997年获北京大学大气物理专业博士学位,1997年入中科院遥感所博士后流动站工作,1998年至1999年在法国农科院生态实验站和美国波士顿大学遥感中心开展合作研究,1999年8月起任遥感所副研究员,2001年至今在遥感所任中国科学院遥感信息科学重点实验室遥感信息特性领域创新研究员。