四、电容式传感器仿真
- 格式:doc
- 大小:1.58 MB
- 文档页数:7
微机械电容式加速度传感器仿真分析刁爱民;杨明国;刘树勇;杨庆超;胥震【摘要】The mode frequency and measuring range both are significant for designing of micro-machined accelerometer. The natural frequency and typical modal analysis were carried out by simulation of finite element method. The series phase resonance frequency of the equivalent circuit was carried out by Multisim as well. The measuring range of the accelerometer was carried out based on the linearity.%微机械加速度传感器的检测模态特征频率和有效量程是进行传感器设计时必须要考虑的2个重要参数.文中在对传感器检测模态频率进行有限元分析的基础上,剁用电路仿真软件Multisim对传感器等效电路进行了谐振频率分析,并根据线性度指标求得了传感器的有效量程,为微机械加速度传感器的设计提供了参考.【期刊名称】《仪表技术与传感器》【年(卷),期】2012(000)012【总页数】3页(P1-2,8)【关键词】微机电系统;电容传感器;Multisim;量程【作者】刁爱民;杨明国;刘树勇;杨庆超;胥震【作者单位】海军工程大学科研部,湖北武汉430033;海军驻武汉三江航空集团代表室,湖北武汉430033;海军工程大学科研部,湖北武汉430033;海军工程大学科研部,湖北武汉430033;海军工程大学科研部,湖北武汉430033【正文语种】中文【中图分类】TP2120 引言基于微机电系统(Micro-electro-mechanical System,MEMS)技术的微机械加速度传感器(Micro-mechanical accelerometer,MMA)是一种重要的微惯性器件,在车辆安全、导航制导、航空航天和掌上电子产品等方面得到了广泛的应用。
电容式传感器的位移特性实验电容式位移传感器实验是一种重要的引导应用考核技术,它要求用户在复杂的实验环境中结合理论知识和实际操作,使用电容式位移传感器来测量和检验其变化。
电容式位移传感器具有灵敏度高、稳定性好、良好的鲁棒性等优点,在工业控制领域中得到广泛应用。
实验 content一、研究内容1、电容式位移传感器介绍:介绍电容式位移传感器的原理工作原理、接线结构以及精度要求等。
2、等效电路仿真:使用电路仿真软件,仿真输入电压的变化对电容式位移传感器的影响。
3、实验素材:利用工业电容式位移传感器,测量传感器的位移特性,探查其非线性特性以及如何改善精度。
4、仪器设备:利用函数发生器、数字万用表、模拟量信号示波器等常用仪器设备,分别检测典型电容器位移传感器的精度。
5、结论性评价:评价:分析电容式位移传感器的特性,对它的优缺点进行总结,指出如何提高其精度,进一步建立相关的计算模型。
二、实验原理1、电容式位移传感器由两个电容构成,其原理是由于特定环境改变时,电容之间的介质改变,会在电容上形成电容电势差而发生变化,从而使电容式位移传感器的内部电路受到影响,最终通过电容变化改变其输出电压。
2、实验中利用函数发生器产生跨越输入电压,观察输出电压的变化,研究电容式位移传感器的补偿特性和灵敏度。
3、设置正反向斜率的步进电压,控制正反向补偿电压间隔,观察其非线性特性,探究其实际特性。
4、模拟量信号示波器给出电容式位移传感器的不同输出电压,观察实际精度,辅助分析结果。
三、实验结果1、经过仿真计算,确定电容式位移传感器补偿特性曲线,补偿范围较大,灵敏度及时响应速度较快,补偿特性良好。
2、观察实验电路中电容式位移传感器的输出电压,发现其在正反向补偿斜率步进电压下,相应的响应有非线性变化,合理,可靠。
3、通过模拟量信号示波器的输出,可分析典型电容式位移传感器的精度,表明电容式位移传感器的精度较高,可以满足应用要求。
四、结论1、电容式位移传感器具有灵敏度高、稳定性优、较好的精度等特点,在工业控制领域具有广泛应用。
传感器课课程设计仿真一、教学目标本课程旨在让学生了解和掌握传感器的基本原理、类型和应用,提高他们在实际工程中的分析和解决问题的能力。
具体目标如下:1.知识目标:•了解传感器的基本概念、原理和特性;•掌握不同类型传感器(如温度、压力、流量等)的工作原理和应用场景;•理解传感器信号的处理和分析方法。
2.技能目标:•能够正确选择和使用传感器进行数据采集;•能够使用仪器仪表进行传感器性能测试;•能够运用传感器技术解决实际工程问题。
3.情感态度价值观目标:•培养学生的创新意识和团队合作精神;•增强学生对工程实践的兴趣和责任感;•提高学生对科技发展的敏感度和适应能力。
二、教学内容本课程的教学内容主要包括传感器的基本概念、原理、类型和应用。
具体安排如下:1.传感器的基本概念和原理:介绍传感器的作用、分类和性能指标,阐述传感器的工作原理和信号处理方法。
2.常见传感器的类型和应用:详细讲解温度传感器、压力传感器、流量传感器等常见传感器的工作原理、特点和应用场景。
3.传感器信号的处理和分析:介绍传感器信号的处理方法,包括信号滤波、线性化、校准等,以及信号分析 techniques 在实际工程中的应用。
4.传感器在工程实践中的应用:通过案例分析,使学生了解传感器在各种工程领域中的应用,提高他们解决实际问题的能力。
三、教学方法为了提高教学效果,本课程将采用多种教学方法,包括:1.讲授法:通过讲解传感器的基本概念、原理和应用,使学生掌握传感器的相关知识。
2.讨论法:学生进行小组讨论,分享学习心得和经验,提高学生的思维能力和团队协作能力。
3.案例分析法:通过分析实际工程案例,使学生了解传感器在工程中的应用,提高他们解决实际问题的能力。
4.实验法:安排实验室实践活动,使学生在动手操作中掌握传感器的使用方法和技巧。
四、教学资源为了支持教学内容和教学方法的实施,我们将准备以下教学资源:1.教材:选用权威、实用的教材,为学生提供系统的学习资料。
现代电子技术Modern Electronics Technique2023年7月1日第46卷第13期Jul.2023Vol.46No.130引言加速度计作为惯性导航系统的重要组成部分,通常被用于载体加速度的测量。
随着微电子技术和微加工技术的飞速发展,硅微加速度计已经在传感器市场占据了重要的地位[1⁃4]。
电容式微加速度计具有灵敏度高、输出精度高、低频响应好、噪声低、漂移小、功耗低、环境适应能力强和结构简单等优点,可适用于车辆工程和高精度惯性导航等多种领域,是当今加速度计的热点研究方向[5⁃9]。
在两种常见的电容式加速度计结构中,相较于梳齿结构在工艺上难于实现,“三明治”结构则在工艺上更容易实现、成品率高,于是本文设计了一种“三明治”结差分电容式MEMS 加速度计的结构设计及仿真邬润杰1,张伟1,郭子龙2(1.北京信息科技大学传感器重点实验室,北京100101;2.西安工业大学光电工程学院,陕西西安710021)摘要:为了扩大加速度计的测量范围、提高其灵敏度并且控制成本,提出一种差分电容式MEMS 加速度计,并介绍了其敏感机理,即输入加速度时硅质量块产生相应位移,与钯银电极形成差分电容。
通过建立输入加速度、电容差及输出电压三者之间的关系,即可检测z 轴加速度。
使用有限元分析,设置加速度为±100g 范围内,对该加速度计支撑梁厚度变化时其应力、位移变化情况进行计算和分析。
结果表明,差分电容式MEMS 加速度计具有加速度计效应,加速度在±100g 范围内线性度良好。
加速度计在梁厚为0.058mm 时,输入加速度和位移的最佳比例系数为10-7m/g ,其机械灵敏度、位移灵敏度和电容灵敏度较梁厚为0.075mm 时分别提高了10%、38%和37.9%。
该研究为后续结构改进、性能优化奠定了理论基础。
关键词:加速度计;敏感元件;“三明治”结构;差分检测;有限元分析;灵敏度;支撑梁厚度中图分类号:TN37+9⁃34;TN212文献标识码:A文章编号:1004⁃373X (2023)13⁃0147⁃06Structure design and simulation of differential capacitive MEMS accelerometerWU Runjie 1,ZHANG Wei 1,GUO Zilong 2(1.Key Laboratory of Sensors,Beijing Information Science &Technology University,Beijing 100101,China;2.School of Opto⁃electornical Engineering,Xi ’an Technology University,Xi ’an 710021,China)Abstract :In order to expand the measuring range,improve the sensitivity and control the cost of the accelerometer,a differential capacitive MEMS accelerometer is proposed,and its sensitive mechanism is introduced,that is,when the acceleration is input,the silicon mass will generate corresponding displacement and form differential capacitance with palladium ⁃silver electrode.By establishing the relationship among input acceleration,capacitance difference and output voltage,the z ⁃axis acceleration can be detected.By means of the finite element analysis,the stress and displacement changes of the support beamthickness of the accelerometer are calculated and analyzed within the range of ±100g of acceleration.The results show that thedifferential capacitive MEMS accelerometer has the accelerometer effect,with an acceleration range of ±100g and good linearity.The optimal ratio coefficient for input acceleration and displacement of the accelerometer is 10-7m/g when the beam thickness is 0.058mm.Its mechanical sensitivity,displacement sensitivity,and capacitance sensitivity are increased by 10%,38%,and37.9%compared to the beam thickness of 0.075mm,respectively.This study can lay a theoretical foundation for the subsequent structural improvement and performance optimization.Keywords :accelerometer;sensitive element;″sandwich″structure;differential detection;finite element analysis;sensitivity;support beam thicknessDOI :10.16652/j.issn.1004⁃373x.2023.13.025引用格式:邬润杰,张伟,郭子龙.差分电容式MEMS 加速度计的结构设计及仿真[J].现代电子技术,2023,46(13):147⁃152.收稿日期:2023⁃01⁃03修回日期:2023⁃01⁃18基金项目:国家自然科学基金资助项目(61372016);北京市教育委员会科技计划重点项目(KZ201711232030);传感器北京市重点实验室开放课题基金资助项目(2022CGKF002)147现代电子技术2023年第46卷构的差分电容式MEMS 加速度计。
实验报告电容式位移传感器的设计实验一、实验目的:设计电容式位移传感器,并用matlab仿真二、设计思路线性微小变化输入电容C的变化电压的变化调制放大解调滤波电压量输出三、设计图与各部分封装图及相关数学模型1、输入斜坡函数:2、电路模块a、电路部分物理图b 、电路封装模块c 、数学模型 由电路基本知识可知:1o i e e dt RC =⎰图中电容为变极距型电容s C d dε=+∆ 带入上式可得1o i i d d e e dt e dt RC R s ε+∆==⎰⎰ 令1/k R s ε=则有()o i e k d d e dt =+∆⎰;d =0.05,k =0.02,i e 为频率为100Hz 3、调制模块调制模块封装图调制函数相关参数设置:4、放大模块放大增益为100005、解调模块解调函数相关参数设置6、滤波模块低通滤波器前置一个绝对值函数相关参数设置四、各部分仿真图仿真时间设置为10s1、通过电路后的输出图形-4012345678910 2、调制后的波形-40123456789103、经过放大后的波形012345678910-4-3-2-112344、解调后的波形012345678910-4-3-2-112345、滤波后最终输出波形01234567891000.10.20.30.40.50.60.70.80.96、输入与输出的相关关系图(为近似拟合直线)。
proteus电容传感器仿真
打开Proteus软件并创建一个新的工程。
在工程中添加一个适当的微控制器或模拟电路,该电路将与电容传感器连接。
在元件库中搜索并添加一个电容传感器元件。
确保所选元件的参数和规格与您要仿真的电容传感器匹配。
连接电容传感器与电路中的其他元件。
确保正确连接电源、接地和信号引脚。
配置电容传感器的初始参数。
这可能包括电容值、工作电压、灵敏度等。
根据您的具体需求,修改传感器的相关参数。
配置微控制器或模拟电路的输入和输出参数。
根据您的设计,设置适当的输入信号和期望的输出信号。
设置仿真参数。
选择仿真时间、仿真步长和其他必要的仿真选项。
确保仿真参数能够充分涵盖您所关注的时间范围和信号特性。
运行仿真。
在Proteus中启动仿真过程,并观察仿真结果。
分析仿真结果。
通过查看波形图、数据记录或其他相关工具,评估电容传感器的性能和行为。
注意观察电容值的变化以及输出信号的响应。
调整参数并重新运行仿真(可选)。
根据仿真结果,您可能需要调整电容传感器的参数或电路的设计。
重复步骤5至9,直到获得满意的仿真结果。
保存仿真结果。