三 动量定理的应用练习题及答案
- 格式:doc
- 大小:62.50 KB
- 文档页数:3
【典例1】如图所示,把重物G 压在纸带上,用一水平力缓缓拉动纸带,重物跟着一起运动,若迅速拉动纸带,纸带将会从重物下面抽出,解释这些现象的正确说法是:A .在缓缓拉动纸带时,重物和纸带间的摩擦力大;B .在迅速拉动时,纸带给重物的摩擦力小;C .在缓缓拉动时,纸带给重物的冲量大;D .在迅速拉动时,纸带给重物的冲量小.【答案】CD【典例2】 物体在恒定的合力F 作用下做直线运动,在时间Δt 1 内速度由0增大到v ,在时间Δt 2内速度由v 增大到2v 。
设F 在Δt 1 内做的功是W 1,冲量是I 1;在Δt 2 内做的功是W 2,冲量是I 2;那么( )A.I 1<I 2,W 1=W 2B.I 1<I 2,W 1<W 2C.I 1=I 2,W 1=W 2D.I 1=I 2,W 1<W 2【解析】 I 1=F Δt 1=mv ,I 2=F Δt 2=2mv -mv =mv ,所以冲量相同,由动能定理W 1=12mv 2,W 2=12m ×4v 2-12mv 2=32mv 2,所以W 1<W 2,D 正确。
【答案】 D【典例3】中国载人航天工程新闻发言人宣布,执行我国首次空间交会对接任务的天宫一号目标飞行器已通过出厂评审,进入开展任务实施前最后的测试阶段,届时将和神舟八号飞船进行第一次无人交会对接试验。
设神舟八号宇宙飞船以v = 10 km/s 的速度在太空中飞行,突然进入一密度ρ= 1.0×10-7 kg/m 3的微陨石尘区,假设微陨石尘与飞船碰撞后即附着在飞船上。
欲使飞船保持原速度不变,飞船的助推器的助推力应增大多少?(已知飞船的正横截面积S = 2 m 2)【解析】飞船进入微陨石尘区时,受到一个持续的作用力,选在极短时间Δt 内作用在飞船上的微陨石尘为研究对象,运用动量定理来求解在时间Δt 内与飞船碰撞的微陨石尘的质量等于横截面积为S 、长为v ·Δt 的直柱体内微陨石尘的质量,即m =ρSv Δt ,且初动量为0,末动量为mv .设飞船对微陨石尘的作用力为F ,由动量定理得:F·Δt=mv-0解得:F=错误!未找到引用源。
1.如图(a)所示,“ ”型木块放在光滑水平地面上,木块水平表面AB 粗糙,光滑表面BC 且与水平面夹角为θ=37°.木块右侧与竖直墙壁之间连接着一个力传感器,当力传感器受压时,其示数为正值;当力传感器被拉时,其示数为负值.一个可视为质点的滑块从C 点由静止开始下滑,运动过程中,传感器记录到的力和时间的关系如图(b)所示.已知sin37°=0.6,cos37°=0.8,g 取10m/s 2.求: (1) 斜面BC 的长度;(2) 滑块的质量;(3) 运动过程中滑块克服摩擦力做的功.2.甲、乙两船在平静的湖面上以相同的速度匀速航行,且甲船在前乙船在后.从甲船上以相对于甲船的速度 ,水平向后方的乙船上抛一沙袋,其质量为m .设甲船和沙袋总质量为M ,乙船的质量也为M .问抛掷沙袋后,甲、乙两船的速度变化多少?F/Nt/s-5121 2 3图(b )图(a )AθB C力传感器3.(2011·新课标全国卷)如图,A、B、C三个木块的质量均为m。
置于光滑的水平面上,B、C之间有一轻质弹簧,弹簧的两端与木块接触而不固连,将弹簧压紧到不能再压缩时用细线把B和C紧连,使弹簧不能伸展,以至于B、C可视为一个整体,现A以初速v沿B、C的连线方向朝B运动,与B相碰并粘合在一起,以后细线突然断开,弹簧伸展,从而使C与A,B分离,已知C离开弹簧后的速度恰为v,求弹簧释放的势能。
4.一质量为2m的物体P静止于光滑水平地面上,其截面如图所示。
图中ab为粗糙的水平面,长度为L;bc为一光滑斜面,斜面和水平面通过与ab和bc均相切的长度可忽略的光滑圆弧连接。
现有一质量为m的木块以大小为v0的水平初速度从a点向左运动,在斜面上上升的最大高度为h,返回后在到达a点前与物体P相对静止。
重力加速度为g。
求:(1)木块在ab段受到的摩擦力f;(2)木块最后距a点的距离s。
5.( 2010·天津)如图所示,小球A系在细线的一端,线的另一端固定在O点,O点到水平面的距离为h 。
动量和动量定理-知识点与例题动量和动量定理的应用知识点一——冲量(I)要点诠释:1.定义:力F和作用时间的乘积,叫做力的冲量。
2.公式:3.单位:4.方向:冲量是矢量,方向是由力F的方向决定。
5.注意:①冲量是过程量,求冲量时一定要明确是哪一个力在哪一段时间内的冲量。
②用公式求冲量,该力只能是恒力1.推导:设一个质量为的物体,初速度为,在合力F的作用下,经过一段时间,速度变为则物体的加速度由牛顿第二定律2.动量定理:物体所受合外力的冲量等于物体的动量变化。
3.公式:或4.注意事项:②式中F是指包含重力在内的合外力,可以是恒力也可以是变力。
当合外力是变力时,F 应该是合外力在这段时间内的平均值;③研究对象是单个物体或者系统;规律方法指导1.动量定理和牛顿第二定律的比较(1)动量定理反映的是力在时间上的积累效应的规律,而牛顿第二定律反映的是力的瞬时效应的规律(2)由动量定理得到的,可以理解为牛顿第二定律的另一种表达形式,即:物体所受的合外力等于物体动量的变化率。
(3)在解决碰撞、打击类问题时,由于力的变化规律较复杂,用动量定理处理这类问题更有其优越性。
4.应用动量定理解题的步骤①选取研究对象;②确定所研究的物理过程及其始末状态;大小无关,C错误;冲量是一个过程量,只有在某一过程中力的方向不变时,冲量的方向才与力的方向相同,故D错误。
答案:A【变式】关于冲量和动量,下列说法中错误的是()A.冲量是反映力和作用时间积累效果的物理量B.冲量是描述运动状态的物理量C.冲量是物体动量变化的原因D.冲量的方向与动量的方向一致答案:BD点拨:冲量是过程量;冲量的方向与动量变化的方向一致。
故BD错误。
类型二——用动量定理解释两类现象2.玻璃杯从同一高度自由落下,落到硬水泥地板上易碎,而落到松软的地毯上不易碎。
这是为什么?解释:玻璃杯易碎与否取决于落地时与地面间相互作用力的大小。
由动量定理可知,此作用力的大小又与地面作用时的动量变化和作用时间有关。
动量定理习题参考答案及解答1.题图1所示系统中各杆都为均质杆。
已知:杆OA 、CD 的质量各为m ,杆AB 质量为2m ,且OA =AC =CB =CD =l ,杆OA 以角速度ω 转动,求图示瞬时各杆动量的大小并在图中标明其动量的方向。
答案:ωωωml p ml p ml p CD AB OA 22 ,22 ,2===,方向如图。
注意:图中所示仅是动量的方向,并不表示合动量的作用线。
2.一颗质量为m =30g 的子弹,以v 0=500m/s 的速度射入质量m A =4.5kg 的物块A 中。
物块A 与小车BC 之间的动摩擦系数f D =0.5。
已知小车的质量m BC =3.5kg ,可以在光滑的水平地面上自由运动。
试求:(1)车与物块的末速度v ;(2)物块A 在车上距离B 端的最终位置。
提示:整体而言,根据水平方向动量守恒可先求得车与物块的末速度v ;子弹射入物块瞬时物块与子弹的速度v 1;然后计算物块与小车之间的动滑动摩擦力F D ;进而求得小车和物块的加速度,再分别求得小车和物块的位移;最后求得相对位移和物块A 在车上距离B 端的最终位置。
答案:)(113)2(),/(868.1)1(mm s m v =3.如题图3所示,均质杆AB ,长l ,直立在光滑水平面上。
求它从铅直位置无初速地倒下时,端点A 相对图示坐标系的轨迹。
提示:水平方向质心守恒。
答案: 2224l y x =+4.质量为m 1的棱柱体A ,其顶部铰接一质量为m 2、边长为a 和b 的棱柱体B ,初始静止,如图所示。
忽略棱柱A 与水平面的摩擦,若作用在B 上的力偶使其绕O 轴转动90o (由图示的实线位置转至虚线位置),试求棱柱体A 移动的距离。
设A 与B 的各边平行。
提示:水平方向质心守恒。
答案:棱柱体A 移动的距离 )(2)(212m m b a m x ++= (向左) 5.如图所示水平面上放一均质三棱柱A ,在其斜面上又放一均质三棱柱B 。
动量定理练习题及答案
二、改错题
动量定理
动量定理是描述力对物体运动状态影响的物理定理。
它表明,物体所受的合外力产生的冲量等于物体动量的变化率。
换句话说,当物体受到一定的力时,它的动量会发生相应的变化。
动量定理的数学表达式为:FΔt = Δp,其中F为物体所受
的合外力,Δt为力作用时间,Δp为物体动量的变化量。
这个
定理适用于任何物体在任何情况下的运动,无论是匀速直线运动、匀变速直线运动还是曲线运动。
动量定理的应用十分广泛。
例如,在车祸中,汽车和乘客的动量会发生急剧的变化,这就是为什么汽车安全带和气囊能够保护乘客的原因。
在运动员跳高时,跳到沙坑里或跳到海绵上可以减小运动员的动量变化,从而减少受伤的可能性。
动量定理还可以用来解释其他现象,例如为什么玻璃杯掉在软垫上不易碎,而掉在水泥地面上易碎。
这是因为落到水泥地上时,玻璃杯受到的冲量大,动量变化快,而掉在软垫上时,受到的冲量小,动量变化慢,因此不易碎。
总之,动量定理是物理学中一个非常重要的定理,它帮助我们理解力对物体运动状态的影响,也为我们提供了解释和预测各种现象的工具。
考虑铁锤的重量,我们可以计算出铁锤打钉子的平均作用力。
在这个问题中,我们需要知道铁锤的重量以及它打钉子时施加的力量。
如果我们假设铁锤的重量为1千克,那么它施加在钉子上的力量就应该是1千克。
因此,铁锤打钉子的平均作用力应该是1千克。
但是,需要注意的是,这个结果只是一个近似值,因为实际上铁锤的重量和施加的力量都可能有所不同,这取决于具体情况。
因此,在实际应用中,我们需要根据具体情况进行调整。
动量定理练习题含答案及解析一、高考物理精讲专题动量定理1.如图所示,粗糙的水平面连接一个竖直平面内的半圆形光滑轨道,其半径为R =0.1 m ,半圆形轨道的底端放置一个质量为m =0.1 kg 的小球B ,水平面上有一个质量为M =0.3 kg 的小球A 以初速度v 0=4.0 m / s 开始向着木块B 滑动,经过时间t =0.80 s 与B 发生弹性碰撞.设两小球均可以看作质点,它们的碰撞时间极短,且已知木块A 与桌面间的动摩擦因数μ=0.25,求:(1)两小球碰前A 的速度;(2)球碰撞后B ,C 的速度大小;(3)小球B 运动到最高点C 时对轨道的压力;【答案】(1)2m/s (2)v A =1m /s ,v B =3m /s (3)4N ,方向竖直向上【解析】【分析】【详解】(1)选向右为正,碰前对小球A 的运动由动量定理可得:–μ Mg t =M v – M v 0解得:v =2m /s(2)对A 、B 两球组成系统碰撞前后动量守恒,动能守恒:A B Mv Mv mv =+222111222A B Mv Mv mv =+ 解得:v A =1m /s v B =3m /s(3)由于轨道光滑,B 球在轨道由最低点运动到C 点过程中机械能守恒:2211222B C mv mv mg R '=+ 在最高点C 对小球B 受力分析,由牛顿第二定律有: 2C N v mg F m R'+= 解得:F N =4N由牛顿第三定律知,F N '=F N =4N小球对轨道的压力的大小为3N ,方向竖直向上.2.半径均为52m R =的四分之一圆弧轨道1和2如图所示固定,两圆弧轨道的最低端切线水平,两圆心在同一竖直线上且相距R ,让质量为1kg 的小球从圆弧轨道1的圆弧面上某处由静止释放,小球在圆弧轨道1上滚动过程中,合力对小球的冲量大小为5N s ⋅,重力加速度g 取210m /s ,求:(1)小球运动到圆弧轨道1最低端时,对轨道的压力大小;(2)小球落到圆弧轨道2上时的动能大小。
动量定理精选习题一、单选题(本大题共7小题,共28.0分)1.如图所示,质量相等的五个物块在光滑水平面上,间隔一定距离排成一条直线.具有初动能E0的物块1向其它4个静止的物块运动,依次发生碰撞,每次碰撞后不再分开.最后5个物块粘成一个整体.这个整体的动能等于()A. E0B. 45E0 C. 15E0 D. 125E02.如图所示,小车静止在光滑水平面上,AB是小车内半圆弧轨道的水平直径,现将一小球从距A点正上方h高处由静止释放,小球由A点沿切线方向经半圆轨道后从B点冲出,在空中能上升的最大高度为0.8ℎ,不计空气阻力.下列说法正确的是()A. 在相互作用过程中,小球和小车组成的系统动量守恒B. 小球离开小车后做竖直上抛运动C. 小球离开小车后做斜上抛运动D. 小球第二次冲出轨道后在空中能上升的最大高度为0.6ℎ3.如图所示,半径为R、质量为M的14光滑圆槽置于光滑的水平地面上,一个质量为m的小木块从槽的顶端由静止滑下.则木块从槽口滑出时的速度大小为()A. √2gRB. √2gRMM+mC. √2gRmM+mD. √2gR(M−m)M4.如图所示,甲、乙两人各站在静止小车的左右两端,当他俩同时相向行走时,发现小车向右运动.下列说法不正确的是(车与地面之间无摩擦)()A. 乙的速度必定大于甲的速度B. 乙对小车的冲量必定大于甲对小车的冲量C. 乙的动量必定大于甲的动量D. 甲、乙动量总和必定不为零5.质量为m的物体,沿半径为R的轨道以速率v做匀速圆周运动,如图所示,取v B方向为正方向,求物体由A至B过程所受的合外力在半周期内的冲量()A. 2mvB. −2mvC. mvD. −mv6.两球A、B在光滑水平面上沿同一直线,同一方向运动,m A=1kg,m B=2kg,v A=6m/s,v B=2m/s.当A追上B并发生碰撞后,两球A、B速度的可能值是()A. v A′=5m/s,v B′=2m/sB. v A′=2m/s,v B′=4m/sC. v A′=−4m/s,v B′=7m/sD. v A′=7m/s,v B′=1.5m/s7.有一条捕鱼小船停靠在湖边码头,小船又窄又长,甲同学想用一个卷尺粗略测定它的质量,他进行了如下操作:首先将船平行码头自由停泊,然后他轻轻从船尾上船,走到船头后停下,另外一位同学用卷尺测出船后退的距离d,然后用卷尺测出船长L.已知甲同学的质量为m,则渔船的质量为( )A. m(L+d)d B. m(L−d)dC. mLdD. m(L+d)L二、多选题(本大题共3小题,共12.0分)8.如图所示,在质量为M(含支架)的小车中用轻绳悬挂一小球,小球的质量为m0,小车和小球以恒定速度v沿光滑水平地面运动,与位于正对面的质量为m的静止木块发生碰撞,碰撞的时间极短.在此碰撞过程中,下列哪个或哪些说法是可能发生的?()A. 在此过程中小车、木块、摆球的速度都发生变化,分别变为v1、v2、v3,满足(M+m0)v=Mv1+mv2+m0v3B. 在此碰撞过程中,小球的速度不变,小车和木块的速度分别为v1和v2,满足(M+m0)v=Mv1+mv2C. 在此碰撞过程中,小球的速度不变,小车和木块的速度都变成u,满足Mv=(M+m)uD. 碰撞后小球摆到最高点时速度变为为v1,木块的速度变为v2,满足(M+m0)v=(M+m0)v1+mv29.一静止的铝原子原子核 1327Al俘获一速度为1.0×107m/s的质子p后,变为处于激发状态的硅原子核 1428Si,下列说法正确的是()A. 核反应方程为p+ 1327Al→ 1428SiB. 核反应方程过程中系统动量守恒C. 核反应过程中系统能量不守恒D. 核反应前后核子数相等,所以生成物的质量等于反应物的质量之和E. 硅原子核速度的数量级105m/s,方向与质子初速度方向一致10.如图所示,质量M=3kg的滑块套在水平固定着的轨道上并可在轨道上无摩擦滑动.质量m=2kg的小球(视为质点)通过长L=0.75m的轻杆与滑块上的光特轴O连接,开始时滑块静止、轻杆处于水平状态.现给小球一个v0=3m/s的竖直向下的初速度,取g=10m/s2则()A. 小球m从初始位置到第一次到达最低点的过程中,滑块M在水平轨道上向右移动了0.3mB. 小球m从初始位置到第一次到达最低点的过程中,滑块对在水平轨道上向右移动了0.5mC. 小球m相对于初始位置可以上升的最大高度为0.27mD. 小球m从初始位置到第一次到达最大高度的过程中,滑块M在水平轨道上向右移动了0.54m三、计算题(本大题共10小题,共100.0分)11.如图所示,质量为5kg的木板B静止于光滑水平面上,物块A质量为5kg,停在B的左端.质量为1kg的小球用长为0.45m的轻绳悬挂在固定点O上,将轻绳拉直至水平位置后,由静止释放小球,小球在最低点与A发生碰撞后反弹,反弹所能达到的最大高度为0.2m,物块与小球可视为质点,不计空气阻力.已知A、B间的动摩擦因数为0.1,为使A、B达到共同速度前A不滑离木板,重力加速度g=10m/s2,求:(1)碰撞后瞬间物块A的速度大小为多少;(2)木板B至少多长;(3)从小球释放到A、B达到共同速度的过程中,小球及A、B组成的系统损失的机械能.12.如图所示,宽为L=0.1m的MN、PQ两平行光滑水平导轨分别与半径r=0.5m的相同竖直半圆导轨在N、Q端平滑连接,M、P端连接定值电阻R,质量M=2kg的cd绝缘杆垂直静止在水平导轨上,在其右侧至N、Q端的区域内充满竖直向上的匀强磁场,B=1T.现有质量m=1kg的ab金属杆,电阻为R o,R o=R=1Ω,它以初速度v0=12m/s水平向右与cd绝缘杆发生正碰后,进入磁场并最终未滑出,cd 绝缘杆则恰好能通过半圆导轨最高点,不计其它电阻和摩擦,ab金属杆始终与导轨垂直且接触良好,取g=10m/s2,求:(1)碰后瞬间cd绝缘杆的速度大小v2与ab金属杆速度大小v1;(2)碰后ab金属杆进入磁场瞬间受到的安培力大小F ab;(3)ab金属杆进入磁场运动全过程中,电路产生的焦耳热Q.13.如图所示,在光滑的水平面上有一带半圆形光滑弧面的小车,质量为M,圆弧半径为R,从距车上表面高为H处静止释放一质量为m的小球,它刚好沿圆弧切线从A点落入小车,求(1)小球到达车底B点时小车的速度和此过程中小车的位移;(2)小球到达小车右边缘C点处,小球的速度.14.如图所示,质量为3m的木块静止放置在光滑水平面上,质量为m的子弹(可视为质点)以初速度v0水平v0,试求:向右射入木块,穿出木块时速度变为25①子弹穿出木块后,木块的速度大小;②子弹穿透木块的过程中产生的热量.15.在光滑水平面上静止有质量均为m的木板AB和滑块CD,木板AB上表面粗糙,滑块CD上表面是光圆弧,他们紧靠在一起,如图所示.一个可视为质点的物块P,质量也为m,它从木板AB的右端滑的14以初速度v0滑上木板,过B点时速度为v0,然后又滑上滑块CD,最终恰好能滑到滑块CD圆弧的最高2点C处.若物体P与木板AB间的动摩擦因数为μ,求:(1)物块滑到B处时木板AB的速度v1的大小;(2)木板AB的长度L;(3)滑块CD最终速度v2的大小.16.质量为M的平板车P高h,质量为m的小物块Q的大小不计,位于平板车的左端,系统原来静止在光滑水平面地面上.一不可伸长的轻质细绳长为R,一端悬于Q正上方高为R处,另一端系一质量也为m 的小球(大小不计).今将小球拉至悬线与竖直位置成60∘角,由静止释放,小球到达最低点时与Q的碰撞时间极短,且无能量损失,已知Q离开平板车时速度大小是平板车速度的两倍,Q与P之间的动摩擦因数为μ,M:m=4:1,重力加速度为g.求:(1)小物块到达最低点与Q碰撞之前瞬间的速度是多大?(2)小物块Q离开平板车时平板车的速度为多大?(3)平板车P的长度为多少?(4)小物块Q落地时距小球的水平距离为多少?17.如图所示,水平地面上竖直固定一个光滑的、半径R=0.45m的1圆弧轨道,A、B分别是圆弧的端点,4圆弧B点右侧是光滑的水平地面,地面上放着一块足够长的木板,木板的上表面与圆弧轨道的最低点B 等高,可视为质点的小滑块P1和P2的质量均为m=0.20kg,木板的质量M=4m,P1和P2与木板上表面的动摩擦因数分别为μ1=0.20和μ2=0.50,最大静摩擦力近似等于滑动摩擦力;开始时木板的左端紧靠着B,P2静止在木板的左端,P1以v0=4.0m/s的初速度从A点沿圆弧轨道自由滑下,与P2发生弹性碰撞后,P1处在木板的左端,取g=10m/s2.求:(1)P1通过圆弧轨道的最低点B时对轨道的压力;(2)P2在木板上滑动时,木板的加速度为多大?(3)已知木板长L=2m,请通过计算说明P2会从木板上掉下吗?如能掉下,求时间?如不能,求共速?18.如图所示,质量为M的平板车P高h,质量为m的小物块Q的大小不计,位于平板车的左端,系统原来静止在光滑水平面地面上.一不可伸长的轻质细绳长为R,一端悬于Q正上方高为R处,另一端系一质量也为m的小球(大小不计).今将小球拉至悬线与竖直位置成60∘角,由静止释放,小球到达最低点时与Q的碰撞时间极短,且无能量损失,已知Q离开平板车时速度大小是平板车速度的两倍,Q与P之间的动摩擦因数为μ,M:m=4:1,重力加速度为g.求:(1)小物块Q离开平板车时速度为多大?(2)平板车P的长度为多少?(3)小物块Q落地时距小球的水平距离为多少?19.如甲图所示,光滑导体轨道PMN和是两个完全一样轨道,是由半径为r的四分之一圆弧轨道和水平轨道组成,圆弧轨道与水平轨道在M和点相切,两轨道并列平行放置,MN和位于同一水平面上,两轨道之间的距离为L,之间有一个阻值为R的电阻,开关K是一个感应开关(开始时开关是断开的),是一个矩形区域内有竖直向上的磁感应强度为B的匀强磁场,水平轨道MN离水平地面的高度为h,其截面图如乙所示。
高三物理动量定理试题答案及解析1.如图所示,甲、乙两名宇航员正在离空间站一定距离的地方执行太空维修任务。
某时刻乙以大小为v0=2m/s的速度远离空间站向乙“飘”去,甲、乙和空间站在同一直线上且可当成质点。
甲和他的装备总质量共为M1=90kg,乙和他的装备总质量共为M2=135kg,为了避免直接相撞,乙从自己的装备中取出一质量为m=45kg的物体A推向甲,甲迅速接住后即不再松开,此后甲乙两宇航员在空间站外做相对距离不变通向运动,一线以后安全“飘”入太空舱。
(设甲乙距离太空站足够远,本题中的速度均指相对空间站的速度)①求乙要以多大的速度(相对空间站)将物体A推出②设甲与物体A作用时间为,求甲与A的相互作用力F的大小【答案】①②【解析】①甲、乙两宇航员在空间站外做相对距离不变的同向运动,说明甲乙的速度相等,以甲、乙、A三者组成的系统为研究对象,系统动量守恒,以乙的速度方向为正方向,由动量守恒定律得:,以乙和A组成的系统为研究对象,以乙的速度方向为正方向,由动量守恒定律得:,解得:;②以甲为研究对象,以乙的初速度方向为正方向,由动量定理得:,解得:;【考点】考查了动量守恒定律,动量定理2.如图所示,在光滑的水平面上宽度为L的区域内,有一竖直向下的匀强磁场.现有一个边长为向右滑动,穿过磁场后速度减为v,a (a<L)的正方形闭合线圈以垂直于磁场边界的初速度v那么当线圈完全处于磁场中时,其速度大小()A.大于B.等于C.小于D.以上均有可能【答案】B【解析】对线框进入或穿出磁场的过程,由动量定理可知,即,解得线框的速度变化量为;同时由可知,进入和穿出磁场过程中,因磁通量的变化量相等,故电荷量相等,由上可以看出,进入和穿出磁场过程中的速度变化量是相等的,即,解得,所以只有选项B正确;【考点】法拉第电磁感应定律3.如图所示,小球A系在细线的一端,线的另一端固定在O点,O点到水平面的距离为h.物块B 质量是小球的5倍,置于粗糙的水平面上且位于O点正下方,物块与水平面间的动摩擦因数为μ.现拉动小球使线水平伸直,小球由静止开始释放,运动到最低点时与物块发生正碰(碰撞时间极短),反弹后上升至最高点时到水平面的距离为小球与物块均视为质点,不计空气阻力,重力加速度为g,求物块在水平面上滑行的时间t.【答案】【解析】设小球的质量为m,运动到最低点与物块碰撞前的速度大小为v1,取小球运动到最低点重力势能为零,根据机械能守恒定律,有得v设碰撞后小球反弹的速度大小为v1′,同理有②得设碰后物块的速度大小为v2,取水平向右为正方向,根据动量守恒定律,有mv1=-mv1′+5mv2③得④物块在水平面上滑行所受摩擦力的大小F=5μmg⑤设物块在水平面上滑行的时间为t,根据动量定理,有-Ft=0-5mv2⑥得【考点】动量定理、动量守恒定律及其应用4.(20分)下图是放置在竖直平面内游戏滑轨的模拟装置的示意图。
一、“解题快手”动量定理的应用题点(一) 应用动量定理解释生活中的现象[例1] 如图所示,篮球运动员接传来的篮球时,通常要先伸出两臂迎接,手接触到球后,两臂随球迅速引至胸前,这样做可以( )A .减小球的动量的变化量B .减小球对手作用力的冲量C .减小球的动量变化率D .延长接球过程的时间来减小动量的变化量[解析] 选C 篮球运动员接传来的篮球时,不能改变动量的变化量,A 、D 错误;根据动量定理,也不能改变冲量,B 错误;由于延长了作用时间,动量的变化慢了,C 正确。
题点(二) 应用动量定理求作用力和冲量[例2] (2015·重庆高考)高空作业须系安全带,如果质量为m 的高空作业人员不慎跌落,从开始跌落到安全带对人刚产生作用力前人下落的距离为h (可视为自由落体运动),此后经历时间t 安全带达到最大伸长,若在此过程中该作用力始终竖直向上,则该段时间安全带对人的平均作用力大小为( ) A.m 2gh t+mg B.m 2gh t -mg C.m gh t +mg D.m gh t -mg[解析] 选A 方法一:设高空作业人员自由下落h 时的速度为v ,则v 2=2gh ,得v =2gh ,设安全带对人的平均作用力为F ,由牛顿第二定律得F -mg =ma又v =at ,解得F =m 2ght +mg 。
方法二:由动量定理得(mg -F )t =0-m v ,得F =m 2gh t+mg 。
选项A 正确。
题点(三) 动量定理和F -t 图像的综合[例3] [多选](2017·全国卷Ⅲ)一质量为2 kg 的物块在合外力F 的作用下从静止开始沿直线运动。
F 随时间t 变化的图线如图所示,则( )A .t =1 s 时物块的速率为1 m/sB .t =2 s 时物块的动量大小为4 kg·m/sC .t =3 s 时物块的动量大小为5 kg·m/sD .t =4 s 时物块的速度为零[解析] 选AB 法一:根据F -t 图线与时间轴围成的面积的物理意义为合外力F 的冲量,可知在0~1 s 、0~2 s 、0~3 s 、0~4 s 内合外力冲量分别为2 N·s 、4 N·s 、3 N·s 、2 N·s ,应用动量定理I =m Δv 可知物块在1 s 、2 s 、3 s 、4 s 末的速率分别为1 m/s 、2 m/s 、1.5 m/s 、1 m/s ,物块在这些时刻的动量大小分别为2 kg·m/s 、4 kg·m/s 、3 kg·m/s 、2 kg·m/s ,则A 、B 项正确,C 、D 项错误。
三动量定理的应用姓名
一、选择题(每小题中至少有一个选项是正确的)
1、在下列各种运动中,任何相等的时间内物体动量的增量总是相同的有()
A、匀加速直线运动
B、平抛运动
C、匀减速直线运动
D、匀速圆周运动
2、质量为5 kg的物体,原来以v=5 m/s的速度做匀速直线运动,现受到跟运动方向相同的冲量15 N·s的作用,历时4 s,物体的动量大小变为 ( )
A.80 kg·m/s
B.160 kg·m/s
C.40 kg·m/s
D.10 kg·m/s
3、用力拉纸带,纸带将会从重物下抽出,解释这些现象的正确说法是:()
A、在缓慢拉动纸带时,纸带给物体的摩擦力大;
B、在迅速拉动纸带时,纸带给物体的摩擦力小;
C、在缓慢拉动纸带时,纸带给重物的冲量大;
D、在迅速拉动纸带时,纸带给重物的冲量小.
4、从同一高度的平台上,抛出三个完全相同的小球,甲球竖直上抛,乙球竖直下抛,丙球平抛.三球落地时的速率相同,若不计空气阻力,则()
A、抛出时三球动量不是都相同,甲、乙动量相同,并均不小于丙的动量
B、落地时三球的动量相同
C、从抛出到落地过程,三球受到的冲量都不同
D 、从抛出到落地过程,三球受到的冲量不都相同
5、若质量为m 的小球从h高度自由落下,与地面碰撞时间为,地面对小球的平均作用力大小为F,则在碰撞过程中(取向上的方向为正)对小球来说()
A、重力的冲量为
B、地面对小球的冲量为
C、合力的冲量为
D、合力的冲量为
6、一物体竖直向上抛出,从开始抛出到落回抛出点所经历的时间是t,上升的最大高度是H,所受空气阻力大小恒为F,则在时间t内
A.物体受重力的冲量为零
B.在上升过程中空气阻力对物体的冲量比下降过程中的冲量小
C.物体动量的增量大于抛出时的动量
D.物体机械能的减小量等于FH
7.恒力F作用在质量为m的物体上,如图8—1所示,由于地面对
图8—1
物体的摩擦力较大,没有被拉动,则经时间t,下列说法正确的是
A.拉力F对物体的冲量大小为零
B.拉力F对物体的冲量大小为Ft
C.拉力F对物体的冲量大小是Ftcosθ
D.合力对物体的冲量大小为零
*8、物体在恒定的合力F作用下作直线运动,在时间Δt1内速度由0增大到v,在时间Δt2内速度由v增大到2v。
设F在Δt1内做的功W1,冲量是I1;在Δt2内做的功W2,冲量是I2。
那么()
A.I1 <I2,W1=W2 B.I1<I2,W1<W2 C.I1=I2,W1=W2 D.I1=I2,W1<W2
*9、质量为10kg物体作直线运动,其速度图像如图所示,则物体在前10s内和后10s内所受外力冲量分别是()
A.100Ns,100Ns B .0,100Ns
C.100Ns,-100Ns D.0,-100Ns
*10.如图所示,两个质量相等的物体在同一高度沿倾角不同的两个固定的光滑斜面由静止自由滑下,到达斜面底端,在这个过程中,两个物体具有的相同物理量可能是()
A.重力的冲量 B.支持力的冲量
C.合力的冲量 D.到达底端的动量大小
二、填空题
11、一个物体的质量是2 kg,沿竖直方向下落,以10 m/s的速度
θ1 θ
碰到水泥地面上,随后又以8 m/s的速度被反弹回,若取竖直向上为正方向,则小球与地面相碰前的动量是_____kg·m/s,相碰后的动量是_______kg·m/s,小球的动量变化是_______kg·m/s.
12.三个木块a、b、c质量关系为m a=2m b=3m c,它们与水平面间的动摩擦因数相同.若使这三个木块以相同的初动量开始在该水平面上滑行直到停下,则它们的滑行时间之比将为_______。
13、一宇宙飞船以的速度进入密度为的陨石灰之中,如果飞船的最大截面积为5,且近似认为陨石灰与飞船碰撞后都附在船上,则飞船保持匀速运动所需的平均动力为_____N
*14.质量为m=0.10 kg的小钢球以v0=10 m/s的水平速度抛出,下落h=5 m时撞击一钢板,撞后速度恰好反向,则钢板与水平面的夹角θ=_______.刚要撞击钢板时小球的动量大小为_______.(取g=10 m/s2)
三、论述计算题
15、质量5kg的物体静止在水平面上,与水平面间的动摩擦因数,物体在
N的水平恒力作用下由静止开始运动.物体运动到3s末水平恒力的方向不变,大小增大到N.取,求作用于物体上的5s末物体的速度.
*16、蹦床是运动员在一张绷紧的弹性网上蹦跳、翻滚并做各种空中动作的运动项目。
一个质量为60kg的运动员,从离水平网面3.2m高处自由下落,着网后沿竖直方向蹦回到离水平网面5.0m高处。
已知运动员与网接触的时间为1.2s。
若把在这段时间内网对运动员的作用力当作恒力处理,求此力的大小。
(g=10m/s2)
1、ABC
2.C
3、CD
4、C
5、B
6.BC
7.BD
8、 D
9、D
10、 D
11.-20;16;36
12.1∶2∶3
13、N
14.45°;2kg·m/s
15:13m/s.
16、1500N。