高一数学必修集合与函数概念测试卷含答案
- 格式:docx
- 大小:239.62 KB
- 文档页数:7
高一数学集合与函数的概念试题答案及解析1. 下列命题正确的是( ) A .∁U (∁U P )={P}B .若M={1,∅,{2}},则{2}⊆MC .∁R Q=QD .若N={1,2,3},S={x|x ⊆N},则N ∈S【答案】D【解析】根据集合的定义和补集运算法则,集集合子集的性质,对A 、B 、C 、D 四个选项进行一一判断;解:A 、∁U (∁U P )=p ,∵{P},∴p ∈{P},故A 错误;B 、集合M 中的元素,有1和,∅,{2},知1是数,∅,{2}是集合,∴1和,∅,{2},不能构成集合B ,故B 错误;C 、∵∁R Q 为无理数集,而Q 为有理数集,故C 错误;D 、∵N={1,2,3},S={x|x ⊆N},∴N 的所有子集构成集合S ,∴N ∈S ,故D 正确; 故选D .点评:此题主要考查集合的定义及其元素与集合的关系,注意集合的三个性质:确定性,互异性,无序性,此题是一道基础题.2. 集合A={1,2,3,4},B ⊊A ,且1∈A∩B ,4∉A∩B ,则满足上述条件的集合B 的个数是( ) A .1 B .2 C .4 D .8【答案】C【解析】利用已知条件确定B 中的元素,以及确定B 中可能的元素,即可推出集合B 的个数. 解:集合A={1,2,3,4},B ⊊A 且1∈A∩B ,4∉A∩B , 所以B={1};B={1,2};B={1,3};B={1,2,3}. 则满足上述条件的集合B 的个数是4. 故选C .点评:本题考查元素与集合关系的判断,考查计算能力.3. 设全集U={2,4,3﹣x},M={2,x 2﹣x+2},∁U M={1},求x . 【答案】x=2.【解析】法1:由M 的补集,得到元素1属于全集U 列出关于x 的方程,求出方程的解得到x 的值即可;法2:根据M 为U 的子集及补集的定义,得到x 2﹣x+2=4,求出方程的解得到x 的值,经检验即可得到结果.解:法1:根据题意得:3﹣x=1, 解得:x=2;法2:根据题意得:x 2﹣x+2=4,即(x ﹣2)(x+1)=0, 解得:x=2或﹣1,当x=﹣1时,3﹣x=4,根据集合元素的互异性,得到x=﹣1不合题意, 则x=2.点评:此题考查了补集及其运算,熟练掌握补集的定义是解本题的关键.4. 已知集合P={x|x 2+x ﹣6=0},M={x|mx ﹣1=0},若M ⊊P ,求实数m 的取值范围. 【答案】{0,,﹣}.【解析】由题设得P={﹣3,2},根据M ⊆P ,根据集合中元素个数集合B 分类讨论,P=∅或{2}或{﹣3},由此求解实数m 的取值范围.解:对于P :由x 2+x ﹣6=0得,x=﹣3或x=2,即P={﹣3,2},∵M⊊P,∴M是P的真子集,则M=∅或{2}或{﹣3},当M=∅时,mx﹣1=0无解,则m=0;当M={2}时,2m﹣1=0,解得m=;当M={﹣3}时,3m﹣1=0,解得m=﹣,综上得,实数m的取值范围是:{0,,﹣}.点评:本题考查了集合的包含关系,用列举法求出已知集合的子集,以及二次方程的解法等,体现了分类讨论思想.5.在“①高一数学课本中的难题;②所有的正三角形;③方程的实数解”中,能够表示成集合的是A.②B.③C.②③D.①②③【答案】C【解析】①不满足集合元素的确定性,②③能构成集合,③为.故选C.【考点】集合的含义.6.已知函数=,若=3,则的值是_________.【答案】【解析】由已知得:f(x)=3,解得:;故应填入:.【考点】分段函数.7.已知集合,,且,则的值为()A.1B.—1C.1或—1D.1或—1或0【答案】D【解析】因为,所以,当m=0时,符合要求;当时,,所以,综上,可知m=1或-1或0.8.设集合,则()A.B.C.D.【答案】B【解析】表示大于的有理数构成的集合,因此成立【考点】集合表示方法及常用数集9.已知定义在区间上的函数,其中常数.(1)若函数分别在区间上单调,试求的取值范围;(2)当时,方程有四个不相等的实根.①证明:;②是否存在实数,使得函数在区间单调,且的取值范围为,若存在,求出的取值范围;若不存在,请说明理由.【答案】(1) (2)见解析,【解析】(1)结合对勾函数的特征,即可知,从而求出参数范围;(2)当时,方程即为或,由韦达定理可证明 .结合函数图像及其单调性,分类讨论分别在四个单调区间内去求解,最后求并集即可.试题解析:(1)设∵∴函数分别在区间上单调且要使函数分别在区间上单调则只需(2)①当时,或即或∵为方程的四个不相等的实根∴由根与系数的关系得②如图,可知,在、、、均为单调函数(Ⅰ)当时,在上单调递减则两式相除整理得∵∴上式不成立即无解,无取值 10分(Ⅱ)当时,在上单调递增则即在有两个不等实根而令则作在的图像可知,12分(Ⅲ)当时,在上单调递减则两式相除整理得∴∴∴由得则关于的函数是单调的,而应有两个不同的解∴此种情况无解(Ⅳ)当时,同(Ⅰ)可以解得无取值综上,的取值范围为【考点】•由单调性求参数范围;‚含参数的值域问题.【方法点睛】•由单调性求参数范围常用的方法是,先求出函数的单调区间(含有参数),题目中给出的单调区间应是所求区间的子集,从而把问题转化为由集合关系求参数范围问题.‚含参数的值域问题,不论是求值域还是把值域作为已知条件的,都按照求值域的步骤运算,当遇到困难时,要注意对参数的分类讨论.10.函数f(x)=-x2+2(a-1)x+2在(-∞,4)上是增函数,则a的范围是()A.a≥5B.a≥3C.a≤3D.a≤-5【答案】A【解析】二次函数对称轴为,在(-∞,4)上是增函数【考点】二次函数单调性11.若集合A={x||x|≤1,x∈R},B={y|y=,x∈R},则A∩B=( )A.{x|-1≤x≤1}B.{x|x≥0}C.{x|0≤x≤1}D.Φ【答案】C【解析】【考点】集合交集运算12.已知函数为二次函数,不等式的解集是,且在区间上的最大值为12.(1)求的解析式;(2)设函数在上的最小值为,求的表达式.【答案】(1)(2)【解析】(1)由题意先设函数的解析式,再由条件解其中的未知数,可得二次函数解析式;(2)由(1)知函数的解析式,可得函数的对称轴为,再讨论对称轴是在区间上,还是在区间外,分别得的表达式.试题解析:(1)是二次函数,且的解集是可设2分在区间上的最大值是由已知,得5分. 6分(2)由(1)知,开口向上,对称轴为, 8分①当,即时,在上是单调递减,所以; 10分②当时,在上是单调递减,所以; 12分③当,即时,在对称轴处取得最小值,所以. 14分【考点】1、二次函数的解析式的求法;2、二次函数的性质.13.(2012•广东模拟)如果奇函数f(x)在区间[3,7]上是增函数且最小值为5,那么f(x)在区间[﹣7,﹣3]上是()A.增函数且最小值为﹣5B.增函数且最大值为﹣5C.减函数且最小值为﹣5D.减函数且最大值为﹣5【答案】B【解析】由于奇函数的图象关于原点对称,故它在对称区间上的单调性不变,如果奇函数在区间上是增函数且最大值为,那么在区间上必是增函数,且最小值为,故选A.【考点】函数的奇偶性与单调性的应用.14.设f(x)的定义域为[0,2],则函数f(x2)的定义域是___________【答案】【解析】略15.(12分)若是定义在上的增函数,且对一切,满足. (1)求的值;(2)若,解不等式【答案】⑴⑵【解析】(1)令x=y=1,即可求得f(1)的值;(2)依题意(f(6)=-1),可求得f(36)=-2,从而f(x+5)-f()<-2⇔f[(x+3)x]<f(36),利用f(x)是定义在(0,+∞)上的减函数可得到关于x的不等式组,解之即可试题解析:(1)在f()=f(x)-f(y)中,令x=y=1,则有f(1)=f(1)-f(1),∴f(1)=0.(2)∵f(6)=1,∴f(x+3)-f()<2=f(6)+f(6),∴f(3x+9)-f(6)<f(6),即f()<f(6).∵f(x)是(0,+∞)上的增函数,∴解得-3<x<9.即不等式的解集为(-3,9).【考点】抽象函数及其应用;函数单调性的性质16.下列命题:①集合的子集个数有16个;②定义在上的奇函数必满足;③既不是奇函数又不是偶函数;④偶函数的图像一定与轴相交;⑤在上是减函数。
高一数学必修一集合与函数的概念单元测试附答案解析时间:120分钟满分:150分一、选择题本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的1.设集合M={x|x2+2x=0,x∈R},N={x|x2-2x=0,x∈R},则M∪N=A.{0} B.{0,2} C.{-2,0} D.{-2,0,2}2.设f:x→|x|是集合A到集合B的映射,若A={-2,0,2},则A∩B=A.{0} B.{2} C.{0,2} D.{-2,0}3.fx是定义在R上的奇函数,f-3=2,则下列各点在函数fx图象上的是A.3,-2 B.3,2 C.-3,-2 D.2,-34.已知集合A={0,1,2},则集合B={x-y|x∈A,y∈A}中元素的个数是A.1 B.3 C.5 D.95.若函数fx满足f3x+2=9x+8,则fx的解析式是A.fx=9x+8 B.fx=3x+2 C.fx=-3x-4 D.fx=3x+2或fx=-3x-4 6.设fx=错误!则f5的值为A.16 B.18 C.21 D.247.设T={x,y|ax+y-3=0},S={x,y|x-y-b=0},若S∩T={2,1},则a,b的值为A.a=1,b=-1 B.a=-1,b=1C.a=1,b=1 D.a=-1,b=-18.已知函数fx的定义域为-1,0,则函数f2x+1的定义域为A.-1,1 C.-1,09.已知A={0,1},B={-1,0,1},f是从A到B映射的对应关系,则满足f0>f1的映射有A.3个B.4个C.5个D.6个10.定义在R上的偶函数fx满足:对任意的x1,x2∈-∞,0x1≠x2,有x2-x1fx2-fx1>0,则当n∈N时,有A.f-n<fn-1<fn+1 B.fn-1<f-n<fn+1C.fn+1<f-n<fn-1 D.fn+1<fn-1<f-n11.函数fx是定义在R上的奇函数,下列说法:①f0=0;②若fx在0,+∞上有最小值为-1,则fx在-∞,0上有最大值为1;③若fx在1,+∞上为增函数,则fx在-∞,-1上为减函数;④若x>0时,fx=x2-2x,则x<0时,fx=-x2-2x.其中正确说法的个数是A.1个 B.2个 C.3个 D.4个12.fx满足对任意的实数a,b都有fa+b=fa·fb且f1=2,则错误!+错误!+错误!+…+错误!=A.1006 B.2014 C.2012 D.1007二、填空题本大题共4小题,每小题5分,共20分.把答案填在题中横线上13.函数y=错误!的定义域为________.14.fx=错误!若fx=10,则x=________.15.若函数fx=x+abx+2a常数a,b∈R是偶函数,且它的值域为-∞,4,则该函数的解析式fx=________.16.在一定范围内,某种产品的购买量y吨与单价x元之间满足一次函数关系,如果购买1000吨,每吨为800元,购买2000吨,每吨为700元,那么客户购买400吨,单价应该是________元.三、解答题本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤17.本小题满分10分已知集合A={x|2≤x≤8},B={x|1<x<6},C={x|x>a},U=R.1求A∪B,U A∩B;2若A∩C≠,求a的取值范围.18.本小题满分12分设函数fx=错误!.1求fx的定义域;2判断fx的奇偶性;3求证:f错误!+fx=0.19.本小题满分12分已知y=fx是定义在R上的偶函数,当x≥0时,fx=x2-2x.1求当x<0时,fx的解析式;2作出函数fx的图象,并指出其单调区间.20.本小题满分12分已知函数fx=错误!,1判断函数在区间1,+∞上的单调性,并用定义证明你的结论.2求该函数在区间1,4上的最大值与最小值.21.本小题满分12分已知函数fx的定义域为0,+∞,且fx为增函数,fx·y=fx+fy.1求证:f错误!=fx-fy;2若f3=1,且fa>fa-1+2,求a的取值范围.22.本小题满分12分某商场经销一批进价为每件30元的商品,在市场试销中发现,此商品的销售单价x元与日销售量y件之间有如下表所示的关系:1在所给的坐标图纸中,根据表中提供的数据,描出实数对x,y的对应点,并确定y与x 的一个函数关系式.2设经营此商品的日销售利润为P元,根据上述关系,写出P关于x的函数关系式,并指出销售单价x为多少元时,才能获得最大日销售利润1.解析M={x|xx+2=0.,x∈R}={0,-2},N={x|xx-2=0,x∈R}={0,2},所以M∪N={-2,0,2}.答案D2. 解析依题意,得B={0,2},∴A∩B={0,2}.答案C3. 解析∵fx是奇函数,∴f-3=-f3.又f-3=2,∴f3=-2,∴点3,-2在函数fx的图象上.答案A4. 解析逐个列举可得.x=0,y=0,1,2时,x-y=0,-1,-2;x=1,y=0,1,2时,x-y =1,0,-1;x=2,y=0,1,2时,x-y=2,1,0.根据集合中元素的互异性可知集合B的元素为-2,-1,0,1,2.共5个.答案C5. 解析∵f3x+2=9x+8=33x+2+2,∴fx=3x+2.答案B6. 解析f5=f5+5=f10=f15=15+3=18.答案B7. 解析依题意可得方程组错误!错误!答案C8. 解析由-1<2x+1<0,解得-1<x<-错误!,故函数f2x+1的定义域为错误!.答案B9. 解析当f0=1时,f1的值为0或-1都能满足f0>f1;当f0=0时,只有f1=-1满足f0>f1;当f0=-1时,没有f1的值满足f0>f1,故有3个.答案A10.解析由题设知,fx在-∞,0上是增函数,又fx为偶函数,∴fx在0,+∞上为减函数.∴fn+1<fn<fn-1.又f-n=fn,∴fn+1<f-n<fn-1.答案C11. 解析①f0=0正确;②也正确;③不正确,奇函数在对称区间上具有相同的单调性;④正确.答案C12. 解析因为对任意的实数a,b都有fa+b=fa·fb且f1=2,由f2=f1·f1,得错误!=f1=2,由f4=f3·f1,得错误!=f1=2,……由f2014=f2013·f1,得错误!=f1=2,∴错误!+错误!+错误!+…+错误!=1007×2=2014.答案B13. 解析由错误!得函数的定义域为{x|x≥-1,且x≠0}.答案{x|x≥-1,且x≠0}14. 解析当x≤0时,x2+1=10,∴x2=9,∴x=-3.当x>0时,-2x=10,x=-5不合题意,舍去.∴x=-3.答案-315. 解析fx=x+abx+2a=bx2+2a+abx+2a2为偶函数,则2a+ab=0,∴a=0,或b=-2.又fx的值域为-∞,4,∴a≠0,b=-2,∴2a2=4.∴fx=-2x2+4.答案-2x2+416. 解析设一次函数y=ax+ba≠0,把错误!和错误!代入求得错误!∴y=-10x+9000,于是当y=400时,x=860.答案86017. 解1A∪B={x|2≤x≤8}∪{x|1<x<6}={x|1<x≤8}.A={x|x<2,或x>8}.U∴U A∩B={x|1<x<2}.2∵A∩C≠,∴a<8.18. 解1由解析式知,函数应满足1-x2≠0,即x≠±1.∴函数fx的定义域为{x∈R|x≠±1}.2由1知定义域关于原点对称,f-x=错误!=错误!=fx.∴fx为偶函数.3证明:∵f错误!=错误!=错误!,fx=错误!,∴f错误!+fx=错误!+错误!=错误!-错误!=0.19. 解1当x<0时,-x>0,∴f-x=-x2-2-x=x2+2x.又fx是定义在R上的偶函数,∴f-x=fx.∴当x<0时,fx=x2+2x.2由1知,fx=错误!作出fx的图象如图所示:由图得函数fx的递减区间是-∞,-1,0,1.fx的递增区间是-1,0,1,+∞.20. 解1函数fx在1,+∞上是增函数.证明如下:任取x1,x2∈1,+∞,且x1<x2,fx-fx2=错误!-错误!=错误!,1∵x1-x2<0,x1+1x2+1>0,所以fx1-fx2<0,即fx1<fx2,所以函数fx在1,+∞上是增函数.2由1知函数fx在1,4上是增函数,最大值f4=错误!,最小值f1=错误!.21. 解1证明:∵fx=f错误!=f错误!+fy,y≠0∴f错误!=fx-fy.2∵f3=1,∴f9=f3·3=f3+f3=2.∴fa>fa-1+2=fa-1+f9=f9a-1.又fx在定义域0,+∞上为增函数,∴错误!∴1<a<错误!.22. 解1由题表作出30,60,40,30,45,15,50,0的对应点,它们近似地分布在一条直线上,如图所示.设它们共线于直线y=kx+b,则错误!错误!∴y=-3x+1500≤x≤50,且x∈N,经检验30,60,40,30也在此直线上.∴所求函数解析式为y=-3x+1500≤x≤50,且x∈N.2依题意P=yx-30=-3x+150x-30=-3x-402+300.∴当x=40时,P有最大值300,故销售单价为40元时,才能获得最大日销售利润.。
高中数学必修一第一章单元测试题《集合与函数概念》(120分钟150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.集合A={0,1,2},B={x|-1<x<2},则A∩B=( )A.{0}B.{1}C.{0,1}D.{0,1,2}2.设集合M={2,0,x},集合N={0,1},若N⊆M,则x的值为( )A.2B.0C.1D.不确定3.在下列由M到N的对应中构成映射的是( )4.已知函数f(x)=ax3+bx(a≠0),满足f(-3)=3,则f(3)= ( )A.2B.-2C.-3D.3【补偿训练】已知y=f(x)是偶函数,且f(4)=5,那么f(4)+f(-4)的值为( )A.5B.10C.8D.不确定5.已知一次函数y=kx+b为减函数,且kb<0,则在直角坐标系内它的大致图象是( )6.若f(x)=则f的值为( )A.-B.C.D.7.若f(g(x))=6x+3,且g(x)=2x+1,则f(x)= ( )A.3B.3xC.6x+3D.6x+18.下列四个图形中,不是以x为自变量的函数的图象是( )9.已知集合A={x|x2+x+1=0},若A∩R=∅,则实数m的取值范围是( )A.m<4B.m>4C.0<m<4D.0≤m<410.函数f(x)=|x|和g(x)=x(2-x)的单调递增区间分别是( )A.(-∞,0]和(-∞,1]B.(-∞,0]和[1,+∞)C.[0,+∞)和(-∞,1]D.[0,+∞)和[1,+∞)11.对于任意两个正整数m,n,定义某种运算“※”如下:当m,n都为正偶数或正奇数时,m※n=m+n;当m,n中一个为正偶数,另一个为正奇数时,m※n=mn.则在此定义下,集合M={(a,b)|a ※b=12,a∈N*,b∈N*}中的元素个数是( )A.10个B.15个C.16个D.18个12.设奇函数f(x)在(0,+∞)上为增函数,且f(1)=0,则使<0的x的取值范围为( )A.(-1,0)∪(1,+∞)B.(-∞,-1)∪(0,1)C.(-∞,-1)∪(1,+∞)D.(-1,0)∪(0,1)二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.已知集合A={x|1≤x<2},B={x|x<a},若A∩B=A,则实数a的取值范围是.14.已知a是实数,若集合{x|ax=1}是任何集合的子集,则a的值是.15.已知f(x)为偶函数,则f(x)=x1,1x0, ______,0x 1.+-⎧⎨⎩≤≤≤≤16.定义在R上的奇函数f(x)为减函数,若a+b≤0,给出下列不等式:①f(a)f(b)≤0;②f(a)+f(b)≤f(-a)+f(-b);③f(b)f(-b)≤0;④f(a)+f(b)≥f(-a)+f(-b).其中正确的是.(把你认为正确的不等式的序号全写上).三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)设全集为R,集合A={x|3≤x<6},B={x|2<x<9}.(1)分别求A∩B,(B)∪A.R(2)已知C={x|a<x<a+1},若C⊆B,求实数a取值构成的集合.18.(12分)已知函数f(x)=.(1)判断点(3,14)是否在f(x)的图象上.(2)当x=4时,求f(x)的值.(3)当f(x)=2时,求x的值.19.(12分)若函数f(x)=x2+4x+a的定义域和值域均为[-2,b](b>-2),求实数a,b的值.20.(12分)已知函数f(x)=ax+b,且f(1)=2,f(2)=-1.(1)求f(m+1)的值.(2)判断函数f(x)的单调性,并用定义证明.21.(12分)(2015·葫芦岛高一检测)已知函数f(x)对任意实数x,y恒有f(x+y)=f(x)+f(y),且当x>0时,f(x)<0,又f(1)=-2.(1)判断f(x)的奇偶性.(2)求证:f(x)为R上的减函数.(3)求f(x)在区间[-3,3]上的值域.22.(12分)定义在(-1,1)上的函数f(x)满足:①对任意x,y∈(-1,1),都有f(x)+f(y)=f;②f(x)在(-1,1)上是单调递减函数,f=-1.(1)求f(0)的值.(2)求证:f(x)为奇函数.(3)解不等式f(2x-1)<1.高中数学必修一第一章单元测试题《集合与函数概念》参考答案(120分钟150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.集合A={0,1,2},B={x|-1<x<2},则A∩B=( )A.{0}B.{1}C.{0,1}D.{0,1,2}【解析】选C.因为A={0,1,2},B={x|-1<x<2},所以A∩B={0,1}.2.(2015·天津高一检测)设集合M={2,0,x},集合N={0,1},若N⊆M,则x的值为( ) A.2 B.0C.1D.不确定【解析】选C.因为N⊆M,所以集合N中元素均在集合M中,所以x=1.3.在下列由M到N的对应中构成映射的是( )【解析】选C.选项A中,集合M中的数3在集合N中没有数与之对应,不满足映射的定义;选项B中,集合M中的数3在集合N中有两个数a,b与之对应;选项D中,集合M中的数a在集合N中有两个数1,3与之对应,不满足映射的定义.4.已知函数f(x)=ax3+bx(a≠0),满足f(-3)=3,则f(3)= ( )A.2B.-2C.-3D.3【解析】选 C.方法一:f(-3)=a(-3)3+b(-3)=-33a-3b=-(33a+3b)=3,所以33a+3b=-3.f(3)=33a+3b=-3.方法二:显然函数f(x)=ax3+bx为奇函数,故f(3)=-f(-3)=-3.【补偿训练】已知y=f(x)是偶函数,且f(4)=5,那么f(4)+f(-4)的值为( )A.5B.10C.8D.不确定【解析】选B.因为f(x)是偶函数,所以f(-4)=f(4)=5,所以f(4)+f(-4)=10.5.已知一次函数y=kx+b为减函数,且kb<0,则在直角坐标系内它的大致图象是( )【解析】选A.选项A图象为减函数,k<0,且在y轴上的截距为正,故b>0,满足条件,而B,C,D 均不满足条件.6.若f(x)=则f的值为( )A.-B.C.D.【解析】选C.因为<1,所以应代入f(x)=1-x2,即f=1-=.7.若f(g(x))=6x+3,且g(x)=2x+1,则f(x)= ( )A.3B.3xC.6x+3D.6x+1【解析】选B.由f(g(x))=f(2x+1)=6x+3=3(2x+1),知f(x)=3x.8.(2015·西城区高一检测)下列四个图形中,不是以x为自变量的函数的图象是( )【解析】选C.由函数定义知,定义域内的每一个x都有唯一函数值与之对应,A,B,D选项中的图象都符合;C项中对于大于零的x而言,有两个不同的值与之对应,不符合函数定义.9.已知集合A={x|x2+x+1=0},若A∩R=∅,则实数m的取值范围是( )A.m<4B.m>4C.0<m<4D.0≤m<4【解析】选D.因为A∩R=∅,所以A=∅,即方程x2+x+1=0无解,所以Δ=()2-4<0,所以m<4.又因为m≥0,所以0≤m<4.10.(2015·赣州高一检测)函数f(x)=|x|和g(x)=x(2-x)的单调递增区间分别是( ) A.(-∞,0]和(-∞,1] B.(-∞,0]和[1,+∞)C.[0,+∞)和(-∞,1]D.[0,+∞)和[1,+∞)【解析】选C.函数f(x)=|x|的单调递增区间为[0,+∞),函数g(x)=x(2-x)=-(x-1)2+1的单调递增区间为(-∞,1].11.对于任意两个正整数m,n,定义某种运算“※”如下:当m,n都为正偶数或正奇数时,m※n=m+n;当m,n中一个为正偶数,另一个为正奇数时,m※n=mn.则在此定义下,集合M={(a,b)|a ※b=12,a∈N*,b∈N*}中的元素个数是( )A.10个B.15个C.16个D.18个【解析】选B.若a,b同奇偶,有12=1+11=2+10=3+9=4+8=5+7=6+6,前面的每种可以交换位置,最后一种只有1个点(6,6),这时有2×5+1=11;若a,b一奇一偶,有12=1×12=3×4,每种可以交换位置,这时有2×2=4,所以共有11+4=15个.12.(2015·西安高一检测)设奇函数f(x)在(0,+∞)上为增函数,且f(1)=0,则使<0的x的取值范围为( )A.(-1,0)∪(1,+∞)B.(-∞,-1)∪(0,1)C.(-∞,-1)∪(1,+∞)D.(-1,0)∪(0,1)【解析】选D.由f(x)为奇函数,可知=<0.而f(1)=0,则f(-1)=-f(1)=0.又f(x)在(0,+∞)上为增函数,所以当0<x<1时,f(x)<0=f(1),此时<0;又因为f(x)为奇函数,所以f(x)在(-∞,0)上为增函数,所以当-1<x<0时,f(x)>0=f(-1),此时<0,即所求x的取值范围为(-1,0)∪(0,1).二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.(2015·开封高一检测)已知集合A={x|1≤x<2},B={x|x<a},若A∩B=A,则实数a的取值范围是.【解析】因为A∩B=A,所以A B,所以a≥2.答案:a≥214.已知a是实数,若集合{x|ax=1}是任何集合的子集,则a的值是.【解析】若集合{x|ax=1}是任何集合的子集,则它是空集,即方程ax=1无解,所以a=0.答案:015.已知f(x)为偶函数,则f(x)=x1,1x0, ______,0x 1.+-⎧⎨⎩≤≤≤≤【解析】当x∈[0,1]时,-x∈[-1,0],f(-x)=-x+1,又因为f(x)为偶函数,所以f(x)=f(-x)=1-x.答案:1-x16.定义在R上的奇函数f(x)为减函数,若a+b≤0,给出下列不等式:①f(a)f(b)≤0;②f(a)+f(b)≤f(-a)+f(-b);③f(b)f(-b)≤0;④f(a)+f(b)≥f(-a)+f(-b).其中正确的是.(把你认为正确的不等式的序号全写上).【解析】若a+b≤0,则a≤-b,b≤-a,又因为f(x)为R上递减的奇函数,所以f(a)≥f(-b),f(b)≥f(-a),所以f(a)+f(b)≥f(-a)+ f(-b),④正确;又因为f(-b)=-f(b),所以f(b)f(-b)=-f(b)f(b)≤0,③正确.其余错误.答案:③④三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)设全集为R,集合A={x|3≤x<6},B={x|2<x<9}.B)∪A.(1)分别求A∩B,(R(2)已知C={x|a<x<a+1},若C⊆B,求实数a取值构成的集合.【解析】(1)A∩B={x|3≤x<6}.因为B={x|x≤2或x≥9},RB)∪A={x|x≤2或3≤x<6或x≥9}.所以(R(2)因为C⊆B,如图所示:所以解得2≤a≤8,所以所求集合为{a|2≤a≤8}.18.(12分)已知函数f(x)=.(1)判断点(3,14)是否在f(x)的图象上.(2)当x=4时,求f(x)的值.(3)当f(x)=2时,求x的值.【解析】(1)因为f(x)=,所以f(3)==-,所以点(3,14)不在f(x)的图象上.(2)f(4)==-3.(3)令=2,即x+2=2x-12,解得x=14.19.(12分)若函数f(x)=x2+4x+a的定义域和值域均为[-2,b](b>-2),求实数a,b的值.【解析】因为函数f(x)的对称轴方程为x=-2,所以函数f(x)在定义域[-2,b](b>-2)上单调递增,所以函数f(x)的最小值为f(-2)=a-4=-2,所以a=2.函数f(x)的最大值为f(b)=b2+4b+2=b.所以b2+3b+2=0,解得b=-1或b=-2(舍去),所以b=-1.20.(12分)(2015·烟台高一检测)已知函数f(x)=ax+b,且f(1)=2,f(2)=-1.(1)求f(m+1)的值.(2)判断函数f(x)的单调性,并用定义证明.【解析】(1)由f(1)=2,f(2)=-1,得a+b=2,2a+b=-1,即a=-3,b=5,故f(x)=-3x+5,f(m+1)=-3(m+1)+5=-3m+2.(2)函数f(x)在R上单调递减,证明如下:任取x1<x2(x1,x2∈R),则f(x2)-f(x1)=(-3x2+5)-(-3x1+5)=3x1-3x2=3(x1-x2),因为x1<x2,所以f(x2)-f(x1)<0,即f(x2)<f(x1),所以函数f(x)在R上单调递减.【拓展延伸】定义法证明函数单调性时常用变形技巧(1)因式分解:当原函数是多项式函数时,作差后的变形通常进行因式分解.(2)通分:当原函数是分式函数时,作差后往往进行通分,然后对分子进行因式分解.(3)配方:当原函数是二次函数时,作差后可考虑配方,便于判断符号.21.(12分)(2015·葫芦岛高一检测)已知函数f(x)对任意实数x,y恒有f(x+y)=f(x)+f(y),且当x>0时,f(x)<0,又f(1)=-2.(1)判断f(x)的奇偶性.(2)求证:f(x)为R上的减函数.(3)求f(x)在区间[-3,3]上的值域.【解析】(1)取x=y=0,则f(0+0)=2f(0),所以f(0)=0.取y=-x,则f(x-x)=f(x)+f(-x),所以f(-x)=-f(x)对任意x∈R恒成立,所以f(x)为奇函数.(2)任取x1,x2∈(-∞,+∞),且x1<x2,则x2-x1>0,f(x2)+f(-x1)=f(x2-x1)<0,所以f(x2)<-f(-x1),又f(x)为奇函数,所以f(x1)>f(x2),所以f(x)是R上的减函数.(3)由(2)知f(x)在R上为减函数,所以对任意x∈[-3,3],恒有f(3)≤f(x)≤f(-3),因为f(3)=f(2)+f(1)=f(1)+f(1)+f(1)=-2×3=-6,所以f(-3)=-f(3)=6,所以f(x)在[-3,3]上的值域为[-6,6].22.(12分)定义在(-1,1)上的函数f(x)满足:①对任意x,y∈(-1,1),都有f(x)+f(y)=f;②f(x)在(-1,1)上是单调递减函数,f=-1.(1)求f(0)的值.(2)求证:f(x)为奇函数.(3)解不等式f(2x-1)<1.【解题指南】(1)结合已知等式利用赋值法求解.(2)利用赋值法并结合奇偶性定义判断.(3)结合(2)的结论及已知条件得f=1,再利用奇偶性和单调性脱去符号“f”,转化为一次不等式求解.【解析】(1)令x=y=0,得2f(0)=f(0),所以f(0)=0.(2)令y=-x,得f(x)+f(-x)=f(0)=0,即f(x)=-f(-x),所以f(x)为奇函数.(3)因为f=-1,f(x)为奇函数,所以f=1,所以不等式f(2x-1)<1等价于f(2x-1)<f,又因为f(x)在(-1,1)上是减函数,所以2x-1>-,-1<2x-1<1,解得<x<1.所以不等式的解集为.【误区警示】解答本题(3)时易忽视函数定义域而得出解集为的错误.。
高一数学必修1《集合与函数概念》测试卷(含答案)第一章(一)《集合与函数概念》测试卷考试时间:120分钟满分:150分一.选择题(本大题共12小题,每小题5分,共60分)1.下列叙述正确的是()A.函数的值域就是其定义中的数集BB.函数y=f(x)的图像与直线x=m至少有一个交点C.函数是一种特殊的映射D.映射是一种特殊的函数2.如果A={x|x>-1},则下列结论正确的是()A.XXXB.{}⊆AC.{}∈AD.∅∈A3.设f(x)=(2a-1)x+b在R上是减函数,则有()A.a≥1/2B.a≤1/2C.a>1/2D.a<1/24.定义在R上的偶函数f(x),对任意x1,x2∈[0,+∞)(x1≠x2),有|x1-x2|<π/2,则有()A.f(3)<f(-2)<f(1)B.f(1)<f(-2)<f(3)C.f(-2)<f(1)<f(3)D.f(3)<f(1)<f(-2)5.若奇函数f(x)在区间[1,3]上为增函数,且有最小值,则它在区间[-3,-1]上()A.是减函数,有最小值0B.是增函数,有最小值0C.是减函数,有最大值0D.是增函数,有最大值06.设f:x→x是集合A到集合B的映射,若A={-2,0,2},则AB等于()A.{}B.{2}C.{0,2}D.{-2,0}7.定义两种运算:a⊕b=ab,a⊗b=a²+b²,则函数f(x⊗3-3)为()A.奇函数B.偶函数C.既不是奇函数又不是偶函数D.既是奇函数又是偶函数8.若函数f(x)是定义域在R上的偶函数,在(-∞,0)上是减函数,且f(-2)=1/4,则使f(x)<1/4的x的取值范围为()A.(-2,2)B.(-2,0)∪(0,2)C.(-∞,-2)∪(2,+∞)D.(-∞,-2]∪[2,+∞)9.函数f(x)=x+(x|x|)的图像是()10.设f(x)是定义域在R上的奇函数,f(x+2)=-f(x),当|x|<1时,f(x)=x,则f(7.5)的值为()A.-0.5B.0.5C.-5.5D.7.511.已知f(-2x+1)=x²+1,且-1/2≤x≤1/2,则f(x)的值域为()A.[1,5/4]B.[1/4,5/4]C.[0,5/4]D.[1/4,2]12.设f(x)是定义在R上的奇函数,且f(x)在[-2,2]上单调递增,则f(x)在(-∞,-2)∪(2,+∞)上()A.单调递减B.单调不增也不减C.单调递增D.无法确定第一章(一)《集合与函数概念》测试卷考试时间:120分钟满分:150分一、选择题(本大题共12小题,每小题5分,共60分)1.下列叙述正确的是()A。
人教版高中数学必修一集合与函数概念测试卷考试时间:100分钟姓名:__________班级:__________考号:__________△注意事项:1.填写答题卡请使用2B 铅笔填涂2.提前5分钟收答题卡一 、选择题(本大题共14小题,每小题4分,共56分。
在每小题给出的四个选项中,只有一个选项是符合题目要求的)1. “p 且q ”成立是“p 或q ”成立的A .充分不必要条件B .必要不充分条件C .充要条件D .既非充分也非必要条件 2.若,则方程有实根的概率为:A .B .C .D .3.已知tan α、cot α是关于x 方程x 2 – kx + k2 –3 = 0的两实根,且327παπ<<.则cos )sin()3(απαπ+++的值为( ). A .1 B . C D .24.函数的定义域为 A . B . C . D .5.如果a ,b ,c 满足c <b <a ,且ac <0,那么下列选项中不一定成立的是 ( ).A .ab >acB .c (b -a )>0C .cb 2<ab 2D .ac (a -c )<06. (08年莆田四中一模理)已知sin()=,则cos()的值为 ( )A .B .-C .D . -7.设集合)}0()1()1(|),{(},4|),{(22222>≤-+-=≤+=r r y x y x N y x y x M 当N N M =⋂时,r 的取值范围是( )A 、]12,0[-B 、]1,0[C 、]22,0(-D 、)2,0(8.关于数列:3,9,…,729以下关于此数列的结论正确的是( ▲ )A .此数列不可能是等差数列,也不可能是等比数列B .此数列可能是等差数列,不可能是等比数列C .此数列不可能是等差数列,但可能是等比数列D .此数列可能是等差数列,也可能是等比数列9.α=k ·180°+45°(k ∈Z),则α在()A .第一或第三象限B .第一或第二象限C .第二或第四象限D .第三或第四象限10.过椭圆2241x y +=的一个焦点1F 的直线与椭圆交于A 、B 两点,则A 、B 与椭圆的另一个焦点2F 构成三角形2ABF 的周长是( )A . 2B .4CD .11.与曲线1492422=+y x 共焦点,而与曲线1643622=-y x 共渐近线的双曲线方程为( ) A .191622=-x y B .191622=-y x C .116922=-x y D .116922=-y x12.函数的一个单调递增区间是A. B. C. D. 13.已知命题)1,0(∈n 02=++n x x21314143y =(],1-∞-(),1-∞-[)1,-+∞()1,-+∞xex x f -⋅=)([]0,1-[]8,2[]2,1[]2,0姓名:__________班级:__________考号:__________ ●-------------------------密--------------封--------------线--------------内--------------请--------------不--------------要--------------答--------------题-------------------------●1p :函数22x x y -=-在R 为增函数, 2p :函数22x x y -=+在R 为减函数,则在命题1q :12p p ∨,2q :12p p ∧,3q :()12p p -∨和4q :()12p p ∧-中,真命题是 (A )1q ,3q (B )2q ,3q (C )1q ,4q (D )2q ,4q14.对于a ∈R ,直线(a -1)x -y +a +1=0恒过定点C ,则以C 为圆心,以5为半径的圆的方程为( )A .x 2+y 2-2x -4y =0B .x 2+y 2+2x +4y =0C .x 2+y 2+2x -4y =0D .x 2+y 2-2x +4y =0二 、填空题(本大题共7小题,每小题2分,共14分)15.若不等式组表示的平面区域是三角形,则实数的取值范围是 . 16.若函数f (x )=(x-1)(x-a )为偶函数,则a=___________.17.下列说法中正确的有___ ____①平均数不受少数几个极端值的影响,中位数受样本中的每一个数据影响; ②抛掷两枚硬币,出现“两枚都是正面朝上”、“两枚都是反面朝上”、“恰好一枚硬币正面朝上”的概率一样大;③用样本的频率分布估计总体分布的过程中,样本容量越大,估计越准确;④向一个圆面内随机地投一个点,如果该点落在圆内任意一点都是等可能的,则该随机试验的数学模型是古典概型. 18.(几何证明选讲选做题)如图3,AB ,CD 是半径为a 的圆O 的两条弦,它们相交于AB 的中点P ,PD=23a,∠OAP=30°,则CP =______.19.复数3123ii++的值是 。
高一数学集合与函数概念试题答案及解析1.如图所示,是全集,是的子集,则阴影部分所表示的集合是()A.A∩B B.B∩A C.D.A∩B【答案】B【解析】根据韦恩图可知,阴影部分所表示的集合是B∩ A.【考点】本小题主要考查集合关系的判断.点评:判断集合的关系可以借助韦恩图进行.2.设函数定义在实数集上,它的图像关于直线对称,且当时,,则有A.B.C.D.【答案】B【解析】当时,,单调递增,又因为函数的图像关于直线对称,所以在上单调递减,因为,所以.【考点】本小题主要考查函数的对称性和单调性的判断和应用,考查学生的推理能力和对数形结合思想的应用能力.点评:根据题意画出关于对称性和单调性的图象,数形结合解决问题即可.3.下列函数中是偶函数的是()()A.B.C.D.【答案】A【解析】因为选项A是偶函数,选项B,定义域不关于原点对称,不是偶函数,选项C中,是奇函数,选项D,非奇非偶函数。
选A.4.(12分)设.(1)若在上的最大值是,求的值;(2)若对于任意,总存在,使得成立,求的取值范围;【答案】(1);(2)【解析】本试题主要是考查了二次函数的最值问题,以及函数与方程思想的综合运用(1)因为在(0,1)上的最大值,可知函数的解析式中a的值。
时,,所以时不符题意舍去时,最小值为,其中,而得到结论。
解:(1)(2)依题意, 时,,所以,解得,时不符题意舍去时,最小值为,其中,而,不符题意舍去,又,也不符题意舍去,综上5.已知a>1,= log(a-a).⑴求的定义域、值域;⑵判断函数的单调性,并证明;⑶解不等式:>.【答案】⑴定义域为(-∞,1); 值域为(-∞,1)⑵函数为减函数,证明见解析⑶不等式的解为-1<x<1【解析】为使函数有意义,需满足a-a>0,即a<a,当注意到a>1时,所求函数的定义域为(-∞,1),又log(a-a)<log a = 1,故所求函数的值域为(-∞,1).⑵设x<x<1,则a-a>a-a,所以-= log(a-a)-log(a-a)>0,即>.所以函数为减函数.⑶易求得的反函数为= log(a-a) (x<1),由>,得log(a-a)>log(a-a),∴a<a,即x-2<x,解此不等式,得-1<x<2,再注意到函数的定义域时,故原不等式的解为-1<x<1.6.函数y=的定义域是____________【答案】(-,0)(0,1) (1,+ )【解析】要使函数有意义,需使,即,所以所以函数定义域为7.已知,则这样的()A.存在且只有一个B.存在且不只一个C.存在且D.根本不存在【答案】A【解析】因为指数函数是增函数;10在函数的值域内;所以函数值时,与之对应的自变量存在并且只有一个。
高中数学集合与函数的概念测试卷及答案集合与函数的概念测试卷一、选择题1、已知集合A是全集S的任一子集,下列关系中正确的是()A.B.SC.(A )= D.(A )S2、若命题“p或q”是假命题,命题┐q是真命题.那么()A.命题p和命题q都是假命题B.命题p真命题和命题q是假命题C.命题p是假命题,命题q是真命题D.以上都不对. 3、若二次不等式ax2+bx+c0的解集是,那么不等式2cx2-2bx-a0的解集是()A.B.C.D.4、用反证法证明如果ab,那么,假设的内容应是()A.B.C.且D.或5、若不等式和同时成立,则x的取值范围是()A.B.C.D.6、不等式的解集是()A. {x|x-4或xB.C. {xR|x-4}D. R7、设全集U={(x,y)|xR,yR},集合M={(x,y)|yx} ,N={(x,y)|y-x},则集合P={(x,y)|y2=x2}等于()A.()()B.()C.()()D.M()8、不等式的解集为()A.{x|-23} B.{x|-22}C.{x|x-2或x D.{x|-23且x }9、不等式的解集为全体实数,这实数的取值范围是()A、B、C、D、或10、下列指定的命题中,真命题是()A.命题“若axb则x ”B.命题“若b= -2则b2=4”的逆命题11、abac是bc的()A.充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件12、下列说法:①若一个命题的否命题是真命题,则这个命题不一定是真命题;②若一个命题的逆否命题是真命题,则这个命题是真命题;③若一个命题的逆命题是真命题,则这个命题不一定是真命题;④若一个命题的逆命题和否命题都是真命题,则这个命题一定是真命题;其中正确的说法是()OxyA.①② B.①③④ C.②③④ D.①②③二、填空题13、设A= ,则A=____________(用列举法表示)14、设A= ,B= ,则AB= .15、不等式|x+1|+|x-1| 2的解集是_________________________.16、已知函数的图象如图,则的取值范围是三、解答题17、解不等式x2-5|x|+60.18、解不等式x2-(k+1)x+k019、已知集合A={x|x2-7x+12=0}、B={x|x2-kx+12=0}.若,求k的取值范围.20、写出命题“各数字之和是3的倍数的正整数,可能被3整除”的逆命题、否命题、逆否命题,并判断其真假.21、某班有学生55人,其中有音乐爱好者34人,有体育爱好者43人,还有4人既不爱好音乐又不爱好体育,该班既爱好音乐又爱好体育的有多少人?22、求证:当为实数时,关于的一元二次方程与方程至少有一个方程有实根答案CAADB DCDBD DD13、{-4,0,2,3,5,6,8,12} 14、{x|3 x 7} 15、16、17、{x|-3-2或23}18、当k1时,解集为{x|k1};当k=1时,解集为;当k〉1时,解集为{x| 1 k };19、20、(略)课本、报刊杂志中的成语、名言警句等俯首皆是,但学生写作文运用到文章中的甚少,即使运用也很难做到恰如其分。
高一数学集合与函数测试题一、选择题:(本大题共12小题,每小题5分,共60分)2.设函数y=1+x 的定义域为M ,集合N={y|y=x 2,x ∈R},则M ∩N=( )A .φB .NC .[1,+∞)D .M 5.下列各组函数中,表示同一函数的是 ( ) A .xxy y ==,1 B .1,112-=+⨯-=x y x x yC .33,x y x y ==D . 2)(|,|x y x y ==6. 下列函数在)(0,∞-上是增函数的是 ( ) A.1()1f x x=-B.1)(2-=x x f C.x x f -=1)( D.x x f =)( 7.设⎪⎩⎪⎨⎧<=>+=)0(,0)0(,)0(,1)(x x x x x f π,则=-)]}1([{f f f ( )A .1+πB .0C .πD .1-8.函数c bx x y ++=2))1,((-∞∈x 是单调函数时,b 的取值范围( ) A .2-≥bB .2-≤bC .2->bD . 2-<b 9.已知函数f (x +1)=x +1,则函数f (x )的解析式为 ( )A .f (x )=x 2B .f (x )=x 2+1(x ≥1) C .f (x )=x 2-2x +2(x ≥1) D .f (x )=x 2-2x (x ≥1)10.函数x xx y +=的图象是( )ABCD11.已知⎩⎨⎧<-≥=0,10,1)(x x x f ,则不等式(2)(2)5x x f x ++⋅+≤的解集是 ( ) A .3(,]2-∞ B .3(,]2-∞-C .3(,)2+∞D .33(,]22-12.已知函数f (x )是R 上的增函数,A (0,-1)、B (3,1)是其图象上的两点, 那么| f (x +1)|<1的解集是( )A.(1,4)B.(-1,2)C.(-∞,1]∪[4,+∞)D.(-∞,-1]∪[2,+∞) 二、填空题:本大题共4小题,每小题5分,共20分。
高一数学集合与函数概念试题答案及解析1.如图所示,是全集,是的子集,则阴影部分所表示的集合是()A.A∩B B.B∩A C.D.A∩B【答案】B【解析】根据韦恩图可知,阴影部分所表示的集合是B∩ A.【考点】本小题主要考查集合关系的判断.点评:判断集合的关系可以借助韦恩图进行.2.下列函数中是偶函数的是()()A.B.C.D.【答案】A【解析】因为选项A是偶函数,选项B,定义域不关于原点对称,不是偶函数,选项C中,是奇函数,选项D,非奇非偶函数。
选A.3.已知函数,则【答案】2【解析】因为函数,那么可知,故答案为2.4.当时,函数和的图象只可能是()【答案】A【解析】对于A:是减函数;A符合;对于B:是增函数;B不符合;对于C:是减函数;B不符合;对于D:是增函数;B不符合;故选A5.已知关于x的方程2a-7a+3=0有一个根是2, 求a的值和方程其余的根【答案】a=或a=3;a=时,x=2或x=1-log3;a=3时,x=2或x=-1-log2【解析】解: 2a-7a+3="0," a=或a=3.a=时, 方程为: 8·()-14·()+3=0x=2或x=1-log 3a=2时, 方程为: ·2-·2+3=0x=2或x=-1-log26.若函数y=(2k+1)x+b在R上是减函数,则()A.k>B.k<C.k>-D.k<-【答案】D【解析】由已知,2k+1<0,解得k<-.7.,B=且,则的值是 ( )A.B.C.D.【答案】B【解析】得或.经检验只有符合题意.8.设,则: , .【答案】【解析】,.9.已知集合若,则实数的取值范围是【答案】【解析】则得又10.设集合,且求的值.【答案】a=4或a=2,-2【解析】解:当B={1,a-1}时,有a-1=3,当时,C中方程无根.即;当时若C={1},有1-m+1=0;若C={3},有若C={1,3},m无解.由上述得:a=4或a=2,-211.设,其中,如果,求实数的取值范围。
高一数学必修集合与函数概念测试卷含答案
Company number【1089WT-1898YT-1W8CB-9UUT-92108】
第一章《集合与函数概念》测试
卷
考试时间:120分钟 满分:150分
一.选择题.(本大题共12小题,每小题5分,共60分) 1.下列叙述正确的是( )
A.函数的值域就是其定义中的数集B
B.函数()y f x =的图像与直线x m =至少有一个交点
C.函数是一种特殊的映射
D.映射是一种特殊的函数
2.如果{}1A x x =>-,则下列结论正确的是( ) A.0A ⊆ B.{}0A ⊆ C.{}0A ∈ D.A ∅∈
3.设()(21)f x a x b =-+在R 上是减函数,则有( ) A.12a ≥ B.12a ≤ C.12a > D.12
a < 4.定义在R 上的偶函数()f x ,对任意1x ,2x ∈[)0,+∞12()x x ≠,有
1212
()()
0f x f x x x -<-,则有( )
A.(3)(2)(1)f f f <-<
B.(1)(2)(3)f f f <-<
C.(2)(1)(3)f f f -<<
D.(3)(1)(2)f f f <<-
5.若奇函数()f x 在区间[]1,3上为增函数,且有最小值0,则它在区间[]3,1--上( )
A.是减函数,有最小值0
B. 是增函数,有最小值0
C.是减函数,有最大值0
D. 是增函数,有最大值0
6.设:f x x →是集合A 到集合B 的映射,若{}2,0,2A =-,则A B 等于( ) A.{}0 B.{}2 C.{}0,2 D.{}2,0-
7.定义两种运算:a b ab ⊕=,22a b a b ⊗=+,则函数3()33
x
f x x ⊕=⊗-为
( )
A.奇函数
B.偶函数
C.既不是奇函数又不是偶函数
D.既是奇函数又是偶函数 8.若函数()f x 是定义域在R 上的偶函数,在(),0-∞上是减函数,且
(2)0f -=,则使()0f x <的x 的取值范围为( )
A.()2,2-
B.()()2,00,2-
C.()(),22,-∞-+∞
D.
(][),22,-∞-+∞
9.函数()x
f x x x
=+
的图像是( ) 10.设()f x 是定义域在R 上的奇函数,(2)()f x f x +=-,当01x <≤时,
()f x x =,则(7.5)f 的值为( )
A. B. 0.5 C. D.
x
表示同一个函数
把你认为正确的结论的序号填写到横线上
()x 0
x
R
C B
⊆,求实数
.
14. -1 15.3 16.
(本大题共6小题,其中
()
(0)0
3
()
f x
f
x
f x
∴=
⎧
⎪
=⎨
又是
m
m
>
∴
得到
的取值范围为
()()(0)1()2(f x f x f a f x x ∴=+= 又
有最小值 设
25(135030x ∴+-∴-∴此人购物实际所付金额为[()3,3()f x x -在的对称轴为
2
()()221()1f x a
∴==+(121()()f x f x ∴-∴在()()f x f t ∴-=易知是。