材料拉伸实验郑州力学实验中心
- 格式:ppt
- 大小:521.50 KB
- 文档页数:9
材料力学实验拉伸实验报告材料力学实验拉伸实验报告引言:材料力学实验是研究材料在受力作用下的变形和破坏行为的重要手段。
拉伸实验是其中一种常见的实验方法,通过对材料在受力下的延伸行为进行观察和分析,可以获得材料的力学性能参数,如屈服强度、断裂强度等。
本实验旨在探究不同材料在拉伸过程中的力学性能,并通过实验数据分析和计算得出结论。
实验装置与方法:实验所用材料为不同种类的金属样条,包括铜、铝、钢等。
实验装置主要由拉伸试验机、测力计和长度计组成。
首先,将金属样条固定在拉伸试验机上,然后逐渐增加试验机施加的拉伸力,同时记录测力计示数和长度计示数。
在拉伸过程中,要确保样条的应力均匀分布,避免出现局部应力集中导致的破坏。
实验结果与分析:通过实验数据记录和分析,我们得到了不同金属样条在拉伸过程中的力学性能参数。
首先,我们观察到在拉伸实验开始时,材料的应力-应变曲线呈现线性关系,即符合胡克定律。
随着拉伸力的增加,材料开始发生塑性变形,应力-应变曲线开始偏离线性关系,进入非线性阶段。
当拉伸力继续增加时,材料逐渐接近其屈服点,此时应力-应变曲线出现明显的拐点。
在过屈服点后,材料进入了塑性变形阶段。
我们观察到在这个阶段,材料的应力-应变曲线呈现出明显的下降趋势,即应力逐渐减小。
这是因为材料的内部结构发生了变化,晶粒开始滑移和变形,导致材料的强度下降。
在塑性变形过程中,材料的延伸率逐渐增加,直到达到最大延伸率。
然而,当材料的延伸率达到一定程度时,材料开始出现颈缩现象。
这是因为在塑性变形过程中,材料的某些部分发生了局部应力集中,导致材料在这些部分发生断裂。
我们观察到,颈缩现象对于不同材料的发生时间和程度是有差异的。
一般来说,延展性较好的材料在颈缩现象发生前能够承受更大的拉伸力。
结论:通过本次拉伸实验,我们得到了不同金属样条的力学性能参数,并对材料的拉伸行为进行了分析。
根据实验结果,我们可以得出以下结论:1. 不同材料在拉伸过程中的应力-应变曲线呈现出不同的形态,但都符合胡克定律。
材料拉伸实验实验报告
报告编号:YY-19-02
报告题目:材料拉伸实验
实验日期:2019年7月20日
实验机构:某国家科学院
实验人员:张三、李四
实验时间:3小时
实验结果:
1、实验目的
本实验旨在研究低温变形材料的拉伸性能,以确定其在现实应用中的性能指标。
2、实验设备
实验设备主要由拉伸试验机、电子实验组及其他仪器组成。
拉伸试验机由机架、拉伸架、加载架、控制架及控制系统组成。
电子实验组主要由电子称、数据采集器和实验软件组成。
3、实验过程
(1)将试样加载到拉伸试验机上,安装电子实验组,打开拉伸试验机的电源,调整试验系统的载荷控制参数。
(2)编程拉伸实验,将设定的负荷加载到试样上,观察拉伸过程中试样的变形和应变。
(3)拉伸实验完成后,测量试样的变形,并记录变形的应变和力度。
4、实验结果
实验结果表如下:
载荷/KN 应变/mm 变形/mm
2.5 0.0012 0.012
5.0 0.0024 0.024
7.5 0.0036 0.036
10.0 0.0048 0.048
5、结论
通过本次实验,可以得出结论:
(1)试验材料的拉伸性能随负荷的增加而增加;
(2)试验材料的变形随着负荷的增加而增加;
(3)试验材料的应变随着负荷的增加而增加。
一、实验目的1. 了解材料在拉伸过程中的力学行为,观察材料的弹性、屈服、强化、颈缩和断裂等物理现象。
2. 测定材料的拉伸强度、屈服强度、抗拉强度等力学性能指标。
3. 掌握万能试验机的使用方法及拉伸实验的基本操作。
二、实验原理材料在拉伸过程中,其内部微观结构发生变化,从而表现出不同的力学行为。
根据胡克定律,当材料处于弹性阶段时,应力与应变呈线性关系。
当应力达到某一值时,材料开始发生屈服,此时应力不再增加,应变迅速增大。
随着应力的进一步增大,材料进入强化阶段,应力逐渐增加,应变增长速度减慢。
当应力达到最大值时,材料发生颈缩现象,此时材料横截面积迅速减小,应变增长速度加快。
最终,材料在某一应力下发生断裂。
三、实验仪器与设备1. 万能试验机:用于对材料进行拉伸试验,可自动记录应力与应变数据。
2. 拉伸试样:采用低碳钢圆棒,规格为直径10mm,长度100mm。
3. 游标卡尺:用于测量拉伸试样的尺寸。
4. 电子天平:用于测量拉伸试样的质量。
四、实验步骤1. 将拉伸试样清洗干净,用游标卡尺测量其直径和长度,并记录数据。
2. 将拉伸试样安装在万能试验机的夹具中,调整夹具间距,确保试样在拉伸过程中均匀受力。
3. 打开万能试验机电源,设置拉伸速度和最大载荷,启动试验机。
4. 观察拉伸过程中试样的变形和破坏现象,记录试样断裂时的载荷。
5. 关闭试验机电源,取出试样,用游标卡尺测量试样断裂后的长度,计算伸长率。
五、实验数据与结果1. 拉伸试样直径:10.00mm2. 拉伸试样长度:100.00mm3. 拉伸试样质量:20.00g4. 拉伸试样断裂载荷:1000N5. 拉伸试样断裂后长度:95.00mm根据实验数据,计算材料力学性能指标如下:1. 抗拉强度(σt):1000N / (π × (10mm)^2 / 4) = 784.62MPa2. 屈服强度(σs):600N / (π × (10mm)^2 / 4) = 471.40MPa3. 伸长率(δ):(95.00mm - 100.00mm) / 100.00m m × 100% = -5%六、实验分析1. 本实验中,低碳钢试样在拉伸过程中表现出明显的弹性、屈服、强化、颈缩和断裂等物理现象,符合材料力学理论。
实验力学实验报告(郑州大学力学实验中心编制)院系:力学与工程科学学院专业:年级:班级:姓名:学号:成绩:评阅老师:目录实验 1 应变计粘贴实验实验 2 薄壁圆管拉弯扭组合变形下的内力测定实验 3 应变计灵敏系数、机械滞后测定实验 4 应变计横向效应系数测定实验 5 动态应变信号采集实验实验 6 建筑力学模型动态应变测定实验7 光弹性实验12实验 1 应变计粘贴实验实验目的:初步掌握常温用电阻应变计的粘贴技术实验设备:常温用电阻应变计、板状拉伸试件、 502 粘结剂(氰基丙烯酸酯粘结剂)、电烙铁、焊锡、焊锡膏等、细砂纸、丙酮、药棉等打磨清洗器材、防潮用硅胶、万用表、 100 伏兆欧表(测绝缘电阻用)、其它辅助器材:直尺、直角尺、划线笔、塑料胶带(滚压应变计用)、接线端子、剥线钳、镊子、剪刀。
小组名单:实验日期: 年 月 日 实验原理:绝大部分金属丝在伸长或缩短时,其电阻值也会增大或减小,这种现象称为电阻应变效应。
设一段长度为L 、初始电阻值为R 的导体,在产生应变LL∆=ε时引起的电阻变化为R ∆,这种规律可用下式表示:εk RR=∆k 为常数,称为金属丝灵敏系数。
丝绕式应变计结构如图,它由敏感栅、粘结剂、基底、引线及覆盖层等5部分组成。
基底材料多为纸基,并以硝化纤维素系粘结剂为制片胶。
原始记录:1. 选片:确定应变计类型,检查丝栅是否平行,有否霉点、锈点、用万用表测量各应变片电阻值,选择电阻值差在土0.5 欧姆内的10 枚应变片供粘贴用。
2. 测点表面的清洁处理:为使应变计与被测试件贴得牢,对测点表面要进行清洁处理。
首先把测点表面用细砂纸沿 45测点表面平整光洁。
然后用棉花球蘸丙酮擦洗表面的油污,到棉花球不黑为止。
然后用划线笔在贴片位置处划出应变计粘贴座标线。
再次进行表面清洗。
3. 贴片:捏住应变片引出线,在应变计的底面涂上薄薄一层胶水,把应变计对准座标线放置在试件上(注意应变计轴线与所划座标线对齐)。
材料力学拉伸实验报告 Document serial number【UU89WT-UU98YT-UU8CB-UUUT-UUT108】材料的拉伸压缩实验徐浩 20 机械一班一、实验目的1.观察试件受力和变形之间的相互关系;2.观察低碳钢在拉伸过程中表现出的弹性、屈服、强化、颈缩、断裂等物理现象。
观察铸铁在压缩时的破坏现象。
3.测定拉伸时低碳钢的强度指标(s、b)和塑性指标(、)。
测定压缩时铸铁的强度极限b。
二、实验设备1.微机控制电子万能试验机;2.游标卡尺。
三、实验材料拉伸实验所用试件(材料:低碳钢)如图所示,四、实验原理低碳钢试件拉伸过程中,通过力传感器和位移传感器进行数据采集,A/D转换和处理,并输入计算机,得到F-l曲线,即低碳钢拉伸曲线,见图2。
对于低碳钢材料,由图2曲线中发现OA直线,说明F正比于l,此阶段称为弹性阶段。
屈服阶段(B-C)常呈锯齿形,表示载荷基本不变,变形增加很快,材料失去抵抗变形能力,这时产生两个屈服点。
其中,B 点为上屈服点,它受变形大小和试件等因素影响;B点为下屈服点。
下屈服点比较稳定,所以工程上均以下屈服点对应的载荷作为屈服载荷。
测定屈服载荷Fs时,必须缓慢而均匀地加载,并应用s=F s/ A0(A0为试件变形前的横截面积)计算屈服极限。
图2 低碳钢拉伸曲线屈服阶段终了后,要使试件继续变形,就必须增加载荷,材料进入强化阶段。
当载荷达到强度载荷F b后,在试件的某一局部发生显着变形,载荷逐渐减小,直至试件断裂。
应用公式b=F b/A0计算强度极限(A0为试件变形前的横截面积)。
根据拉伸前后试件的标距长度和横截面面积,计算出低碳钢的延伸率和端面收缩率,即%100001⨯-=l l l δ,%100010⨯-=A A A ψ 式中,l 0、l 1为试件拉伸前后的标距长度,A 1为颈缩处的横截面积。
五、实验步骤及注意事项 1、拉伸实验步骤(1)试件准备:在试件上划出长度为l 0的标距线,在标距的两端及中部三个位置上,沿两个相互垂直方向各测量一次直径取平均值,再从三个平均值中取最小值作为试件的直径d 0。
拉 伸 实 验一、实验目的1.测定低碳钢的屈服极限(流动极限)σs ,强度极限σb ,延伸率δ和截面收缩率ψ。
2.测定铸铁的强度极限σb 。
3.观察拉伸过程中的各种现象(包括屈服、强化和颈缩等现象)。
4.比较低碳钢(塑性材料)与铸铁(脆性材料)机械性质的特点。
二、实验设备1.WDW-3300微机控制电子万能试验机 2.KJ-20划线仪 3.KL-150mm 游标卡尺 三、实验原理及装置1、试件试件可制成圆形或矩形截面,两端较粗的部分为夹持端,试件中段用于测量拉伸变形。
根据国家标准GB6397-86的规定,拉力试件分比例试件和非比例试件两种。
比例试件是指标距长度与横截面面积间具有下列关系的试件00A K l =式中系数K 通常为5.65和11.3,前者称为短试件,后者称为长试件。
因此,直径为d 0的短、长圆形试件的标距长度l 0分别等于5d 0 、、10d 0 。
2、实验原理通过试验机的自动绘图功能绘出低碳钢的拉伸图和铸铁的拉伸图,可以测得低碳钢的屈服载荷P s 、最大载荷P b 和铸铁的最大载荷P b ,从而计算出:低碳钢的屈服极限 0A P s s =σ 低碳钢的强度极限 0A Pb b =σ 铸铁的强度极限 0A P bb =σ 根据实验前后的标距长度和截面直径,可以计算出延伸率δ和截面收缩率ψ。
四、实验步骤1.试件准备(1)用划线仪在标距l 0范围内将标距分成十格。
(2)用游标卡尺测量标距两端及中间这三个横截面处的直径,每一横截面处沿互相垂直的两个方向各量一次取其平均值,作为该截面的直径。
用所测得的三个平均值中最小值计算试件的横截面面积A 0。
计算A 0时取三位有效数字。
2.试验机准备根据低碳钢的强度极限σb 和横截面面积A 0估计试件的最大载荷。
根据最大载荷的大小,选择合适的测力量程。
3.安装试件及进行实验(1)启动试验机:按住单片机上的F1,用钥匙开机,待提示输入密码后松开F1键,再按返回。
拉伸实验报告
实验目的,通过拉伸实验,了解材料在受力作用下的力学性能,掌握拉伸实验的基本操作技能。
实验仪器,拉伸试验机、标尺、试样。
实验原理,拉伸试验是通过对试样施加拉伸力,使其在拉伸过程中产生应力和应变,从而研究材料的力学性能。
拉伸试验的基本参数包括抗拉强度、屈服强度、断裂伸长率等。
实验步骤:
1. 准备试样,根据实验要求,选择合适的试样,对其尺寸进行测量,并在试样上标记好测量点。
2. 安装试样,将试样安装到拉伸试验机上,并调整好试验机的参数。
3. 进行拉伸实验,启动拉伸试验机,施加拉伸力,记录试验过程中的拉伸力和试样的变形情况。
4. 数据处理,根据实验记录的数据,计算出试样的抗拉强度、屈服强度等力学性能参数。
实验结果:
经过拉伸实验,我们得到了试样的拉伸力-应变曲线。
从曲线上可以看出,试样在拉伸过程中出现了线性阶段和非线性阶段。
在线性阶段,试样的应变随拉伸力的增加呈线性增长,而在非线性阶段,试样的应变增长速度加快,最终导致试样的断裂。
根据拉伸力-应变曲线,我们计算出了试样的抗拉强度为XXX,屈服强度为XXX,断裂伸长率为XXX。
这些数据反映了材料在拉伸过程中的力学性能,为材料的工程应用提供了重要参考。
实验总结:
通过本次拉伸实验,我们深入了解了材料在受力作用下的力学性能,掌握了拉伸实验的基本操作技能。
同时,我们也发现了材料在拉伸过程中的一些特点,对材料的工程应用具有重要的指导意义。
在今后的学习和工作中,我们将继续深入研究材料的力学性能,不断提高实验操作技能,为材料工程领域的发展做出更大的贡献。
拉伸实验报告到此结束。