农业生物技术 第1章 植物遗传育
- 格式:ppt
- 大小:5.49 MB
- 文档页数:86
遗传育种的科学基础
遗传育种是一种利用遗传学原理和技术来改良动植物品种的方法。
它的科学基础主要包括以下几个方面:
1. 遗传学原理:遗传育种的核心是利用遗传学原理,通过选择、交配和育种等手段,改变生物体的遗传结构,从而提高其优良性状的表达。
遗传学原理包括基因遗传、孟德尔遗传定律、染色体遗传、基因突变等。
2. 生物统计学:生物统计学是遗传育种的重要工具,它可以帮助育种者分析和评估育种材料的遗传表现和遗传变异,从而选择最优的育种策略和方案。
3. 基因组学和生物信息学:随着基因组学和生物信息学的发展,育种者可以更加深入地了解生物体的基因组结构和功能,以及基因与性状之间的关系,从而更加精准地进行遗传育种。
4. 育种技术:遗传育种的技术包括选择育种、杂交育种、诱变育种、基因编辑等。
这些技术可以帮助育种者改变生物体的遗传结构,从而提高其优良性状的表达。
5. 种质资源保护和利用:种质资源是遗传育种的基础,它包括各种动植物的品种、品系和野生种。
保护和利用种质资源可以为遗传育种提供更多的遗传材料和育种方案。
总之,遗传育种的科学基础是多方面的,它涉及遗传学、生物统计学、基因组学、育种技术和种质资源保护等多个学科领域。
这些科学基础为遗传育种提供了理论和技术支持,推动了动植物品种的改良和优化。
农业生物技术高职教材一、农业生物技术基础农业生物技术是一门将现代生物技术应用于农业领域的学科。
它旨在通过利用生物技术的手段,改良和优化农作物的遗传特性,提高产量和品质,同时减少对环境的负面影响。
本节将介绍农业生物技术的基本原理和关键技术,包括基因工程技术、细胞工程技术、酶工程技术和发酵工程技术等。
二、基因工程与育种基因工程是农业生物技术的核心部分,它通过改变生物体的遗传物质来创造具有优良性状的品种。
本节将介绍基因工程的基本原理和技术,包括基因克隆、基因转移、基因表达和基因编辑等。
同时,还将介绍基因工程在育种中的应用,如抗虫、抗病、抗逆、品质改良和产量提高等。
三、细胞工程与繁殖细胞工程是利用细胞进行繁殖和遗传改造的一种生物技术。
在农业上,细胞工程主要用于快速繁殖优良品种和创造新的植物品种。
本节将介绍细胞工程的基本原理和技术,包括细胞培养、细胞融合、染色体加倍和胚胎培养等。
同时,还将介绍细胞工程在农业上的应用,如花卉、蔬菜、水果和林木等的快速繁殖。
四、酶工程与发酵酶工程是利用酶进行工业生产的一种生物技术。
在农业上,酶工程主要用于生产具有特定功能的酶制剂,如植酸酶、蛋白酶和脂肪酶等。
本节将介绍酶工程的基本原理和技术,包括酶的分离纯化、酶的固定化、酶反应器和酶的生产与应用等。
同时,还将介绍酶工程在农业上的应用,如提高农作物产量和品质、促进土壤改良和减少环境污染等。
五、蛋白质工程与产品蛋白质工程是利用蛋白质的结构和性质进行设计和改造的一种生物技术。
在农业上,蛋白质工程可用于改进农作物中的蛋白质含量和组成,提高农产品的营养价值。
本节将介绍蛋白质工程的基本原理和技术,包括蛋白质的分离纯化、蛋白质的修饰和蛋白质的结晶等。
同时,还将介绍蛋白质工程在农业上的应用,如大豆、玉米和小麦等的蛋白质改良。
六、农业微生物技术农业微生物技术是利用有益微生物进行农业生产的一种生物技术。
这些有益微生物可以是细菌、真菌或放线菌等,它们可以促进土壤改良、提高农作物抗性和产生有用的代谢产物等。
中职《农林牧渔类考卷》第1卷1.植物遗传的基础理论知识点训练卷一、单项选择题(本大题共8小题,每题3分,共24分)1.全球生物技术作物种植面积最大的国家是( )A.中国B.巴西C.英国D.美国【答案】D2.下列不属于微生物肥料优点的是( )A.成本低B.毒性大C. 用量少D.无污染【答案】B3.组培快繁的商业性应用始于( )的美国兰花工业A.20 世纪40年代B.19 世纪70年代C.20 世纪70年代D.20 世纪80年代【答案】C4.下列关于细胞器的分布和功能的叙述,正确的是( )A.线粒体在心肌细胞中的含量比口腔上皮细胞中的含量多B.在高等植物和低等动物细胞中有中心体C.叶绿体和液泡中的色素都参与了光合作用D.叶绿体、线粒体、核糖体都含有膜结构【答案】A5.细胞液一般是指( )内的水状液A.叶绿体B.胞基质C.线粒体D.液泡【答案】D6.DNA 复制的基本条件是( )A.模板,原料,能量和酶B.模板,温度,能量和酶C.模板,原料,温度和酶D.模板,原料,温度和能量【答案】A7.决定生物多样性的根本原因是( )A.DNA分子的多样性B.蛋白质分子的多样性C. 细胞的多样性D.环境的多样性【答案】A8.观察和鉴定细胞染色体数目和形态的最好时期是( )期A.前B. 中C.后D.末【答案】B二、多项选择题(本大题共4小题,每题5分,错选、漏选、多选不得分,共20分)1.下列关于植物细胞有丝分裂过程的描述,错误的有( )A.分裂间期主要是为了合成 DNA复制所需要的蛋白质B.细胞分裂是一个连续分裂的过程,几个时期之间没有明显的界线C.分裂后期细胞内的同源染色体分开是由于纺锤丝牵引所致D.动物细胞的细胞质分裂开始发生于分裂末期【答案】ACD2.下列是动物细胞有丝分裂与高等植物细胞有丝分裂共同特点的有( )A.核膜、核仁消失B.中心体周围发出星状射线C.形成纺锤体D.着丝粒分裂,染色单体分离【答案】ACD3.下列关于减数第一次分裂前期的叙述,正确的有( )A.细线期核内出现细长如线的染色体B.偶线期各同源染色体分别配对,出现联会现象C.粗线期二价体逐渐缩短变粗,称为四分体D.双线期核仁、核膜消失,纺锤体出现【答案】ABC4.下列关于减数分裂及生物变异的叙述中,错误的有( )A.减数分裂可以使精原细胞或卵原细胞中的 DNA 减半B.基因重组只能发生于减数第二次分裂后期C.减数分裂对于生物多样性的形成具有重要的意义D.基因型为AABb的精原细胞如果发生了同源染色体的交叉互换,则可形成四种精子【答案】ABD三、填空题(本大题共8题,每空1分,共20分)1.基因的基本功能包括两个方面,一个方面是___________;另一方面是_________________【答案】能自我复制基因通过指导蛋白质合成来决定生物性状2.一条染色单体含有一个双链 DNA 分子,那么四分体时期的一条染色体含有___________个___________DNA分子【答案】2 双链3.植物细胞进入有丝分裂中期最显著的特征是______________________ 【答案】各个染色体的着丝点都排列在赤道板上4.___________是植物生长的基础。
林木遗传育种学一、林木育种的概念及其特点(一)概念林木育种(forest tree breeding)是以遗传进化. 理论为指导,研究林木选育和良种繁育原理和技术的学科。
1、优良品种的选育选种:利用种内存在的丰富变异,在种的范围内进行选择。
种源选择(群体选择)林分选择(群体选择)优树选择(个体选择)引种:从外地或外国引进本地没有的树种。
杂交育种:通过人工有性杂交培育新品种。
多倍体育种:毛白杨三倍体、刺槐四倍体、欧洲白桦三倍体等诱变育种:(辐射育种、突变体筛选等);生物技术育种:(花药(花粉)培养、原生质体培养与融合、基因工程等)。
原生质体融合植物基因工程育种2、优良品种的繁育种子园:是由优树无性系或家系营建的,以生产优质种子为目的的特种林。
采穗圃:是由优树无性系营建的,用以生产优质种条(插穗和接穗)的繁殖圃。
3. 遗传测定(二)林木育种工作的特点1. 育种资源丰富2、育种周期长(1) 早期预测早――晚期生长相关分析形态――生长的早期鉴定生理――生长的早期鉴定法(2) 促进提早开花结实(3) 采用多种育种途径相结合,不断为生产提供改良程度逐步提高的繁殖材料。
3、树木可供研究利用的时间长,可以在遗传测定后进行再选择。
4、优良性状可以通过无性繁殖方法得到保存和利用5、多数为异花授粉树种,遗传基础广泛和稳定6、在多数情况下,选育和繁殖遗传基础广泛的林木品种或使用混合品种是适宜的。
二、林木遗传育种的回顾林木引种可追溯到2000年前,大规模的引种工作是从19世纪50年代由澳大利亚、新西兰等南半球国家引种松树开始的。
杨树、桉树、云杉、花旗松及落叶松等树种都已远远超越了各自的自然分布区,已成为国际性的重要造林树种。
种源试验是开展最早的林木遗传育种活动。
法国学者De Vilmorin于1823~1882年首先进行了欧洲赤松种源试验,随后法国、俄国、奥地利、瑞士等林学家对落叶松、云杉、松、橡等树种作了种源试验,证实了种内存在着明显的差异。
园艺植物育种学一、名词解释1.诱变育种:是人为的利用物理和化学等因素诱发作物产生遗传变异,在短时间内获得有利用价值的突变体,根据育种目标要求,对突变体进行选择和鉴定,直接或间接地培育成生产上有利用价值的新品种的育种途径。
2.品种:在一定时期内主要经济性状符合生产和消费市场的需求,生物学特性适应于一定地区的生态环境和农业技术的要求,可用适当的繁殖方式保持群体内不妨碍利用的整齐度和前后代遗传的稳定性,以及具有某些可区别于其他品种的标志性状的家养动植物群体。
3.特殊配合力:是指某两个亲本所配特定的杂交组合与所涉及的一系列杂交组合平均值相比,其生产力高低的指标。
4.亲和指数:平均授粉一朵花所结点的种子粒数。
5.品种审定:指对新选育或新引进的品种由权威性专门机构对其进行审查,并作出能否推广和在什么范围推广的决定。
6.品种退化:品种在繁殖过程中,由于种种原因使其逐渐丧失优良性状,失去原品种典型性,这一现象通常称为品种退化。
7.母系选择:无隔离系谱选择法。
8.芽变:来源于体细胞中自然发生的遗传变异。
9.选择育种:利用现有品种或栽培类型在繁殖过程中自然产生的变异,通过选择纯化及比较鉴定获得新品种的一种育种途径。
10.多倍体育种:利用染色体加倍技术,按照一定的育种目标,在其加倍后代中选育亲品种的方法。
11.集团选择法:根据不同的特性把性状相似的优株归并成几个集团,将从不同集团收获的种子分别播种在不同小区,一边集团间或和对照品种进行比较鉴定,从而选出优良集团。
12.自交系:一般是指异化或常异花授粉植物,经连续多代自交,使异质基因分离、纯合,获得性状一致,遗传性相对稳定,能够自我繁殖的群体,广义的自交系包括自花授粉植物的纯系。
13.雌性系:雌雄同株异花的作物通过选育获得的植株上只生雌花不生雄花,并且这种性状能够稳定遗传的系统。
14.一般配合力:是指一个亲本系或品种在一系列杂交组合中的平均生产力(如产量或其他性状)。
即是该亲本与其他亲本配成的F1的平均值与该试验的全部F1的总平均相比的离差。
植物遗传学与生物技术随着科技的不断发展,生物技术逐渐成为各行业中不可或缺的一环,而其中的植物遗传学更是在农业生产中发挥了巨大作用。
那么,什么是植物遗传学,它和生物技术又有什么样的联系呢?植物遗传学是研究植物遗传变化和遗传规律的学科。
在植物遗传学中,主要研究了植物的基因结构、遗传变异、遗传重组、遗传育种等方面的内容。
对于农业生产而言,植物遗传学的重要性不言而喻,它可以为人们提供更多的种质资源以及更多的育种手段,从而提高农作物的产量和质量。
而生物技术则是指应用生物学、生物化学、遗传学等相关知识进行科学研究,并转化为实际应用的技术。
在生物技术中,主要包括了基因工程、发酵工程、细胞工程、组织培养、遗传育种、生物信息等多个方面的内容。
而植物遗传学则是其中的重要支撑。
植物遗传学与生物技术之间的联系便在于,植物遗传学提供了大量育种基础理论,通过基因工程和遗传育种等技术手段,实现了对农作物的有效改良和提高。
以下我们来具体介绍一下植物遗传学与生物技术之间的关系。
一、基因工程基因工程是指通过分子生物学、细胞生物学和遗传学等相关理论手段,对生物体细胞进行精细的操作和改造,以创造出更为优良的生物种类。
在基因工程领域中,植物遗传学扮演着举足轻重的角色,它为人类提供了大量可供改良的优化基因,例如转基因技术便是基于植物遗传学理论应用而来的。
转基因技术是指将人工合成的基因导入植物或动物体内,并当做其自身基因,以达到改良甚至完全颠覆生物特性的目的。
在农业生产中,转基因技术主要应用于作物的抗性育种,例如转基因水稻、玉米等作物的产生,提高了植物对病害和气候适应能力,达到优化农作物品质的效果。
当然,这种技术也存在争议,因此要在科学的前提下进行应用和监管。
二、遗传育种遗传育种是在植物遗传学领域中最为重要的内容之一,它指的是通过对植物自然效应的理解,以及对植物自身优异基因的挖掘和利用,实现对植物质量产量的提高和改良。
在现代遗传育种中,研究人员经常运用亚基因型、基因型和基因组学等理论和技术方法,对作物的优异品质进行研究,为作物的品质改良提供了重要的技术支持。