人教版八年级数学上册教案《多边形》人教)
- 格式:docx
- 大小:454.06 KB
- 文档页数:3
教学设计6、什么是正多边形?正多边形有什么性质?【定义】:多边形:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形。
多边形的边:组成多边形的线段叫做多边形的边。
多边形的内角:多边形相邻两边组成的角叫做多边形的内角。
多边形的外角:多边形的边与它的邻边的延长线组成的角叫做多边形的外角。
多边形的对角线:连接多边形不相邻的两个顶点的线段叫做多边形的对角线。
凸多边形:画出多边形的任何一条边所在直线,如果整个多边形都在这条直线的同一侧,那么这个多边形就是凸多边形。
凹多边形:画出多边形的任何一条边所在直线,如果整个多边形不在这条直线的同一侧,那么这个多边形就是凹多边形。
正多边形:各个角都相等,各条边都相等的多边形叫做正多边形。
探究:1、从四边形的一个顶点出发,可以引条对角线,它将四边形分成个三角形;2、从五边形的一个顶点出发,可以引条对角线,它将五边形分成个三角形;3、从六边形的一个顶点出发,可以引条对角线,它将六边形分成个三角形;4、从n边形的一个顶点出发,可以引条对角线,它将n边形分成个三角形;5、从n边形的n个顶点出发共可以引多少条对角线?【归纳】:多边形对角线:连接多边形的不相邻的两个顶点的线段,叫做多边形的对角线。
23-nn)(学生思考,讨论,回答。
三角形多一个元素,加深对对角线的理解。
通过探究培养学生发现规律总结规律的能力。
【活动三】巩固练习:练习:书P80练习1、2,P80习题1补充练习:1、下列不是凸多边形的是()学生思考,解决。
通过练习巩固多边形的有关知识。
2、下列图形中∠1是外角的是()【活动四】课堂小结:本节课收获了哪些知识?多边形的有关知识。
学生进行归纳小结,畅谈本节课的收获。
通过归纳小结巩固本节课所学习的知识点,使学生体验生活中处处有数学的道理。
七、教学评价设计观课记录:1.由实际生活图片引入多边形概念。
让学生大量感受,欣赏实际中的图形的同时,进行有意观察,概括出多边形的概念。
激发学生的学习兴趣,开拓学生视野,培养学生的审美情趣,2.与三角形类比建立多边形相关概念。
《11.3.1 多边形》教学设计一、教材分析《多边形及其内角和》是新人教版八年级数学上册第十一章第三单元第一节课的内容。
本节教材属于平面几何图形内容,是在学习了“三角形”有关知识后认识的一种基本图形,因此涉及归纳、类比等思想方法,对激发学生探索精神和创新意识等方面都有重要意义。
本节课主要介绍多边形的有关概念、理解凸多边形与凹多边形的联系与区别、会找出多边形的所有的对角线。
为使学生感受、理解数学知识来源于生活并应用于生活。
理解数学知识的产生和发展过程,培养学生的抽象思维,我将通过例举日常生活中的一些与多边形的关的图片引出多边形的概念;通过多媒体演示使学生对多边形的边,内角,外角,对角线有直观的表象;引导学生操作、观察、猜想、归纳、类比等方法探究多边形的特点.二、学情分析1.我授课的是陆川县初级中学八年级二班的学生,学生在学习了三角形的有关概念的基础上,在认识三角形的边,内角,外角方面已经积累一些经验,已经具有一定的观察、猜想、实验、归纳、类比等研究图形对称变换的能力通过欣赏图片,自主学习,理解掌握多边形的边,内角,外角等概念。
关键是要理解什么是对角线的概念。
会记住几种特殊的正多边形。
班级学生,基础较好,思维活跃,表现力强,学习积极性高的特点,但学生的抽象思维能力不很好。
2.班级学生的年龄大多在14岁到16岁间.他们已具备了一定的独立分析、解决问题的能力,表现欲望较为强烈,喜好发表个人见解并且具有一定的合作交流、共同探讨的意识与经验,因此在课程内容的安排中,适当地创设一些具有一定思维深度的问题,加强学生在学习过程中自主探索与合作交流的紧密结合,促使学生在探究的过程中,更多地获得成功的体验,感受学习思考的乐趣.3.学生已有的与本课相联系的知识与技能、问题解决的方法,以及生活经验对多边形学习是在三角形有关知识的延续,它与三角形的联系较紧,由于学生以前没学过对角线的概念。
在这方面要让他们加强画对角线的操作,由于他们的推理归纳能力相对不高,缺乏实践经验,因此要让他们主动参与,勤于动手.自己总结归纳得出结论。
多边形-人教版八年级数学上册教案一、教学目标1.了解多边形的定义;2.熟悉常见的多边形名称和性质;3.学会判断多边形和不是多边形;4.能够计算多边形的内角和和外角和;5.能够应用多边形的性质解决实际问题。
二、教学内容1.多边形的定义和分类;2.多边形的性质(包括内角和、外角和、对角线、对称轴);3.判断多边形和不是多边形的方法;4.应用多边形的性质解决实际问题。
三、教学重点和难点1.教学重点:多边形的性质;2.教学难点:如何判断一个图形是多边形。
四、教学方法1.示范教学法;2.探究式教学法;3.讨论式教学法;4.归纳总结法。
五、教学过程1. 导入新课教师出示一些多边形的图片,引导学生讨论并且介绍多边形的定义和分类。
2. 学习多边形的性质(1)对角线教师出示一些多边形的图片,让学生发现多边形的对角线并讲解对角线性质,包括:1.任意一个三角形没有对角线;2.任意一个四边形有两条对角线;3.任意一个五边形有 5 条对角线;4.任意一个六边形有 9 条对角线;5.任意一个 n 边形有 n*(n-3)/2 条对角线。
(2)内角和和外角和教师出示正多边形的图片并讲解内角和和外角和的性质,包括:1.n 边形的内角和为 (n-2)×180°;2.n 边形的外角和为 360°;3.正 n 边形的内角为 (n-2)×180°/n;4.正 n 边形的外角为 360°/n。
3. 判断多边形和不是多边形的方法(1)什么是多边形多边形的定义:至少三条线段组成的图形叫做多边形。
(2)如何判断一个图形是多边形讨论学生能够想到的多边形的判断方法,并让学生互相交流、讨论,最后归纳总结。
4. 应用多边形的性质解决实际问题让学生通过例题,了解如何运用多边形的性质解决实际问题。
六、教学反思本节课通过对多边形的性质、定义、分类、内角和和外角和进行了讲解,培养了学生的思维能力和学习兴趣。
人教版八年级数学上册11.3.1《多边形》教学设计一. 教材分析人教版八年级数学上册11.3.1《多边形》是多边形及其分类的教学内容。
本节课主要让学生了解多边形的定义,掌握多边形的性质,学会多边形的分类方法,为后续学习多边形的面积、周长等知识打下基础。
教材通过生活实例引入多边形的概念,接着介绍多边形的性质和分类,最后通过例题和练习巩固所学知识。
二. 学情分析八年级的学生已经学习了图形的性质,如线的性质、角的性质等,具备一定的几何基础。
但他们对多边形的认识还较为模糊,对多边形的性质和分类方法还不够了解。
因此,在教学过程中,教师需要引导学生建立清晰的多边形概念,并通过实例让学生感受多边形的性质和分类方法。
三. 教学目标1.了解多边形的定义,掌握多边形的性质;2.学会多边形的分类方法,能对给定的图形进行分类;3.培养学生的空间想象能力和几何思维能力;4.提高学生运用数学知识解决实际问题的能力。
四. 教学重难点1.重点:多边形的定义、性质和分类方法;2.难点:多边形的性质和分类方法的运用。
五. 教学方法1.情境教学法:通过生活实例引入多边形的概念,激发学生的学习兴趣;2.直观演示法:利用多媒体课件展示多边形的性质和分类,帮助学生建立直观印象;3.实践操作法:让学生动手操作,加深对多边形性质和分类方法的理解;4.引导发现法:教师引导学生发现多边形的性质和分类方法,培养学生的几何思维能力。
六. 教学准备1.多媒体课件:制作多媒体课件,展示多边形的性质和分类;2.教学素材:准备一些多边形的图片和生活实例,用于导入和巩固环节;3.练习题:设计一些有关多边形的练习题,巩固所学知识。
七. 教学过程1.导入(5分钟)利用多媒体课件展示一些生活中的多边形图形,如自行车轮胎、窗户等,引导学生观察并提问:“这些图形有什么共同特点?”学生通过观察和思考,发现这些图形都是由线段组成的,且线段的首尾相连。
教师总结:这些图形都是多边形。
11.3 多边形及其内角和11.3.1 多边形(王中炜)一、教学目标1.学习目标(1)1.1.1 了解多边形及有关概念.(2)1.1.2 多边形对角线条数.(3)1.1.3 区别凸多边形与凹多边形,理解正多边形的概念.2.学习重点多边形对角线条数公式的推导.3.学习难点区别凸多边形与凹多边形,理解正多边形的概念.二、教学设计(一)课前设计1.预习任务(1)在平面内,由一些线段首尾相接组成的封闭图形叫做多边形.(2)多边形相邻两边组成的角叫做多边形的内角.(3)多边形的边与它的邻边的延长线组成的角叫做多边形的外角.(4)连接多边形不相邻的两个顶点的线段叫做多边形的对角线.(5)各个角都相等,各条边都相等的多边形叫做正多边形.任务2(6)如图,五边形ABCDE有 5 条边,它们分别是AB、BC、CD、DE、EA ;有 5 个内角,它们分别是∠A、∠B、∠C、∠D、∠E .在下图中画出以A为端点的所有对角线. 该五边形一共有 5 条对角线.2.预习自测(1)下列图形中,是正多边形的是()A.直角三角形B.等腰三角形C.长方形D.正方形【知识点】正多边形概念【解题过程】A.直角三角形有一个是直角,其它角不是.所以不是正多边形;B.等腰三角形只有有两边相等.所以不是正多边形;C.长方形四个角相等,但四条边不相等. 所以不是正多边形;D.正方形四个角相等,四条边相等,所以是正多边形.【思路点拨】正多边形的边、角都要相等【答案】D(2)六边形的对角线有()A.6条B.3条C.9条D.8条【知识点】多边形对角线条数公式【解题过程】解:6(63)92⨯-=【思路点拨】运用多边形对角线条数的公式计算即可.【答案】C(二)课堂设计1.知识回顾(1)由不在同一直线上的三条线段首尾顺次连接成的封闭图形叫三角形.(2)三角形内角和为180°.(3)三角形一边延长线和另一边的夹角叫三角形的外角.2.问题探究探究一师问:看下面的图片,其中的房屋结构、蜂巢结构是由一些线段围成的什么图形?学生通过预习和已有的生活经验能回答出五边形、六边形,教师顺势板书多边形概念.多边形及有关概念:这种在平面内,由一些不在同一条直线上的线段首尾顺次相接组成的封闭图形叫做多边形.●活动① 多边形概念的剖析师问:同学们,以上多边形的概念中关键词有哪些?学生小组讨论,举手发言.说到一处,老师就用红色粉笔在黑板上标记一处.(1)同一平面(与三角形概念不相同的地方);(2)不在同一条直线上;(3)首尾顺次相接;(4)封闭.●活动② 与多边形相关的概念多边形的命名:多边形按组成它的线段的条数分成三角形、四边形、五边形……、n边形. 这就是说,一个多边形由几条线段组成,就叫做几边形.三角形是最简单的多边形.多边形的内角:与三角形类似地,多边形相邻两边组成的角叫做多边形的内角. 如图中的∠A、∠B、∠C、∠D、∠E.多边形的外角:多边形的边与它的邻边的延长线组成的角叫做多边形的外角.(一个顶点处有两个外角,它们是一组对顶角,是相等的.但在计算外角和时,一个顶点只选一个外角)如图中的∠1是五边形ABCDE的一个外角.多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线.【设计意图】引导学生观察发现,从生活中抽象出多边形的模型,了解多边形的相关概念.同时在多边形概念上体会数学语言的严密性.问题探究二●活动① 动手操作,大胆猜想,从多边形的一个顶点可引多少条对角线?师问:同学们,从一个顶点引对角线,四边形可画几条对角线?五边形可画几条对角线?六边形可画几条对角线?请同学们动手画图看看.(培养学生的动手操作能力)你能猜想从一个顶点引对角线,n边形可引多少条对角线吗?(培养学生的观察分析能力,体现由特殊到一般的数学思维模式)●活动②集思广益,合作探究多边形共多少条对角线?四边形共有几条对角线?五边形共有几条对角线?六边形共有几条对角线?你能猜想n边形有多少条对角线吗?说说你的想法.因为从n边形的一个顶点可以引(n-3)条对角线, n个顶点共引n(n-3)条对角线,又由于连接任意两个顶点的两条对角线是相同的,被重复计算了.所以,n边形有(3)2n n-条对角线.【设计意图】鼓励学生独立自主探究,让学生初步感受通过动手操作来掌握多边形对角线条数,在其探究过程训练学生严密的逻辑推理能力.例1. 填空:(1)十边形有________个顶点,________个内角,________个外角,从一个顶点出发可画________条对角线,它共有________条对角线.(2)从多边形一个顶点出发画对角线将它分成了四个三角形,这个多边形是________边形.【知识点】多边形相关概念和对角线条数【解题过程】(1)一个n边形有n个顶点,n个角,2n个外角,从一个顶点能画出(n-3)条对角线,共有n(n-3)2条对角线;将n = 10代入即可.(2)一个n边形从一个顶点可以引(n-3)条对角线,把n边形分成(n-2)个三角形,所以n-2=4,n=6,这个多边形是六边形.【思路点拨】根据概念逐一填写,根据公式代入求值.【答案】(1)10 10 20 7 35(2)六问题探究三师问:请同学们认真观察,下面的两个多边形有什么不同?在图(1)中,画出四边形ABCD的任何一条边所在的直线,整个图形都在这条直线的同一侧,这样的四边形叫做凸四边形,这样的多边形称为凸多边形;而图(2)就不满足上述凸多边形的特征,因为我们画BD所在直线,整个多边形不都在这条直线的同一侧(某一条边所在的直线将多边形分成两部分),我们称它为凹多边形.注意:今后我们讨论的多边形指的都是凸多边形.●活动 正多边形的概念我们知道,等边三角形、正方形的各个角都相等,各条边都相等,像这样各个角都相等,各条边都相等的多边形叫做正多边形.下面是正多边形的一些例子.【设计意图】教师要求学生自己去解决这两个问题,可以通过讨论、交流的形式去解决,完成以后,教师可以随机地画几个多边形让学生进行凸、凹多边形的区分.对于正多边形的概念,关键让学生掌握住各边都相等,各角都相等,二者缺一不可.同时培养学生的动手实践和观察分析能力.【例2】下列说法正确的个数有( ).(1)各边都相等的多边形是正多边形;(2)由四条线段首尾顺次相接组成的图形是四边形;(3)各角都相等的多边形一定是正多边形;(4)同一正多边形的各个外角都相等.A.2 B.1 C.3 D.4【知识点】正多边形的概念【解题过程】(1)不正确,各边都相等,各角也都相等的多边形才是正多边形,这两个条件必须同时具备,如菱形虽然四边都相等,但它不是正多边形;(2)不正确,一是要在同一平面内,二是不能在同一条直线上;(3)不正确,如长方形四个角都是直角,都相等,但边不一定相等,所以不是正多边形;(4)正确,因为同一正多边形各个内角都相等,同顶点的内角与外角互为邻补角,所以各个外角也相等.故选B .【思路点拨】强调边和内角都要相等的多边形才能判定其为正多边形.【答案】B3.课堂总结【知识梳理】(1)多边形相关定义.(2)n边形对角线条数公式:(3)2n n-.(3)凹、凸多边形的区别,正多边形的特点.【重难点突破】在对角线条数公式的探究过程中,从一个点能引几条对角线到所有点一共能引多少条对角线,从四边形、五边形、六边形共有几条对角线到n边形有多少条对角线,遵循了由点到面、由特殊到一般的研究路径,降低了学生的准入门槛.(三)课后作业基础型 自主突破1.分别画出下列各多边形的对角线,观察思考:四边形有_______条对角线, 五边形有_______条对角线.B A【知识点】多边形对角线条数 【解题过程】画图部分如下图: 四边形有 2 条对角线, 五边形有 5 条对角线.BA【思路点拨】根据对角线定义,将不相邻的两定点做连接画出对角线.【答案】2 , 5 .2.从六边形的一个顶点出发,最多可以引______条对角线,其对角线共有_____条;【知识点】多边形对角线【解题过程】6-3 = 3 ,6(63)92⨯-= 【思路点拨】根据n 边形的一个顶点可引对角线条数为:n -3和n 边形对角线条 数公式:(3)2n n -,将n=6代入即可求出答案。
一、自主学习:1、多边形的有关概念(1)在平面内,由一些线段______相接组成的图形叫做多边形(2)多边形相邻两边组成的角叫做多边形的_______;多边形的边与它的邻边的延长线组成的角叫做多边形的_______.(3)多边形分为_____和______.(4)各个角都相等,各条边都相等的多边形叫做_____(两者缺一不可)2、多边形的对角线连接______两个顶点的线段叫做多边形的对角线.二、合作展示:例1、下列图形中,属于多边形的有()个A、3个B、4个C、5个D、6个例2、如图:任意给出一个四边形、一个五边形从四边形的一个顶点出发,可画条对角线,把四边形分成了个三角形,从五边形的一个顶点出发,可画______条对角线,把五边形分成了________个三角形例3、试完成下表:猜想:从n边形一个顶点出发可以画_____条对角线,把n边形分成____个三角形,n边形共有____条对角线,应用:(1)某足球赛有32支参赛队伍,如果采用单循环赛制,一共需要赛几场?(2)有6个好朋友见面相互握手致意,每两个握手一次,一共握手几次?三、拓展提升:1、n边形有条边,个顶点,个内角,个外角2、12边形从它的一个顶点出发对角线的条数为________,它所有的对角线的条数为_____条。
3、若一个多边形共有9条对角线,则这个多边形是_____边形。
4、一个多边形的对角线的条数与它的边数相等,则这个多边形的边数为()A、7B、6C、5D、45、过m边形的一个顶点有7条对角线,n边形没有对角线,k边形有2条对角线,求(m-k)n的值。
四、师生反思:五、当堂达标(5min,20分)1、十五边形从它的一个顶点出发对角线的条数为________,它所有的对角线的条数为_____条。
2、过n边形的一个顶点的所有对角线,把多边形分成8个三角形,则这个多边形的边数是_______。
3、一个多边形的对角线的条数等于它的边数的4倍,求这个多边形的边数。
《多边形》
本节课是在学生获得三角形、正方形、长方形等简单几何图形的知识基础上,进一步探索一般的多边形。
学生在探索过程中体验从简单到复杂,从特殊到一般的转化思想方法及类比的思想方法,感受数学探究活动的魅力。
在教材的编排上本节课的教学内容起着承上启下的作用,从三角形的内角和到多边形的内角和,再将内角和公式应用于平面镶嵌,
知识环环相扣,层层递进。
【知识与能力目标】
观察大量的图片,认识一些简单的几何图形,了解多边形、正多边形 及其内角、对角线等数学概念。
【过程与方法目标】
经历由实物找出几何图形,由几何图形联想或设计实物的形状,丰富学生对几何图形的感性认识。
【情感态度价值观目标】
了解类比这种重要的数学思想方法,体验生活中处处有数学的道理。
【教学重点】
了解多边形、正多边形、内角、外角、对角线等数学概念以及凸凹多边形的辨别。
【教学难点】
对正多边形的正确理解以及凸凹多边形的辨别。
PPT课件,学案、三角板
一、情境导入
看下面的图片,你能从中找出由一些线段围成的图形吗?
二、多边形及有关概念
这些图形有什么特点?由几条线段组成;它们不在同一条直线上;首尾顺次相接。
这种在平面内,由一些不在同一条直线上的线段首尾顺次相接组成的封闭图形叫做多边形。
多边形按组成它的线段的条数分成三角形、四边形、五边形……这就是说,一个多边形由几条线段组成,就叫做几边形,三角形是最简单的多边形。
与三角形类似地,多边形相邻两边组成的角叫做多边形的内角,如下图中的∠A、∠B、∠C、∠D、∠E是五边形ABCDE的五个内角。
多边形的边与它的邻边的延长线组成的角叫做多边形的外角。
如下图中的∠1是五边形ABCDE的一个外角。
连接多边形的不相邻的两个顶点的线段,叫做多边形的对角线。
四边形有几条对角线?五边形有几条对角线?画图看看。
你能猜想n边形有多少条对角线吗?说说你的想法。
n边形有2
1
n(n-3)条对角线。
三、凸多边形
如图,下面的两个多边形有什么不同?
在图(1)中,画出四边形ABCD的任何一条边所在的直线,整个图形都在这条直线的同一侧,这样的四边形叫做凸四边形。
而图(2)就不是凸四边形,因为我们画BD所在直线,整个多边形不都在这条直线的同一侧。
类似地,画出多边形的任何一条边所在直线,如果整个多边形都在这条直线的同一侧,那么这个多边形就是凸多边形。
本节我们讨论的多边形指的都是凸多边形。
四、正多边形
我们知道,等边三角形、正方形的各个角都相等,各条边都相等,像这样各个角都相等,各条边都相等的多边形叫做正多边形。
下面是正多边形的一些例子。
五、课堂小结
1、多边形及有关概念。
2、判断多边形是不是凸多边形。
3、正多边形的概念。
略。