当前位置:文档之家› 生物质能源应用研究现状与发展前景

生物质能源应用研究现状与发展前景

生物质能源应用研究现状与发展前景
生物质能源应用研究现状与发展前景

综述评论

生物质能源应用研究现状与发展前景

Ξ

J IAN G J C

蒋剑春(中国林业科学研究院林产化学工业研究所,江苏南京210042)

摘 要: 生物质能是可再生能源的重要组成部分。生物质能的高效开发利用,对解决能源、生态环境问题将

起到十分积极的作用。进入20世纪70年代以来,世界各国尤其是经济发达国家都对此高度重视,积极开展

生物质能应用技术的研究,并取得许多研究成果,达到工业化应用规模。本文概述了国内外研究和开发进展,

涉及到生物质能固化、液化、气化和直接燃烧等研究技术。从我国实际情况出发,提出研究开发前景和建议。

关键词: 生物质能源;研究与发展

中图分类号:T K6 文献标识码:A 文章编号:025322417(2002)022*******

1 生物质能源的地位

生物质能源是人类用火以来,最早直接应用的能源。随着人类文明的进步,生物质能源的应用研究开发几经波折,在第二次世界大战前后,欧洲的木质能源应用研究达到高峰,然后随着石油化工和煤化工的发展,生物质能源的应用逐渐趋于低谷。到20世纪70年代中期,由于中东战争引发的全球性能源危机,可再生能源,包括木质能源在内的开发利用研究,重新引起了人们的重视。人们深刻认识到石油、煤、天然气等化石能源的资源有限性和环境污染问题。有关资料介绍[1],根据现已探明的储量和需求推算,到21世纪中叶,世界石油、天然气资源可能枯竭,而煤炭的大量使用,不仅自身贮量有限,而且由于燃烧产生大量的SO 2、CO 2等气体,严重污染环境。日益严重的环境问题,已引起国际社会的共同关注,环境问题与能源问题密切相关,成为当今世界共同关注的焦点之一。有资料表明,化石燃料的使用是大气污染的主要原因。“酸雨”、“温室效应”等等都已给人们赖以生存的地球带来了灾难性的后果。而使用大自然馈赠的生物质能,几乎不产生污染,使用过程中几乎没有SO 2产生,产生的CO 2气体与植物生长过程中需要吸收大量CO 2在数量上保持平衡,被称之为CO 2中性的燃料。生物质能源可再生而不会枯竭,同时起着保护和改善生态环境的重要作用,是理想的可再生能源之一。

林业薪炭林和农作物秸杆同属于生物质能源。在目前世界的能源消耗中,生物质能耗占世界总能耗的14%,仅次于石油、煤炭和天然气,位居第4位[2]。而在发展中国家,生物质能耗占有较大比重,达到50%以上。

我国是一个农业大国,农业人口占总人口70%以上,农村生活用能主要是依靠秸杆和薪材。据统计资料介绍,农村总能耗的65%以上为生物质能,其中薪材消耗量约占总能耗的29%。为了解决农村用能紧缺的问题,我国正在大力发展薪炭林,目前薪炭林总面积已达429万hm 2,年产生物量达到2.2亿t 左右[3]。生物质是一种可以与环境协调发展的能源,具有巨大的发展潜力。用包括生物质能在内

Ξ收稿日期:2001-04-11

 作者简介:蒋剑春(1955-),男,江苏溧阳人,研究员,从事林产化学加工研究。

第22卷第2期

2002年6月林 产 化 学 与 工 业Chemistry and Industry of Forest Products Vol.22No.2

J une 2002

的可再生能源,用现代技术开发利用,对于建立可持续发展的能源体系,促进社会和经济的发展以及改善生态环境具有重大意义。如何高效开发利用,包括薪炭林在内的生物质能,已经历史地摆在我们面前。

2 生物质能应用技术研究现状

2.1 研究开发技术概况

生物质能的研究开发,主要有物理转换、化学转换、生物转换3大类。涉及到气化、液化、热解、固化和直接燃烧等技术。生物质能转换技术及产品如图1所示

图1 生物质能转换技术及产品

Fig.1 Biomass energy conversion technology and products

2.1.1 气化 生物质能气化是指固体物质在高温条件下,与气化剂(空气、氧气和水蒸气)反应得到小分子可燃气体的过程。所用气化剂不同,得到的气体燃料种类也不同,如空气煤气、小煤气、混合煤气以及蒸汽———氧气煤气等。目前使用最广泛的是空气作为气化剂。产生的气体主要作为燃料,用于锅炉、民用炉灶、发电等场合,也可作为合成甲醇的化工原料。

2.1.2 液化 液化是指通过化学方式将生物质转换成液体产品的过程。液化技术主要有间接液化和直接液化2类。间接液化就是把生物质气化成气体后,再进一步合成反应成为液体产品;或者采用水解法,把生物质中的纤维素、半纤维素转化为多糖,然后再用生物技术发酵成为酒精。直接液化是把生物质放在高压设备中,添加适宜的催化剂,在一定的工艺条件下反应,制成液化油,作为汽车用燃料,或进一步分离加工成化工产品。这类技术是生物质能的研究热点。

2.1.3 热解 生物质在隔绝或少量供给氧气的条件下,加热分解的过程通常称之谓热解,这种热解过程所得产品主要有气体、液体、固体3类产品。其比例根据不同的工艺条件而发生变化。最近国外研究开发了快速热解技术,即瞬时裂解,制取液体燃料油[4]。液化油得率以干物质计,可达70%以上。是一种很有开发前景的生物质应用技术。

2.1.4 固化 将生物质粉碎至一定的粒度,不添加粘接剂,在高压条件下,挤压成一定形状。其粘接力主要是靠挤压过程产生的热量,使得生物质中木质素产生塑化粘接。成型物再进一步炭化制成木炭。现已开发成功的成型技术按成型物形状划分主要有3大类:棒状成型、颗粒状成型和圆柱块状成型技术。解决了生物质能形状各异、堆积密度小且较松散、运输和贮存使用不方便的问题,提高了生物质的使用热效率。

2.1.5 直接燃烧 直接燃烧是生物质最早被使用的传统方式。研究开发工作主要是着重于提高直接燃烧的热效率。如研究开发直接用生物质的锅炉等用能设备。

2.2 国外研究概况[5]

20世纪70年代开始,生物质能的开发利用研究已成为世界性的热门研究课题。许多国家都制定76 林 产 化 学 与 工 业第22卷

了相应的开发研究计划,如日本的阳光计划、印度的绿色能源工程、美国的能源农场和巴西的酒精能源计划,纷纷投入大量的人力和资金从事生物质能的研究开发。

生物质能利用研究开发工作,国外尤其是发达国家的科研人员作了大量的工作。

美国在生物质利用方面处于世界领先地位。据报道,美国有350多座生物质发电站,主要分布在纸浆、纸产品加工厂和其它林产品加工厂,这些工厂大都位于郊区。发电装机总容量达700MW ,提供了大约6.6万个工作岗位。据有关科学家预测,到2010年,生物质发电将达到13000MW 装机容量,届时有16.2万hm 2的能源农作物和生物质剩余物作为气化发电的原料,同时可安排17万多就业人员。20世纪70年代研究开发了颗粒成型燃料,该技术在美国、加拿大、日本等国得到推广应用。并研究开发了专门使用颗粒成型燃料的炉灶,用于家庭或暖房取暖。在北美有50万户以上家庭使用这种专用取暖炉。美国的颗粒成型燃料,年产量达80万t 。

奥地利成功地推行建立燃烧木质能源的区域供电计划,目前已有八九十个容量为1000~2000kW 的区域供热站,年供热10×109MJ 。加拿大有12个实验室和大学开展了生物质的气化技术研究。1998年8月发布了由Freel 和Barry A 申请的生物质循环流化床快速热解技术和设备。瑞典和丹麦正在实行利用生物质进行热电联产的计划,使生物质能在提供高品位电能的同时,满足供热的要求。1999年,瑞典地区供热和热电联产所消耗的能源中,26%是生物质能。加拿大用木质原料生产的乙醇产量为每年17万t 。比利时每年以甘蔗渣为原料制取的乙醇量达3.2万t 以上。美国每年以农村生物质和玉米为原料生产乙醇约450万t ,计划到2010年,可再生的生物质可提供约5300万t 乙醇。

在气化、热解反应的工艺和设备研究方面,流化床技术是科学家们关注的热点之一。印度Anna 大学新能源和可再生能源中心最近开发研究用流化床气化农林剩余物和稻壳、木屑、甘蔗渣等,建立了一个中试规模的流化床系统,气体用于柴油发电机发电。1995年美国Hawaii 大学和Vermont 大学在国家能源部的资助下开展了流化床气化发电工作。Hawaii 大学建立了日处理生物质量为100t 的工业化压力气化系统,1997年已经完成了设计。建造和试运行达到预定生产能力。Vermont 大学建立了气化工业装置,其生产能力达到200t/d ,发电能力为50MW 。目前已进入正常运行阶段。

日本从20世纪40年代开始了生物质成型技术研究,开发出单头、多头螺杆挤压成型机,生产棒状成型燃料。其年生产量达25万t 左右。欧洲各国开发了活塞式挤压制圆柱及块状成型技术。

美国、新西兰、日本、德国、加拿大等国先后开展了从生物质制取液化油的研究工作。将生物质粉碎处理后,置于反应器内,添加催化剂或无催化剂,经化学反应转化为液化油,其发热量达3.5×104kJ /kg 左右,用木质原料液化的得率为绝干原料的50%以上。欧盟组织资助了3个项目,以生物质为原料,利用快速热解技术制取液化油,已经完成100kg/h 的试验规模,并拟进一步扩大至生产应用。该技术制得的液化油得率达70%,液化油热值为1.7×104kJ /kg 。

欧美等发达国家的科研人员在催化气化方面也作出了大量的研究开发工作,在生物质转化过程中,应用催化剂,旨在降低反应活化能,改变生物质热分解进程,分解气化副产物焦油成为小分子的可燃气体,增加煤气产量,提高气体热值,降低气化反应温度,提高反应速率和调整气体组成,以便进一步加工制取甲醇和合成氨。研究范围涉及到催化剂的选择,气化条件的优化和气化反应装置的适应性等方面,并已在工业生产装置中得到应用。

2.3 国内研究开发概况

我国生物质能的应用技术研究,从20世纪80年代以来一直受到政府和科技人员的重视。国家“六五”计划就开始设立研究课题,进行重点攻关,主要在气化、固化、热解和液化等方面开展研究开发工作。

生物质气化技术的研究在我国发展较快。利用农林生物质原料进行热解气化反应,产生的木煤气供居民生活用气、供热和发电方面。中国林业科学研究院林产化学工业研究所从20世纪80年代初期开始研究开发木质原料和农业剩余物的气化和成型技术。先后承担了国家、部、省级重点项目和国际合作项目近10项,研究开发了以林业剩余物为原料的上吸式气化炉,已先后在黑龙江、福建等建成工业化装置[6],气化炉的最大生产能力达6.3×106kJ /h (消耗木片量为300kg/h )。产生的木煤气作为集中供

第2期蒋剑春:生物质能源应用研究现状与发展前景77 

热和居民家庭用气燃料,从原料计算气化热效率达到70%以上。同时在出热量达4.18×104kJ /h 的中试装置中,进行了气化发电试验研究,电的转化率为13%左右。最近在江苏省研究开发以木屑、稻壳、稻草和麦草为原料,应用内循环流化床气化系统,并研究应用催化剂和富氧气化技术产生接近中热值煤气,供乡镇居民使用的集中供气系统[7],气体热值为7000kJ /Nm 3左右,较同类生物质气化的热值提高了近30%,气化热效率达70%以上。山东省能源研究所研究开发了下吸式气化炉,主要适用硬秸杆类农业剩余物的气化。从20世纪90年代开始,在农村居民集中居住地区得到较好的推广应用,已形成产业化规模。国内有数十家单位从事同类技术的研究开发,目前全国已建立300余个秸杆气化集中供气系统。气体热值一般在5000kJ /Nm 3,气化转化率达70%以上。

广州能源研究所开发了外循环流化床生物质气化技术,制取的木煤气作为干燥热源和发电。已完成了目前国内最大发电能力为1MW 的气化发电系统,为木材加工厂提供附加电源。辽宁能源所与意大利合作引进了一套下吸式气化炉发电装置,发电能力30kW 。另外北京农机院、浙江大学热工所和大连环科所等单位先后开展了生物质气化技术的研究工作。

我国的生物质固化技术开始于“七五”期间,现已达到工业化生产规模。目前国内已开发完成的固化成型设备有2大类:棒状成型机和颗粒状成型机。这2种机型均由中国林科院林化所科研人员率先完成。棒状成型机有单头和双头2种,单头生产能力为120kg/h ,双头机生产能力为200kg/h 。1998年与江苏正昌粮机集团公司合作,开发了内压滚筒式颗粒成型机,生产能力为250~300kg/h ,生产的颗粒成型燃料尤其适用于家庭或暖房取暖使用。南京市平亚取暖器材有限公司,从美国引进适用于家庭使用的取暖炉,通过国内消化吸收,形成工业化生产。并从美国引进了一套生产能力为1.5t/h 的颗粒成型燃料生产线,1999年开始正式生产,产品供应市场运行情况良好。

从20世纪50年代开始了稀酸常压、稀酸加压的浓酸大液比的水解、纤维素酶水解法研究,并在南岔水解厂建立示范工程,主要利用木材加工剩余物制取乙醇和饲料酵母,设计生产能力为年产4000t 乙醇,产生的木质素作为生产活性炭的原料。但由于工艺设备较之用粮食淀粉水解制乙醇复杂得多,在粮食供应充足、粮价较低情况下,难以和粮食酒精匹敌,更难和石油化工的合成酒精竞争。20世纪80年代,人们再度开始木质纤维素的水解新技术的研究,中国林科院林化所、山东大学、华东理工大学、沈阳农业大学等先后开展了生物质水解制取乙醇工艺和设备的研究开发,重点对前处理工艺进行了研究,目前尚处于研发阶段。

木材热解技术的研究,国内从20世纪50年代至60年代进行大量的研究工作,中国林科院林化所在北京光华木材厂建立了一套生产能力为500kg/h 的木屑热解工业化生产装置;在安徽芜湖木材厂建立年处理能力达万吨以上的木材固定床热解系统。黑龙江铁力木材干馏厂曾从前苏联引进了年处理木材10万t 的大型木材热解设备。这些生产装置的目标均是为了解决当时我国石油资源紧缺问题。随着石油化工的迅速崛起,以木材为原料制取化工产品的生产成本高,难以与石化产品竞争,这些装置纷纷下马和转产。研究工作也转向以热解产品的深加工开发,如活性炭、木醋液等应用研究领域。国内在快速热解制取液化油的研究开发方面,尚未见有报道。

总之,我国在生物质能转换技术的研究开发方面做了许多工作,取得了明显的进步,但与发达国家相比差距甚远。

3 农林生物质能应用研究技术展望

生物质能是重要的可再生资源,预计到21世纪,世界能源消费的40%将会来自生物质能[8]。我国有丰富的生物质能资源。随着经济的发展,人们生活水平的提高,环境保护意识的加强,化石能源逐渐减少,对包括生物质能在内的可再生资源的合理、高效地开发利用,必然愈来愈受到人们的重视。因此,科学地利用生物质能源,加强应用基础和应用技术的研究,具有十分重要的意义。

从国外生物质能利用技术的研究开发现状来看,结合我国现有研究开发技术水平和实际情况,作者认为我国生物质应用技术将主要在以下几方面发展。

78 林 产 化 学 与 工 业第22卷

3.1 高效直接燃烧技术和设备的开发

我国有13亿多人口,绝大多数居住在广大的乡村和小城镇。其生活用能的主要方式仍然是直接燃烧。剩余物秸杆、稻草等松散型物料是农村居民的主要能源,开发研究高效的燃烧炉,提高使用热效率,仍将是应予解决的重要问题。乡镇企业的快速兴起,不仅带动农村经济的发展,而且加速了化石能源尤其是煤的消费,因此开发改造乡镇企业用煤设备(如锅炉等),用生物质替代燃煤在今后的研究开发中应占有一席之地。把松散的农林剩余物进行粉碎分级处理后,加工成定型的燃料,结合专用技术和设备的开发,家庭和暖房取暖用的颗粒成型燃料,推广应用工作在我国将会有较好的市场前景。

3.2 生物质气化和发电

国外生物质发电的利用占很大比重,且已工业化推广,而我国的生物质发电开发尚属起步阶段。由于电能传输和使用方便,从发展的前景来看,应有较好的市场。未来10年中,将会有较大发展。国家科技部已将生物质发电作为主要能源研究列入“十五”规划中。同时随着经济的发展,农村分散居民逐步向城镇集中,数以万计的乡镇小城镇将是农民的居住地,为集中供气和供热、提高能源利用率提供了现实的可能性。生活水平的提高,促使人们希望使用清洁方便的气体燃料。因此生物质能热解气化产生木煤气的技术推广应用应具有较好的市场前景。但应注意研究解决气体中的焦油引起堵塞和酸性气体的腐蚀等问题。

3.3 能源植物的开发

大力发展能产生“绿色石油”的各类植物,如山茶树、油棕榈、木戟科植物等,为生物质能利用提供丰富的优质资源。

3.4 生物质的液化技术

由于液体产品便于贮存、运输,可以取代化石能源产品,因此从生物质能经济高效地制取乙醇、甲醇、合成氨、液化油等液体产品,必将是今后研究的热点。如水解、生物发酵、快速热解、高压液化等工艺技术研究,以及催化剂的研制、新型设备的开发等等都是科学家们关注的焦点,一旦研究获得突破性进展,将会大大促进生物质能的开发利用。

4 建议

4.1 生物质能应用技术的研究开发,在现阶段主要是从生态环境、环境保护的角度出发,从中长期来看,将要弥补资源有限性的不足。因此,生物质能源的开发利用,其社会效益远远大于经济效益。在目前发展阶段,需要国家的政策扶持和财力支撑。应制订相关政策,鼓励和支持企业投资生物质能源开发项目。

4.2 我国有丰富的生物质资源,但我国的国情是人口众多,人均资源相对偏小,因此,在生物质的应用技术发展方向上,应结合我国分散的能源系统,以满足农村乡、镇、村不断增长的能量需求,重点解决居民生活用能,减少对化石能源尤其是煤炭的使用。在经济条件较发达的乡村地区,大力推广木煤气气化系统;同时推广成型燃料及专用取暖炉,取代煤炉取暖的小型锅炉;研究开发专门使用生物质的直接燃料锅炉。

4.3 加强基础和应用研究。在生物质能化学转换中的催化降解、直接和间接液化机理,高产生物能基因及其变异性规律,生物转化微生物“杂交”等基础理论和应用研究。国家在科研项目的安排方面,要注重给生物质能应用研究的发展方面留有一定的空间。

4.4 我国薪炭林已达429万hm 2,全国有100余个薪炭林试点县,计划到2020年,将增建50个薪炭林基地。薪炭林面积也将达到1600多万hm 2,同时,山区有大量发展的经济果壳,应合理经济地开发利用这些宝贵的薪炭林资源,将薪炭林综合利用开发,产生的气体作为发电和民用煤气,固体产品木炭进一步加工成活性炭,液体产品可进一步加工成化工产品,创造经济效益。既解决部分农村能源紧缺的矛盾,又为农村劳动力创造就业机会,促进山区农村经济的发展。先期可选择若干个条件较好的薪炭林试点基地,建立能源示范工厂。然后总结经验推广应用,使薪炭林的发展,不仅能解决农村缺能的矛盾,而

第2期蒋剑春:生物质能源应用研究现状与发展前景79

 

且可实现生物质能综合利用的“林能”结合。从而实现山区经济发展、农民脱贫致富,同时产生较好的经济效益和社会效益。

4.5 加强生物质研究领域的国际交流与合作,引进国外先进的生物质利用技术和设备,加快我国生物质开发利用的步伐,建立符合中国国情的生物质能开发利用结构体系。

参考文献:

[1]张无敌,宋洪川,韦小岿,等.21世纪发展生物质能前景广阔[J ].中国能源,2001,(5):35238.

[2]中华人民共和国国家发展计划委员会基础产业发展司.中国新能源与可再生能源1999白皮书[M ].北京:中国计划出版社,2000.

[3]高尚武.森林能源研究[M ].北京:中国科学技术出版社,1999.

[4]杨敏,等.生物质的裂解及液化[J ].林产化学与工业,2000,20(4):77282.

[5]孙孝仁.21世纪世界能源发展前景[J ].中国能源,2001,(2):19220.

[6]金淳,等.150万千卡/时上吸式木材气化炉试验报告[J ].林产化工通讯,1994,(3):3212.

[7]张进平,等.生物质流态化催化气化技术研究[J ].林产化学与工业,2001,21(3):16220.

[8]李京京,庄幸.我国新能源和可再生能源政策及未来发展趋势分析[J ].中国能源,2001,(4):529.

PROSPECT ON RESEARCH AND DEV ELOPM EN T OF

B IOMASS EN ER GY U TIL IZA TION

J IAN G Jian 2chun

(Instit ute of Chemical Indust ry of Forest Products ,CFA ,N anji ng 210042,Chi na )

Abstract :Biomass energy is an important part of renewable energy.High effective utilization and development of biomass energy has positive effects on solving energy and environment problems.Since 1970′s ,in countries worldwide ,es pecially in advanced countries ,extra attentions have been paid to conduct researches on the application technique of biomass energy and a lot of research progress have been achieved ,some of which have been used in industrial scale.In thispaper ,the progress of research and development in domestic and abroad ,concerning biomass solidification ,liquefaction ,gasification and direct combustion technique ,are summarized.According to our country ′s situation ,proposals on research and development prospect are put forward.K ey w ords :biomass energy ;research and development

80 林 产 化 学 与 工 业第22卷

生物质能源的利用

简述生物质化学转化技术 本文本课题组研究方向对生物质能的利用做了简要介绍。 引言 生物质是指利用大气、水、土地等通过光合作用而产生的各种有机体。从狭义上讲,生物质主要是指农林生物质,主要包括农业秸秆和乔灌木等木质纤维原料。这些农林生物质数量巨大,具有可再生、再生周期短、可生物降解、环境友好等优点[1]。在广大的农村,农林生物质主要用于直接燃烧产热,此外,部分用作饲料、肥料以及制浆造纸原料,然而这些领域的利用量不足农林生物质总量的50%。大量的农林生物质被弃置于露天或焚烧,既造成环境的污染,又造成资源的极大浪费。随着石油等化石资源贮量的逐渐减少,从农林生物质等可再生资源转化利用获得新材料、化工原料、能源和功能食品及药物,补充化石等不可再生资源的缺口,正成为一种新的发展趋势,很多国家特别是发达国家已将此列为经济和社会发展的重大战略[2]。对我国这样一个化石资源短缺、人口众多、经济持续快速发展的大国,推动农林生物质的高效转化利用,具有更突出的迫切性,这也是事关我国农业、农村和农民发展的重大问题,将是我国新世纪的工业结构调整与升级的重点战略。 1 农林生物质的化学成分 农林生物质细胞壁主要由纤维素、半纤维素和木质素组成,其质量占细胞壁的80%~95%,是构成植物纤维原料的主要化学成分[3]。在生物质中,这三种成分构成了植物体的支持骨架,其中纤维素组成微细纤维,构成纤维细胞壁的网状骨架,而半纤维素和木质素则是填充在纤维之间和微细纤维之间的“粘合剂”和“填充剂”。不同种类的植物,细胞壁中的化学组成不同,半纤维素的含量也不同,表1 列举了几种农林废弃物的化学组成。 表 1农林生物质的化学组分 (%绝干原料) Table 1-1 Chemical composition of forest and agricultural biomass 种类水溶性成分纤维素半纤维素木质素蜡灰分 麦草 4.7 38.6 32.6 14.1 1.7 5.9 稻草 6.1 36.5 27.7 12.3 3.8 13.3 黑麦草 4.1 37.9 32.8 17.6 2.0 3.0 大麦草 6.8 34.7 27.9 14.6 1.9 5.7 燕麦草 4.6 38.5 31.7 16.8 2.2 6.1 玉米秆 5.6 38.5 28.0 15.0 3.6 4.2 玉米芯 4.2 43.2 31.8 14.6 3.9 2.2 蔗渣 4.0 39.2 28.7 19.4 1.6 5.1 油棕榈纤维 5.0 40.2 32.1 18.7 0.5 3.4 1.1 纤维素

我对生物能源前景的看法

我对生物能源前景的看法 摘要 自人类迈进二十一世纪以来,开发新能源成为全世界解决能源问题的共同出路。与化石燃料相比,新能源具有可再生、对环境友好等特点,更符合人类可持续发展的目标。其中,太阳能、风能、地热能、水能和潮汐能,是开发较早的新能源,已在实际生产生活中发挥了重要作用。曾一度被人们看好的核能,有着极高的能量值,可是其高额的研究经费和潜在的巨大毁灭性,令世界大多数国家望而却步。而作为新能源中“排行”靠后的生物能源,却在最近几年内忽然人气锐增,势如破竹,被看作是“新能源家族中可实现度最高的未来能源”。近年来,随着生命科学、生物技术、营养学、现代化工、食品科学等学科的不断发展,对生物资源中的活性成分有了新的认识,为生物资源的开发利用拓宽了思路,注入了新的活力,展示了广阔的前景。 关键词:清洁能源;安全能源;可再生;低碳经济 一、“低碳经济”势在必行 随着汽车的逐渐家庭化,能源的消耗急剧增加,油价的不断攀升,使人类猛然惊醒,不得不开始反思和纠正自身不科学地利用能源的行为。在深刻反思贪婪性消耗能源行为而觉醒的基础上,及时把发展新能源、节约能源、保障能源安全和可持续发展置于经济社会发展的战略地位,建立健全起符合本国实际需要的能源安全保障体系。就我国而言,确保为13亿人口提供安全的、低成

本的“环境友好型”新能源。能源生产和消费量巨大的我国,开拓清洁能源,合理利用能源,千方百计减少“碳排放”、乃至“零排放”,振兴“低碳经济”,已成为势在必行、刻不容缓的重大战略举措。 我国的终极目标是,要逐步实现碳排放低增长、零增长、乃至于负增长,完成由“高碳”向“低碳”的过渡。然而,由各种客观条件决定,我国只能逐步地探求“碳解锁”之道,不断降低单位能源消费量的碳排放量,即降低碳强度。与此相适应,选择适用本国的、包括碳捕捉、碳封存、碳蓄积等多种技术方式;特别是采取化石能源替代、利用“低碳能源”和“无碳能源”等技术途径,以达到控制和降低二氧化碳的排放量和排放速度,最终实现在经济持续增长的同时,碳排放显著下降的目标。与根本转变经济发展方式并行,人们的消费方式也必须革新和改变。经济学意义的消费,包括生产消费和生活消费。要双管齐下,扭转人们的高碳消费倾向和碳偏好,摒弃挥霍无度的高消费行为,提倡科学理智、健康文明的消费风尚,以有效减少化石能源消费量,告别奢华的“高碳生活”,迎接质朴的“低碳生存”。广义而言,低碳生存是一种理智、健康、持续的生存方式。它体现出先进文明的能源消费价值观,并依据“低碳程度”采取低碳消费方式,主要包括:“恒温消费”,即消费过程中温室气体排放量最低;“节约消费”,即消费主体对资源和能源的消耗量最经济;“安全消费”,即消费结果对消费主体和生存环境的损害最小;“可持续消费”,即有利于社

中国生物质能源开发利用现状及发展政策与未来趋势

一、中国生物质能源开发利用现状20世纪70年代,国际上第一次石油危机使发达国家和贫油国家重视石油替代,开始大规模发展生物质能源。生物质能源是以农林等有机废弃物以及利用边际土地种植的能源植物为主要原料进行能源生产的一种新兴能源。生物质能源按照生物质的特点及转化方式可分为固体生物质燃料、液体生物质燃料、气体生物质燃料。中国生物质能源的发展一直是在“改善农村能源”的观念和框架下运作,较早地起步于农村户用沼气,以后在秸秆气化上部署了试点。近两年,生物质能源在中国受到越来越多的关注,生物质能源利用取得了很大的成绩。沼气工程建设初见成效。截至2005年底,全国共建成3764座大中型沼气池,形成了每年约3.4l亿立方米沼气的生产能力,年处理有机废弃物和污水1.2亿吨,沼气利用量达到80亿立方米。到2006年底,建设农村户用沼气池的农户达2260万户,占总农户的9.2%,占适宜农户的15.3%,年产沼气87.0亿立方米,使7500多万农民受益,直接为农民增收约180亿元。生物质能源发电迈出了重要步伐,发电装机容量达到200万千瓦。液体生物质燃料生产取得明显进展,全国燃料乙醇生产能力达到:102万吨,已在河南等9个省的车用燃料中推广使用乙醇汽油。(一)固体生物质燃料固体生物质燃料分生物质直接燃烧或压缩成型燃料及生物质与煤混合燃烧为原料的燃料。生物质燃烧技术是传统的能源转化形式,截止到2004年底,中国农村地区已累计推广省柴节煤炉灶1.89亿户,普及率达到70%以上。省柴节煤炉灶比普通炉灶的热效率提高一倍以上,极大缓解了农村能源短缺的局面。生物质成型燃料是把生物质固化成型后采用略加改进后的传统设备燃用,这种燃料可提高能源密度,但由于压缩技术环节的问题,成型燃料的压缩成本较高。目前,中国(清华大学、河南省能源研究所、北京美农达科技有限公司)和意大利(比萨大学)两国分别开发出生物质直接成型技术,降低了生物质成型燃料的成本,为生物质成型燃料的广泛应用奠定了基础。此外,中国生物质燃料发电也具有了一定的规模,主要集中在南方地区的许多糖厂利用甘蔗渣发电。广东和广西两省(区)共有小型发电机组300余台,总装机容量800兆瓦,云南也有一些甘蔗渣电厂。中国第一批农作物秸秆燃烧发电厂将在河北石家庄晋州市和山东菏泽市单县建设,装机容量分别为2×12兆瓦和25兆瓦,发电量分别为 1.2亿千瓦时和 1.56亿千瓦时,年消耗秸秆20万吨。(二)气体生物质燃料气体生物质燃料包括沼气、生物质气化制气等。中国沼气开发历史悠久,但大中型沼气工程发展较慢,还停留在几十年前的个体小厌氧消化池的水平,2004年,中国农户用沼气池年末累计1500万户,北方能源生态模式应用农户达43.42万户,南方能源生态模式应用农户达391.27万户,总产气量45.80亿立方米,相当于300多万吨标准煤。到2004年底,中国共建成2500座工业废水和畜禽粪便沼气池,总池容达到了88.29万立方米,形成了每年约1.84亿立方米沼气的生产能力,年处理有机废物污水5801万吨,年发电量63万千瓦时,可向13.09万户供气。在生物质气化技术开发方面,中国对农林业废弃物等生物质资源的气化技术的深入研究始于20世纪70年代末、80年代初。截至2006年底,中国生物质气化集中供气系统的秸秆气化站保有量539处,年产生物质燃气1.5亿立方米;年发电量160千瓦时稻壳气化发电系统已进入产业化阶段。(三)液体生物质燃料液体生物质燃料是指通过生物质资源生产的燃料乙醇和生物柴油,可以替代由石油制取的汽油和柴油,是可再生能源开发利用的重要方向。近年来,中国的生物质燃料 “十五”期间,发展取得了很大的成绩,特别是以粮食为原料的燃料乙醇生产已初步形成规模。 在河南、安徽、吉林和黑龙江分别建设了以陈化粮为原料的燃料乙醇生产厂,总产能达到每年102万吨,现已在9个省(5个省全部,4个省的27个地(市))开展车用乙醇汽油销售。到2005年,这些地方除军队特需和国家特种储备外实现了车用乙醇汽油替代汽油。但是,受粮食产量和生产成本制约,以粮食作物为原料生产生物质燃料大规模替代石油燃料时,也会产生如同当今面临的石油问题一样的原料短缺,因此,中国近期不再扩大以粮食为原料的燃料乙醇生产,转而开发非粮食原料乙醇生产技术。目前开发的以木薯为代表的非食用薯类、

1-中国农村能源政策_回顾与展望

中国农村能源政策:回顾与展望 朱四海 福建省政府发展研究中心 摘 要:农村能源问题的实质是能源公平问题,向农村持续提供高品位的能源服务不仅是发展的需要, 更是农村居民的基本需求和基本权力。改革开放以来,中国农村能源政策经历了从解决农村 居民生活用能、到保障能源可持续发展、再到提高减缓和适应气候变化能力的目标演进。当 前,政策的关键是按照公共服务均等化原则,促进经济发展过程中的能源公平,并在农村可 再生能源的开发利用过程中保障农民的交易权力、提高农民的就业机会、增加农民收入。 关键词:农村能源 问题 政策 改革开放以来,中国农村能源政策的演变基本上是围绕能源问题展开的: 首先,是农村能源问题。中国农村能源政策首先是由农村能源问题引发的 。尽管政府早在上世纪50年代就关注农村能源问题,特别是关于沼气、小水电和地方煤矿的发展,但直到“六五”计划(1982)才最终确立农村能源的政策框架。 其次,是能源安全问题。1994年国务院发布的《中国21世纪议程》确立了新能源和可再生能源在未来能源系统中的战略地位,紧接着又在“九五”计划中明确了农村能源商品化、产业化的发展方向,促进能源可持续发展。农村能源问题让位于国家能源问题。 第三,是全球气候变化问题。能源消费排放的温室气体引发的全球变暖问题使得国家能源问题国际化。中国政府于2007年发布了《中国应对气候变化国家方案》,农村能源被赋予了提高减缓和适应气候变化能力的新使命。 本文从国家层面就政府围绕上述问题出台的相关农村能源政策进行了历史回顾和展望。 一、短缺时代的农村能源政策(1979~1995) 农村能源不是能源分类学上的概念,在能源政策范畴里人们没有“城市能源”的概念却有农村能源的概念,说明农村能源是一个问题。这个问题源于能源建设的长期工业服务倾向和城市偏好、农村地区长期缺乏基本的商品性能源服务,反映了广大农村主要依靠当地可获取的可再生能源(薪柴、秸秆)的“能源贫困”现实。农村能源问题已经长期存在,但在能源短缺时代,受政府政策偏好的制约,国家能源建设优先保障工业和城市的用能需求,农村能源政策手段的选择主要围绕农村地区的资源赋存展开,着力发展沼气、薪炭林、小水电、小煤炭、太阳能以及推广省柴节煤灶。由于政策制定者缺乏为政策执行提供必要的资源及其它相关条件,这一时期的农村能源政策更多表现为导向功能而非分配功能(参见“表一”),其特点有四: ⑴ 政策设计以单项技术经济政策为主,并从试点起步。政策“抓手”主要包括农业部组织的沼气建设试点县、节柴改灶试点县建设,水电部组织的、以发展小水电为主要内容的农村初级电气化试点县建设,以及林业部组织的薪炭林试点县建设。在上述试点的基础上,组建了跨部门的“国家农村能源综合建设县项目领导小组”,开展以县为单元的农村能源综合建设。 ⑵ 政策目标是模糊和多元的。上述设计的政策意图在于缓解农村能源的供应短缺,但到底“能在多大程度上解决农村能源问题”却是不清晰的,政策目标只是一个不十分明确的大方向,具体内容是在政策执行过程中逐步加以明确和修正的。由于农村能源集能源建设、农村经济社会建设、环境建设于一体,具有经济、社会、环境综合效益,政策目标一开始就是多元的。 ⑶ 政策实践是探索性和渐进性的。由于政策目标的模糊,解决农村能源问题的进程也就呈现弹性状态,政策实践没有具体的时间表。决策者只能根据以往的经验审核现有的方案,通过与以往政策的比较、考虑不断变化的客观环境,对以往政策进行局部的、小幅度的调适,在现有政策基础上实现渐进变迁。就农村能源问题本身而言,决策者并不是“不想干”,而是不知道“怎么干”,或者由于客观条件的限制“无法干”。 ⑷ 农村能源游离于国家商品性能源供给体系之外。1982年确立、并经1986年修正的“因地制宜、多能互补、综合利用、讲究效益”的农村能源建设方针,其目标基本上限于解决农村能源问题,试图通过发展沼气、薪炭林,推广省柴节煤灶,以及在有条件的地方发展

生物质能源的利用方法及发展趋势

生物质能源的利用方法及发展趋势 2013级博士研究生王波 指导老师;陈新德 生物质能源是蕴藏在生物质中的能量,是绿色植物通过叶绿素将太阳能转化为化学能而贮存在生物质内部的能量。生物质能源具有燃烧容易、污染少、灰分较低等优点,是可再生的清洁能源。目前所使用的化石能源导致环境污染日益严重,是造成臭氧层破坏、全球气候变暖、酸雨等灾难性后果的直接因素,而且地球上现存的化石燃料按消费量推算,在今后50~80年将最终消耗殆尽。根据生物学家估算,地球上每年生长的生物能总量约1400~1800 亿吨(干重),相当于目前世界总能耗的10倍。我国的生物质能源也极为丰富,现在每年农村中的秸秆量约6.5亿吨,到2010年将达7.26亿吨,相当于5亿吨标准煤。因此,利用生物质能源取代化石能源是解决能源问题的良好途径,发展林业生物质能源,凸显国家战略,是我国生物质能源发展的战略重点和优势。生物质能源的开发利用早已引起世界各国政府和科学家的关注。有许多国家都制定了相应的开发研究计划,包括日本的阳光计划、巴西的酒精能源计划、印度的绿色能源工程、美国的生物质产业发展路线图等发展计划。生物质能源可以通过热化学转换技术、物理化学转换技术和生物转换技术制取沼气、燃料乙醇、生物柴油、发电等。我国政府高度重视生物质能源的开发与利用。早在1992年国务院批准的《中国环境发展十大对策》中就明确提出,要“因地制

宜地开发利用和推广太阳能、风能、地热能、生物质能等新能源”。 目前有的生物质能源产业化技术主要包括以下几个方面。 一、沼气利用技术、沼气利用技术指将畜禽粪便、高浓度有机废水、生活垃圾等通过厌氧发酵生成以甲烷为主的沼气的技术,同时生成沼液、沼渣可作为有机肥施用于农田。沼气是热值较高的洁净可燃气,可用作生活和工业燃料或发电,是很好的无公害能源,沼气工程建设可带来环境效益。目前沼气技术在利用中存在有异味、二次污染等难题,另外,我国多数对沼液、沼渣工业化生产有机肥的研究停留在田间施用方法、施用效果上,缺少工程处理及转化为附加值更高的有机肥的方法;在温度较低的北方地区,沼气系统陷入启动难、维护难、微生物选育难的境地,所以该技术虽然已是产业化技术,但在使用率和技术推广工作上仍存在一定的障碍。 二、生物质致密成型技术,生物致密成型是指将木屑、秸秆等生物质经固化成型热挤压制得成型燃料的技术。其原理是利用木质素在200—300℃软化、进而液化等特点,施加一定压力即可使其与纤维素等其他组分紧密粘接,不用任何添加剂、粘接剂,可得到与挤压模具相同形状的成型棒状或颗粒燃料。其缺点是大部分纤维索类生物质在压缩成型之前,一般需要进行粉碎、干燥(或浸泡)等预处理,锯末、稻壳等勿需再粉碎的原料,需清除尺寸较大的异物。 三、生物质燃烧发电,生物质燃烧发电包括直接燃烧发电和混合燃烧发电。直接燃烧发电是指将生物质原料、城市生活垃圾送入适合生物质燃烧的特定蒸汽锅炉中,生产蒸汽,驱动蒸汽轮机进而带动发

发展生物质能源的财政政策解读(doc 12页)

发展生物质能源的财政政策解读(doc 12页)

发展生物质能源的财政政策解读 黑色的石油是近代以来工业社会的核心能源,如同普罗米修斯的圣火,它给人类提供了生存和发展的巨大动力源。然而,作为化石能源,它又无比吝啬,能为人类再作奉献的时间已经屈指可数。据权威专家预计,世界石油在40-60年内将消耗完毕。同时,作为一种重要的战略商品,由于受到地缘政治以及人为炒作等复杂因素的影响,石油的供给波动不稳。 进入21世纪,寻找新能源,实施石油替代的新战略,成了世界的新潮流。 中国也一直没有停止发展新能源的努力。近日,国家财政部等五部委联合发布的《关于发展生物能源和生物化工财税扶持政策的实施意见》,使中国的生物能源发展战略正式浮出水面。记者通过对财政部经济建设司的采访,对这项关系中国未来可持续发展的战略性政策寻踪解读……

促进生物能源发展财税政策的原则导向 近年来,我国积极支持燃料乙醇的试点及推广工作,已取得明显成效。目前国内四家定点企业已形成102万吨的燃料乙醇生产能力,在推广使用中,按8-12%的添加比例,车用燃料乙醇汽油销量达到1000万吨左右,占全国汽油消费量的20%左右。中央财政支持措施主要包括,国家投入国债资金,支持河南、安徽、吉林三省燃料乙醇企业建设;实施税收优惠政策,对国家批准的四家试点单位,免征燃料乙醇5%的消费税,对生产燃料乙醇实现的增值税实行先征后返;建立并优化财政补贴机制,在试点初期,对生产企业按保本微利的原则据实补贴,在扩大试点规模阶段,为促进企业降低生产成本,改为按照平均先进的原则定额补贴,补贴逐年递减。可以说,在国务院总体部署下,财政积极发挥职能作用,为燃料乙醇试点工作顺利开展做出了很大努力。 今年以来,根据国务院领导的指示,经济建设司组织力量先后赴十余个省市进行调研,召开20余次座谈会,听取

生物质能源应用研究现状与发展前景

综述评论 生物质能源应用研究现状与发展前景 Ξ J IAN G J C 蒋剑春(中国林业科学研究院林产化学工业研究所,江苏南京210042) 摘 要: 生物质能是可再生能源的重要组成部分。生物质能的高效开发利用,对解决能源、生态环境问题将 起到十分积极的作用。进入20世纪70年代以来,世界各国尤其是经济发达国家都对此高度重视,积极开展 生物质能应用技术的研究,并取得许多研究成果,达到工业化应用规模。本文概述了国内外研究和开发进展, 涉及到生物质能固化、液化、气化和直接燃烧等研究技术。从我国实际情况出发,提出研究开发前景和建议。 关键词: 生物质能源;研究与发展 中图分类号:T K6 文献标识码:A 文章编号:025322417(2002)022******* 1 生物质能源的地位 生物质能源是人类用火以来,最早直接应用的能源。随着人类文明的进步,生物质能源的应用研究开发几经波折,在第二次世界大战前后,欧洲的木质能源应用研究达到高峰,然后随着石油化工和煤化工的发展,生物质能源的应用逐渐趋于低谷。到20世纪70年代中期,由于中东战争引发的全球性能源危机,可再生能源,包括木质能源在内的开发利用研究,重新引起了人们的重视。人们深刻认识到石油、煤、天然气等化石能源的资源有限性和环境污染问题。有关资料介绍[1],根据现已探明的储量和需求推算,到21世纪中叶,世界石油、天然气资源可能枯竭,而煤炭的大量使用,不仅自身贮量有限,而且由于燃烧产生大量的SO 2、CO 2等气体,严重污染环境。日益严重的环境问题,已引起国际社会的共同关注,环境问题与能源问题密切相关,成为当今世界共同关注的焦点之一。有资料表明,化石燃料的使用是大气污染的主要原因。“酸雨”、“温室效应”等等都已给人们赖以生存的地球带来了灾难性的后果。而使用大自然馈赠的生物质能,几乎不产生污染,使用过程中几乎没有SO 2产生,产生的CO 2气体与植物生长过程中需要吸收大量CO 2在数量上保持平衡,被称之为CO 2中性的燃料。生物质能源可再生而不会枯竭,同时起着保护和改善生态环境的重要作用,是理想的可再生能源之一。 林业薪炭林和农作物秸杆同属于生物质能源。在目前世界的能源消耗中,生物质能耗占世界总能耗的14%,仅次于石油、煤炭和天然气,位居第4位[2]。而在发展中国家,生物质能耗占有较大比重,达到50%以上。 我国是一个农业大国,农业人口占总人口70%以上,农村生活用能主要是依靠秸杆和薪材。据统计资料介绍,农村总能耗的65%以上为生物质能,其中薪材消耗量约占总能耗的29%。为了解决农村用能紧缺的问题,我国正在大力发展薪炭林,目前薪炭林总面积已达429万hm 2,年产生物量达到2.2亿t 左右[3]。生物质是一种可以与环境协调发展的能源,具有巨大的发展潜力。用包括生物质能在内 Ξ收稿日期:2001-04-11  作者简介:蒋剑春(1955-),男,江苏溧阳人,研究员,从事林产化学加工研究。 第22卷第2期 2002年6月林 产 化 学 与 工 业Chemistry and Industry of Forest Products Vol.22No.2 J une 2002

农村能源发展现状调研报告

农村能源发展现状调研报告 当农村出现能源短缺、用能矛盾突出时,贯彻“因地制宜、多能互补、综合利用、讲求效益”和“开发与节约并举”的工作方针显得尤为重要。坚持“群众自愿、节约优先、清洁生产、安全第一”的原则,大力推广沼气、省柴灶、节煤炉、地火垅改造等可再生能源和技术,促进农村能源经济发展,更好发挥农业的基础支撑作用,不仅是农村能源自身的现实要求,更是事关经济社会发展的重大课题。 一、我区农村能源发展现状及分析 截止年底,全区累计发展农村户用沼气6500口,占全区总农户的XX%,全区XXX个自然村,现有XXX个村用上了沼气,、突破千口大关,乡建沼气675口,占总农户的XX%,,普及率居全区榜首。新建生态卫生学校5个,新建50至100立方米小型沼气工程4处。推广节煤炉1万余个,省柴灶7XXX户,太阳能利用面积5000平方米。农村能源结构明显改善,利用效益显著提高,取得了较好的经济、社会和生态效益。全区生产沼气约200万立方米,折标煤200余吨,减少二氧化碳排放3000吨,年保护森林植被5万亩,化肥、农药使用量逐步减少,提高了农产品品质、增加了产量,每年实现增收节支2XXX万元。 (一)户用沼气普及率较高,但发展不平衡

实施天保工程和退耕还林后,耕地由原来21.6万亩下降到9.3万亩,人平由原来3.7亩下降到1.7亩。种养结构调整,劳动力大量转移,、、、和城镇化进程加快,以及大九湖湿地公园建设,致使大量煤燃料和天然气向农村延伸。在1.3万户农民中,已建沼气6XXX户,集中分布在1200米以下,占适宜建池农户的XX%。不适宜建池的有6000余户(包括生态移民、无建池宅基地、孤寡老人等)占总农户的XX%左右。低山少数村因基层组织弱化普及率低,其次因村级公路通户率低,建池成本过大,部分困难户无法享受国家优惠政策。虽然户用沼气总体需求旺盛,但区域发展不平衡。 (二)山区中小型沼气工程需求迫切 随着新农村建设发展标准的提高,在农村环境建设中,畜禽养殖以户为基础的小农经济受到了冲击,由分散养殖逐步向养殖小区过度。目前,全区中小型养殖小区100多处,每天直接排放粪尿达到20吨左右,不仅严重污染环境,而且浪费了大量的沼气资源。现已建中小型沼气工程6处,仅占规模化养殖场的3%。 当前,中小型养殖规模化生产是山区畜牧业的发展方向之一,但养殖场大多集中在水源较好、人户集中的城郊周围。大量的粪便未经处理而直接排放,给水体、农田、农户造成污染,从而出现了政府担心、百姓恼火、企业着急的尴尬局面。矛盾不断涌现,纠纷处处发生,这些都是因为“废物”没有得到有效利用而造成的。如原宋洛养殖小区、果园养殖小区等。其次是业主能源环保意识差,无长远打算。

生物质能源综合利用项目

生物质能源综合利用项目 项目建议书 东平京鲁时代生物科技发展有限公司 二零一七年五月

目录 第一章拟建项目概述 (1) 1.1项目名称 (1) 1.2 建设单位情况 (1) 1.3拟成立公司 (1) 1.4建设规模与内容 (1) 1.5投资估算及资金筹措 (2) 1.6建设周期 (2) 1.6.1初步计划 (2) 1.6.2一期工程设计 (3) 第二章项目建设的重大意义 (4) 2.1当前秸秆粪便污染情况 (4) 2.2解决污染物的有效途径 (4) 2.3本项目对当地农业发展的意义 (5) 第三章项目建设的政策性依据 (6) 第四章项目地址选择 (9) 4.1选址原则 (9) 4.2地址选择 (9) 4.3项目用地规模 (10) 4.4项目建设地基本情况 (11) 4.4.1地理位置 (11)

4.4.2气候条件 (11) 4.4.3交通条件 (12) 4.4.4农林牧情况 (12) 4.4.5旅游资源 (12) 4.4.6产业优势 (12) 第五章技术路线 (13) 第六章项目资金平衡估算 (14) 6.1投资组成估算 (14) 6.2产品年度销售收入估算 (14) 6.3年度运营成本估算 (14) 6.4投资经济性分析 (15) 6.5影响项目经济效益的主要因素 (15) 第七章项目实施计划 (15) 7.1总体计划 (15) 7.2一期工程实施思路 (15) 第八章项目实施关键点 (16) 8.1产业链规划是否完整 (16) 8.2政府支持是否到位 (18) 8.3企业的投资行为是否坚定 (19)

第一章拟建项目概述 1.1项目名称 生物质能源综合利用项目 1.2建设单位情况 建设单位:东平京鲁时代生物科技发展有限公司 法定代表人:魏光 1.3拟建设地点 山东省东平县接山镇姜庄村 1.4建设规模与内容 本项目为生物新能源项目,规划总用地200亩,利用秸秆、畜禽粪便农业废弃物,产沼气30万m3,年生产沼气9000万立方,年发电1.2亿度,年提纯燃气4500万m3,年产15万吨生物有机肥和有机无机复混肥;同时,发展无公害、绿色、有机农产品,通过有机农业示范,带动周边50公里半径内的农户共同进行有机农业种植,延伸农副产品加工和冷链物流,创建“绿色”、“生态”品牌,打造生态循环农业产业链。 主要建设内容: 1、原料仓储和预处理系统:秸秆原料仓储和预处理设施、配备运输车。 2、沼气生产系统:进出料、厌氧发酵、增温保温和搅拌等设施设备。 3、沼气净化系统:脱硫脱水设备。 4、储存系统:大型沼气存储罐。 5、沼气发电及上网单元:余热回收、上网设备与监控等。 6、天然气提纯系统:燃气提纯装备、气柜和管网等储存输配系统。

生物质能源的发展现状与前景综述

生物质能源的发展现状与前景综述 曾令谦 (江西师范大学生命科学学院江西南昌 330022) 摘要生物质能源是倍受世界各国重视的可再生能源。文中介绍了生物质能源的优越性、多种类别及性能。本文综述了发展生物质能源的战略意义以及发展前景。文中列举了世界某些代表性国家或区域发展生物质能取得的成就,以及对比了我国对生物质能的发展及研究。与传统能源相比较,突出了发展生物质能能源的重要意义,以及广阔的市场前景。21世纪生物质能源必定成为世界各国争相开发利用,生物技术将有重大的进展和突破。 关键词:生物质能源 , 优越性 , 前景 , 战略意义 Abstract biomass energy is highly valued around the world renewable energy sources. This paper introduces the advantages of biomass energy, a variety of categories and performance. This paper reviews the development of biomass energy strategic significance and development prospect. This paper enumerates some typical countries in the world or the achievement of regional development of biomass energy, and compared the biomass can development and research of our country. Compared with the traditional energy, highlights the importance of developing biomass energy, and broad market prospect. Biomass energy in the 21st century must be rushed to the development and utilization of countries around the world, biotechnology will have significant progress and breakthrough. Keywords: biomass energy ,the superiority ,prospect ,strategic significance 1生物质能的优越性: 在包括太阳能、地热、风能、水能(水流、潮汐、热对流等)和生物质能的各种可再生能源中,相对来讲生物质能源的地区性限制和可控制性均比其他种类的再生能源有更多优势。凡是有阳光和水的地方均可通过人工集约培植获得生物质,并以多种形式将其转化成清洁、便于贮藏、运输的可再生能源。由于其比较优势较多,生产成本又低,所以近数十年来倍受世界各国重视。我国在2005年2月28日颁布了中国可再生能源法,其中第4条规定:国家将可再生能源的开发利用列为能源发展的优先领域。第12条又说:国家将可再生能源开发利用的科学技术研究和产业化发展列为科技发展与高技术产业发展的优先领域。这充分体现了可再生能源的开发将成为我国基本能源国策。生物质能源比其他几种再生能源有更大的群众参与性、多形式的可转换性和相对较少的开发投入性,这是在多种形式的再生能源中生物质能源被国家优先给予考虑的原因。从全世界范围看,生物质能源利用在各种形式的可再生能源利用的总份额中所占比重也最大,北欧一些国家已有大范围把生物能源转化成电力的经验[1]。

对我国生物质能源发展现状和趋势的分析

对我国生物质能源发展现状和趋势的分析 ◎王朝华 摘要:本文在介绍国际生物质能发展趋势和特点的基础上,分析我国生物质能发展和利用的现状以及发展过程中存在的主要问题。最后,从增加农民收入和优化能源利用结构的角度,提出我国生物质能进一步发展的建议。 关键词:生物质能源替代农民收入 生物质(bioma ss)是所有的土地和水生植物以及有机废物的总和。工业革命以来,大部分发达国家的能源需求通过燃烧煤、石油、天然气等化石燃料来满足。但是,生物质仍然是欠发达国家的主要能量来源。再生能源和新能源都有一个共同特征,即皆为物理态能量和仅能用于转化热与电的产品。生物质能则与众不同,它是太阳辐射能经植物加工转化的、唯一的一种化学态能量,以植物为载体,具有良好的稳定性和储能性。它既含能量,又有物质性载体,可以生产能源和非能源的物质性产品,具有原料上的多样性,如作物秸秆、林业剩余物、畜禽粪便、加工业的有机废水废渣、城市垃圾等有机废弃物以及利用低质土地种植的各种能源植物等等。除此以外,它还具有产品上的多样性,其能源产品既有物理态的热与电,又有液态的生物乙醇和生物柴油、固态的成型燃料、气态的沼气等,还有非能源的生物塑料等材料以及系列生物化工产品。生物质能生产过程也是有机废弃物和有机污染源的无害化和资源化过程,故兼有环保及资源循环利用的双重功能,生产与消费过程中的全部生命物质和能量均可进入地球生物圈循环系统,就连释放的二氧化碳也可重新被植物吸收,是真正意义上的“零碳”,可以促进农村经济发展,增加农民收入,因此,对发展中国家有特殊意义。 一、国际生物质能源的发展趋势和特点 近几年的高能源价格刺激和能源安全的考虑使生物质能真正为各国政府高度重视。各国对发展生物质能源的主要考虑有不同的侧重,但两个主要原因相同,即能源替代和环境保护。根据2007世界可再生能源报告,全球生物乙醇产量从2005年的330亿公升增长到2006年的390亿公升;其中,美国的产量为183亿公升,增幅达22%,超过巴西。巴西的燃料乙醇消费量从2005年的150亿公升增长到2006年的175亿公升,燃料乙醇供应了非柴油机动车燃料的41%,巴西机动车中有70%左右采用“混合燃料”。欧盟的燃料乙醇产量增长迅速,2006年增长了77.8%,但绝对数相对于巴西和美国仍然较少。 2006年生物柴油产量的增长幅度远远高于乙醇。生物柴油的产量从2005年的39亿公升增长到2006年的60亿公升,增幅达53.9%;其中,欧盟的生物柴油占了世界总量的75%,产量从2005年的3.6亿公升增长到2006年的4.5亿公升,增长了25%,其增长主要由德国、法国、意大利和波兰引导。2006年德国的生物柴油产量为2.8亿公升,占近一半的全球总产量。 2006年全球生物质能电力装机容量达到45GW,比2005年增加约2.3%。其中,德国、匈牙利、荷兰、波兰和西班牙等国家生物质能电力生产的年增长率在50%-100%之间;澳大利亚、奥地利、比利时、丹麦、意大利、韩国、新西兰和瑞典的年增长率在10%—30%之间。生物质能电力装机容量主要在欧盟和美国,各自占了世界生物质能装机容量的22.2%和16.9%。但发展中国家也有一些小项目在进行,例如泰国的“小电力生产商’’计划让泰国至2005年底建成50个生物质电力项目,总装机容量达到1GW。甘蔗渣电厂在其他一些国家,如菲律宾和巴西的制糖工业中得到发展。世界范围内生物质发电站,预计到2020年将会增加30000MW以上。 生物质产业已成为投资的一个热门领域,华尔街的投资商们已经接受生物乙醇是一种相对安全的长期投资项目的观点。世界自富比尔·盖茨投资8400万美元购买了太平洋乙醇股票,年产30万吨的乙醇厂就设在加州旧金山附近;硅谷阳光微软系统(Sun Microsystems)的创始人V inod K hosla的风险投资和以Ma ra thon为代表的石油、能源工业界也大举进入燃料乙醇生产领域。自1999年13134号总统令发布后,美国的森林工业即开始了与电力、石油、化工公司合作,利用林木废弃物生产能源及化工产品,美国国际石油公司等也开始剥离石油资产,用于生物质能源产品开发。B P、C a rgill、杜邦、壳牌等世界许多化学工业和石油工业在内的许多公司都在开发新的工艺技术,并建设生产厂,以便在快速增长的燃料乙醇汽油和生物柴油等领域占有一席之地。 生物质产业不仅是对化石能源的替代,有效地保护环境, 12 --

燃料乙醇的发展前景

燃料乙醇的发展前景 当前,正值国际油价上涨、能源紧张时期,各国政府都在大力发展和推广生物能源。日前,全球著名咨询机构科尔尼公司发布的《中国燃料乙醇产业现状与展望--产业研究白皮书》显示,目前我国燃料乙醇产业存在一定问题,主要表现为成本过高、生产效率偏低。对此,业内专家和企业家表示,目前我国燃料乙醇产业面临资源短缺和相关政策不明朗的问题。 十一五期间,我国将生产600万吨生物液态燃料,其中燃料乙醇500万吨。日前,国家发改委的一位官员介绍,8年前我国上马燃料乙醇项目,意在解决过剩陈化粮问题。经过1999-2005年的不懈努力,国家首批4家燃料乙醇定点生产企业已完成规划建设的102万吨产能,基本实现了十五提出的拉动农业、保护环境、替代能源三大战略目标。 粮食安全成瓶颈 目前我国是继巴西、美国之后全球第3大生物燃料乙醇生产和消费国。据悉,随着燃料乙醇的逐步推广,我国以陈化粮为原料的燃料乙醇产量从2003年的7万吨一路飙升至2006年的132万吨,如果按每3.3吨玉米产1吨燃料乙醇折算,仅2006年就消耗玉米436万吨。然而,近期作为燃料乙醇主要原料的玉米正处于供不应求状态,玉米库存的骤减使国内玉米价格猛涨,燃料乙醇出现与民争食的隐患,保障国家粮食安全成为摆在政府面前的严峻课题。业内专家分析,我国人口众多,人均耕地少,用大量粮食生产燃料乙醇必然要和人争食、争土地,造成人类生存空间越来越小,不符合我国国情。 针对部分地区发展生物乙醇燃料的过热倾向和盲目势头,2006年12月,国务院下发了《国家发展改革委关于加强玉米加工项目建设管理的紧急通知》及《国家发展改革委、财政部关于加强生物燃料乙醇项目建设管理,促进产业健康发展的通知》,要求各地不得盲目发展玉米加工乙醇燃料,同时对玉米加工项目进行清理。从这两个通知可以看出,坚持非粮为主是根本,是今后中十一'国生物燃料乙醇的发展方向。国家出台的《生物燃料乙醇及车用乙醇汽油. 五'发展专项规划》以及相关的产业政策也明确提出因地制宜,非粮为主的原则。实践证明,以粮食为原料生产燃料乙醇不符合国情,探索非粮能源资源是大势所趋。目前燃料乙醇发展规模处于前列的巴西是用甘蔗生产燃料乙醇,美国是用玉米生产燃料乙醇。但我国不具备大规模使用甘蔗或玉米的条件,随着政策限制玉米加工项目的上马,业界必须寻找玉米以外的生物质资源来生产燃料乙醇。 其实,不仅玉米可以生产乙醇,某些纤维质类原料也同样可以生产乙醇。有关专家指出。据介绍,纤维质原料主要包括草、红薯等作物及秸秆、农作物壳皮、树枝、落叶、林业边脚余料等。用非粮原料生产燃料乙醇具有重要性和可行性,既不与粮食和其他有关国计民生的作物争地、争水,且单位面积产出率高。但是,目前在我国用这些原料生产乙醇燃料还存在原材料大规模收集和运输的问题,且纤维素生产燃料乙醇的技术还有待完善。 政策尚不明朗

世界生物质能源发展现状及方向

世界生物质能源发展现状及方向 国土资源部油气资源战略研究中心 车长波等.世界生物质能源发展现状及方向.天然气工业,2011,31(1):104-106. 摘要 20世纪90年代以来,以燃料乙醇和生物柴油为代表的第一代生物质能得以发展。目前,美国为第一大燃料乙醇生产国,巴西位居第二,欧盟各国则是最主要的生物柴油生产地,其他国家也都在积极发展生物质能。生物质能的发展带来粮食种植结构偏重玉米、粮食供应总量下降、粮食(油料)价格振荡上升、粮食危机引发动荡等一系列问题。因此开发第二代、第三代生物燃料(即非粮生物燃料)成为世界各国关注的重要课题。但由于麦秆、草和木材等农林废弃物为主要原料(第二代生物燃料)的技术成本较高,真正商业化的项目较少;而第三代生物燃料是以微藻为原料生物燃料的油脂很难提炼,从海藻中提炼生物燃料的研究正处于实验室阶段,距离商业化阶段还比较远。因此,第一代生物质能短期内不会被第二、三代生物燃料所替代,第二、三代生物质能将是人类的理性选择,也是生物燃料必然的发展方向。关键词全世界生物质能源现状面临问题发展趋势燃料乙醇生物柴油 DOI:10.3787/j.issn.1000-0976.2011.01.025 20世纪90年代以来,美欧等能源消费大国和巴西等农产品贸易大国开始大力发展新型可再生能源)))生物质能[1]。当前,生物质能为以燃料乙醇和生物柴油为代表的第一代生物质能,其发展建立在对

农业资源大量占用和对农产品大量消耗基础之上,能源与农业及农产品被直接联系在一起,有可能过度开发而引发一系列问题。 1 开发现状 21世纪以来,由于国际能源价格基本上维持在高价位区间,为这一阶段的生物燃料产业发展提供了极大的支撑。玉米、甘蔗等粮食的能源化在全球很多地方得以推广[2]。随着2008年食用商品价格的高企,人们开始指责燃料乙醇的生产导致了全球粮食价格的高升,但全球生物燃料近年来却依然保持快速增长。根据Clean Edge的数据,2008年全球生物燃料(主要指 燃料乙醇和生物柴油)的产值达到348亿美元,较2007年的产值254亿美元增加37%。 1.1 美国 2005年,美国替代巴西跃升为世界头号燃料乙醇生产国,为美国经济带来了丰厚利益[3]。从2001)2006年,美国燃料乙醇产业为联邦政府和地方州政府分别增加税收19亿美元和16亿美元;同时,美国相应减少石油进口1.7亿桶,减少支出外汇87亿美元。2008年,美国燃料乙醇的生产能力增加了27亿加仑(1美加仑U3.785 L,下同),比2007年增加34%;燃料乙醇加工厂增加31家,总数达到170家,总产能为105.69亿加仑/a;燃料乙醇产量达到90亿加仑,年增长率为38.5%。美国可再生燃料协会(RFA)认为,美国燃料乙醇近年来的快速增长主要得益于乙醇的新型生产技术以及纤维素转化技术的商业化应用[4]。美国2007年出台的5能源独立和安全法6规定,到2022年前,要求国

生物质燃料燃烧

生物质燃料燃烧特性与应用 郑陆松 2008031620 关键词:生物质燃料、燃烧过程、特性、应用、锅炉 摘要:生物质燃料是一种可再生能源,介绍其组成成分,燃烧的一般过程和特点。根据 多种典型生物质燃料的基本组成,着重分析介绍了生物油的燃烧过程、性能特点及在动力机械中的应用。以锅炉为例具体分析玉米秸秆在其中的层燃燃烧过程和特性。分析总结了生物质燃烧对锅炉的影响。 1、前言 生物质燃料是一种可再生能源,是指依靠太阳光合作用而产生的各种有机物质,是太阳能以化学能的形式存在于生物之中的一种能量形式,直接或间接地来源于植物的光合作用。被认为是第四大能源,分布广,蕴藏量大。 生物质燃料基本特性 生物质的种类很多,一般可分以下5大类:①木质素:木块、木屑、树皮、树根等;②农业废弃物:秸秆、果核、玉米芯、甘蔗皮渣等;③水生植物:藻类、水葫芦等;④油料作物:棉籽、麻籽、油桐等;⑤生活废弃物:城市垃圾、人及牲畜的粪便。 生物质作为有机物燃料是由多种复杂的高分子有机化合物组成的复合体,化学组成主要有:纤维素、半纤维素、木质素和提取物等,这些高分子物质在不同种类生物质、同一种类生物质的不同区域其组成也不同,有些甚至有很大差异。生物质的可燃成分主要是有机元素如碳、氢、氮和硫,虽然就元素的成分而言,生物质燃料的成分和常规燃料煤炭基本上没什么区别,但正是各成分在数量上的差异导致了生物制燃烧产物与煤炭的差异。生物质的碳含量普遍在50%左右,低于普通的烟煤,而氢含量则高于烟煤,尤其是挥发份和氧含量远远高于普通烟煤,氧含量超过煤10倍左右。由于生物质燃料的可燃组分含量相对比较低,因此生物质燃料的低位发热量比一般烟煤低。在着火燃烧性能方面,生物质燃料的挥发份含量远远高于普通烟煤,导致着火燃烧性能明显高于普通烟煤。在燃烧污染物生成排放方面,生物质燃料的硫含量仅为0.1 %左右,含氮量和理论氮气容积也低于烟煤,所以总的SO2和NOx生成量都远低于烟煤。根据秸秆生物质燃料高挥发分、高氧量、低硫份和灰份的基本特性,因此相对于煤炭而言,秸秆生物质具有易燃、清洁环保的特点。 2、生物质燃料: 2.1生物质燃料燃烧过程分析: 生物质燃料的燃烧过程主要分为挥发分的析出、燃烧和残余焦炭的燃烧、燃尽两个独立阶段。其燃烧过程的特点是:【1】 (1)生物质水分含量较多,燃烧需要较高的干燥温度和较长的干燥时间,产生的烟气体积较大,排烟热损失较高。

相关主题
文本预览
相关文档 最新文档