各种卫星传感器比较
- 格式:doc
- 大小:132.00 KB
- 文档页数:3
常见遥感卫星及传感器介绍在现代遥感技术中,有许多不同类型的卫星和传感器,用于收集地球表面的图像和数据。
以下是一些常见的遥感卫星和传感器的介绍。
1. Landsat系列卫星:Landsat系列卫星是最早实现陆地遥感的系列卫星,由美国国家航空航天局(NASA)和美国地质调查局(USGS)合作运作。
Landsat卫星使用多光谱传感器,可以提供高分辨率的图像,用于监测陆地覆盖变化和环境监测等应用。
2.NOAA系列卫星:美国国家海洋和大气管理局(NOAA)运营的卫星系统,主要用于气象预报和海洋监测。
NOAA卫星携带多种传感器,包括红外线和微波辐射计,用于监测大气温度、云层、气溶胶、海洋温度等气象和海洋参数。
3. Sentinel系列卫星:欧洲空间局(ESA)运营的Sentinel系列卫星是欧洲自主研发的卫星系统,用于实现全球环境和气候监测。
Sentinel卫星搭载了多种传感器,包括雷达和多光谱仪等,可以提供高分辨率和全球覆盖的地表图像。
4. MODIS传感器:MODIS(Moderate Resolution Imaging Spectroradiometer)传感器是NASA的一个重要遥感工具,搭载在Terra和Aqua卫星上。
该传感器可以提供多光谱图像,用于监测全球气候变化、植被生长和陆地表面特征等。
5. AVHRR传感器:AVHRR(Advanced Very High Resolution Radiometer)传感器是美国国家气象局(NWS)和NOAA联合研发的传感器,主要用于气候和海洋监测。
AVHRR传感器可以提供地表温度、云层、海洋色彩等信息。
6. Hyperion传感器:Hyperion是美国地质调查局(USGS)运作的一种高光谱传感器,搭载在Landsat卫星上。
该传感器可以提供高光谱图像,用于监测地表物质的组成和特征。
7. SAR传感器:SAR(Synthetic Aperture Radar)传感器可以通过雷达波束发射和接收来获取地表反射率数据。
57. 如何通过传感器实现物品追踪?57、如何通过传感器实现物品追踪?在当今数字化和智能化的时代,物品追踪技术变得越来越重要。
无论是在物流领域确保货物的准确运输和交付,还是在生产线上监控原材料和成品的流向,又或是在个人生活中寻找丢失的物品,传感器都发挥着关键作用。
那么,究竟如何通过传感器来实现物品追踪呢?传感器是一种能够感知和检测物理世界中各种信息的装置,它可以将被测量的物理量转换为电信号或其他易于处理和传输的信号。
要实现物品追踪,首先需要选择合适的传感器类型。
常见的用于物品追踪的传感器包括:GPS 传感器:全球定位系统(GPS)传感器是大家比较熟悉的一种。
它通过接收来自卫星的信号,能够准确地确定物品所在的地理位置,精度可以达到几米甚至更高。
在物流运输中的车辆、贵重物品的追踪等方面广泛应用。
RFID 传感器:射频识别(RFID)技术利用无线电波来识别和读取附着在物品上的标签信息。
这些标签可以存储物品的相关数据,如编号、名称、批次等。
当标签进入阅读器的电磁场范围时,数据就会被读取,从而实现对物品的追踪。
加速度传感器:能够测量物品的加速度变化。
通过分析加速度的数据,可以了解物品的运动状态,比如是否在移动、移动的速度和方向等。
蓝牙传感器:基于蓝牙技术,通过与附近的蓝牙设备进行通信来确定物品的相对位置。
常用于近距离的物品追踪,比如在室内寻找钥匙、钱包等。
选择好传感器后,接下来就是如何将传感器安装在物品上。
安装方式要根据物品的特性和使用环境来决定。
对于体积较大的物品,如车辆、集装箱等,可以将传感器安装在较为明显和稳固的位置;对于小型物品,可能需要将传感器嵌入到物品内部,或者使用特殊的封装方式来保护传感器。
数据传输也是实现物品追踪的重要环节。
传感器采集到的数据需要及时、准确地传输到数据处理中心。
常见的数据传输方式包括:无线网络:如 WiFi、移动网络(4G、5G 等),能够实现远距离的数据传输,但可能会受到信号覆盖和网络稳定性的影响。
Landsat陆地卫星遥感影像数据1.美国陆地卫星计划“地球资源技术卫星”计划最早始于1967年,美国国家航空与航天局(NASA)受早期气象卫星和载人宇宙飞船所提供的地球资源观测的鼓舞,开始在理论上进行地球资源技术卫星系列的可行性研究。
美国陆地卫星(Landsat)系列卫星由美国航空航天局(NASA)和美国地质调查局(USGS)共同管理。
陆地卫星是美国用于探测地球资源与环境的系列地球观测卫星系统,曾称作地球资源技术卫星(ERTS)。
陆地卫星的主要任务是调查地下矿藏、海洋资源和地下水资源,监视和协助管理农、林、畜牧业和水利资源的合理使用,预报农作物的收成,研究自然植物的生长和地貌,考察和预报各种严重的自然灾害(如地震)和环境污染,拍摄各种目标的图像,以及绘制各种专题图(如地质图、地貌图、水文图)等。
1972年7月23日,第一颗陆地卫星(Landsat1)成功发射,后来发射的这一系列卫星都带有陆地卫星(Landsat)的名称。
到1999年4月15日,共成功发射了六颗陆地卫星,它们分别命名为陆地卫星1到陆地卫星5(Landsat1—landsat5)以及陆地卫星7(Landsat7),其中陆地卫星6的发射失败了。
时隔24年,2013年2月11日Landsat 系列卫星Landsat8发射升空,经过100天的测试运行后开始获取影像。
2.陆地卫星的轨道参数陆地卫星的轨道设计为与太阳同步的近极地圆形轨道,以确保北半球中纬度地区获得中等太阳高度角(25°一30°)的上午成像,而且卫星以同一地方时、同一方向通过同一地点.保证遥感观测条件的基本一致,利于图像的对比。
如Landsat 4、5轨道高度705km.轨道倾角98.2°,卫星由北向南运行,地球自西向东旋转,卫星每天绕地球14.5圈,每天在赤道西移159km,每16天重复覆盖一次,穿过赤道的地方时为9点45分,覆盖地球范围N81°—S81.5°。
国际上主要遥感传感器参数1、法国SPOT卫星法国SPOT-4卫星轨道参数:轨道高度:832公里轨道倾角:98.721o轨道周期:101.469分/圈重复周期:369圈/26天降交点时间:上午10:30分扫描带宽度:60 公里两侧侧视:+/-27o 扫描带宽:950公里波谱范围:多光谱XI B1 0.50 – 0.59um20米分辨率B2 0.61 – 0.68umB3 0.78 – 0.89umSWIR 1.58 – 1.75um全色P10米B2 0.61 – 0.68umSPOT是世界上首先具有立体成像能力的遥感卫星,其侧视功能具有很强的实用性和很大的应用潜力,但SPOT系统前几颗卫星设计的不同轨迹立体观察存在着未曾想到的问题,由垂直观察转向侧视时,反光镜旋转引起卫星姿态的变化和不稳定,造成立体对的精度很不稳定。
2、ERS卫星ERS-1、ERS-2 欧空局分别于1991年和1995年发射。
携带有多种有效载荷,包括侧视合成孔径雷达(SAR)和风向散射计等装置),由于ERS-1(2)采用了先进的微波遥感技术来获取全天候与全天时的图象,比起传统的光学遥感图象有着独特的优点。
卫星参数:椭圆形太阳同步轨道轨道高度:780公里半长轴:7153.135公里轨道倾角:98.52o飞行周期:100.465分钟每天运行轨道数:14 -1/3降交点的当地太阳时:10:30空间分辨率:方位方向<30米距离方向<26.3米幅宽:100公里3、日本JERS-1卫星JERS-1日本宇宙开发事业团于1992年发射。
用于国土调查、农林渔业、环境保护、灾害监测。
负载全天候、高分辨率的主动微波成像传感器——合成孔径雷达(SAR)和高分辨率的多光谱辐射仪——光学传感器(OPS)。
卫星参数:太阳同步轨道赤道上空高度:568.023公里半长轴:6946.165公里轨道倾角:97.662o周期:96.146分钟轨道重复周期:44天经过降交点的当地时间:10:30-11:00空间分辨率:方位方向18米距离方向18米幅宽:75公里4、RADARSAT-2RADARSAT-2具有3米高分辨率成像能力,多种极化方式使用户选择更为灵活,根据指令进行左右视切换获取图像缩短了卫星的重访周期,增加了立体数据的获取能力。
第42卷第2期航天返回与遥感2021年4月SPACECRAFT RECOVERY & REMOTE SENSING139基于两种卫星传感器的不透水面提取指数比较马羽赫 赵牡丹 周鹏 王建(西北大学城市与环境学院,西安 710127)摘要不透水面是城市化过程和环境品质影响评价的重要指标,快速、精确地从遥感影像上提取不透水面信息对分析城市扩张、地表结构变化和评价生态环境品质具有重要意义。
前人已经提出了多种指数模型来识别不透水面信息,但是,裸土和沙地的干扰始终是困扰不透水面提取精度的一个主要因素。
文章以分布有大量裸土和沙地信息的银川市部分区域为研究区,使用归一化建筑指数(Normalized Difference Built-up Index,NDBI)、比值居民地指数(Ratio Resident-area Index,RRI)、遥感建筑用地指数(Index Based Built-up Index,IBI)、垂直不透水层指数(Perpendicular Impervious Index,PII)和增强型不透水面指数(Enhancement Normalized Difference Impervious Surface Index,ENDISI)这5种目前常用的不透水面提取指数以及2个中等分辨率的传感器(Landsat8 OLI和Sentinel-2 MSI)数据,系统对比了10种不同指数模型和传感器组合下的不透水面提取结果,进而分析5种指数模型的差异性、对不透水面和裸土沙地的区分程度以及对不同传感器数据的响应效果。
研究表明:5种不透水面指数在2种数据源下均可以基本提取出不透水面信息,其中指数RRI的提取结果总体精度最高;指数PII和RRI区分不透水面和裸土沙地的效果最好;指数NDBI、IBI和RRI对Sentinel-2 MSI的响应效果较好,指数ENDISI 和PII对两种数据响应效果较一致。
卫星传感器参数一览表Landsat MSS和TM传感器系统特征Landsat MSS Landsat TM波段光谱分辨率(mμ)辐射灵敏度(PNEΔ)①波段光谱分辨率(mμ)辐射灵敏度(PNEΔ)4②0.5~0.6 0.57 1 0.45~0.52 0.850.6~0.70.57 20.52~0.600.5 60.7~0.80.65 30.63~0.690.5 70.8~1.10.70 40.76~0.900.58③10.4~12.6 1.4K(TNEΔ) 5 1.55~1.75 1.0610.40~12.50.5(TNEΔ)72.08~2.352.4星下点瞬时视场第4~7波段为79m×79m;第8波段为240m×240m第1~5波段、7波段为30m×30m;第6波段为120m×120m数据获取数率15Mb/s 85Mb/s 量化等级6bit 8bit地球覆盖Landsat-1/2/3:18天Landsat-4/5:16天Landsat-4/5:16天高度919Km 705Km 刈幅宽185Km 185Km 倾角99° 98.2°注:①辐射灵敏度对于反射通道来说,是用百分比表示地噪声等效反射差(PNEΔ),而热红外波段表示的是温差(TNEΔ)。
② MSS的第4、5、6和7波段在Landsat-4/5上被重新编号为1、2、3和四波段。
③ MSS的第8波段仅在Landsat-3上才有。
NOAA地球静止轨道环境业务卫星(GOES)成像传感器系统特性GOES-8/10/12的波段光谱分辨率(mμ)空间分辨率(Km)波段用途1 0.52~0.72 1×1 检测云、污染物和霾,识别强烈风暴2 3.78~4.03 4×4 雾检测,白昼区分水、云、雪或冰云,检测火灾和火山,夜间检测海表面温度(SST)3 6.47~7.02 8×8 估算中、高层水汽,检测对流,追踪中层大气运动4 10.2~11.2 4×4 风迹云,强风暴,云顶高度,暴雨5 11.5~12.5 4×4 识别低空水汽,海表温度、尘埃和火山灰Landsat-7 ETM+和EO-1传感器的比较Landsat-7 ETM+ EO-1 ALI波段光谱分辨率(mμ)星下点空间分辨率(m)波段光谱分辨率(mμ)星下点空间分辨率(m)1 0.450~0.515 30×30 MS-1 0.433~0.45330×302 0.525~0.605 30×30 MS-1 0.450~0.51030×303 0.630~0.690 30×30 MS-2 0.525~0.60530×304 0.750~0.900 30×30 MS-3 0.630~0.69030×305 1.55~1.75 30×30 MS-4 0.775~0.80530×306 10.40~12.50 60×60 MS-4’ 0.845~0.89030×307 2.08~2.35 30×30 MS-5’ 1.20~1.30 30×30MS-5 1.55~1.75 30×30MS-7 2.08~2.35 30×30全色 0.480~0.690 10×10EO-1Hyperion高光谱传感器有0.4~2.4mμ的220个波段,空间分辨率为30m×30m8(全色) 0.52~0.90 15×15LEISA大气改正器有0.9~1.6mμ的256个波段,空间分辨率为250m×250m传感器技术扫描镜光谱仪高级陆地成像仪是推扫辐射计,Hyperion是推扫光谱辐射计;LAC使用面阵列刈幅宽度 185Km ALI=37Km;Hyperion=7.5Km;LAC= 185Km 数据传输率 31450Km2面积上每天250景影像-重访周期 16天 16天轨道和倾角705Km,太阳同步,倾角98.2°,经过赤道上空时间:上午10:00前后15分钟705Km,太阳同步,倾角98.2°,经过赤道上空时间:滞后Landsat-7卫星1分钟发射日期 1999年4月15日 2000年11月21日NOAA 甚高分辨率辐射计的特征参数波段NOAA-6/8/10光谱分辨率(m μ)NOAA-7/9/11/12/13/14光谱分辨率(m μ)NOAA-15/16/17 A VHRR/3光谱分辨率(m μ)波段用途1 0.580~0.68 0.580~0.68 0.580~0.68白天的云、雪、冰植被制图;用于计算NDVI 2 0.725~1.10 0.725~1.10 0.725~1.10水陆边界、冰、雪和植被制图;用于计算NDVI 3 3.55~3.93 3.55~3.933A :1.58~1.643B :3.55~3.93热目标(火山、深林火灾)监测,夜间云制图4 10.50~11.50 10.30~11.30 10.30~11.30白天/夜间云和地表温度制图5 无 11.50~12.50 11.50~12.50云和地表温度,白天和夜间云制图,消除大气中水汽程辐射星下点IFOV 1.1Km ×1.1Km 刈幅宽度星下点为2700Km注:TIROS-N 发射于1978年10月13日;NOAA-6发射于1979年6月27日;NOAA-7发射于1981年6月23日;NOAA-8发射于1983年3月28日;NOAA-9发射于1984年12月12日;NOAA-10发射于1986年9月17日;NOAA-11发射于1988年9月24日;NOAA12-发射于1991年5月14日;NOAA-13发射于1993年八月9日;NOAA-14发射于1994年12月30日;NOAA (K )-15发射于1998年5月13日;NOAA (L )-16发射于2000年9月21日;NOAA-17发射于2002年6月24日。
一、Landsat卫星波段波长范围分辨率颜色特点1 0.45~0.53 30m 蓝波段对叶绿素和叶色素浓度敏感,对水体穿透强,用于区分土壤与植被、落叶林与针叶林、近海水域制图,有助于判别水深及水中叶绿素分布以及水中是否有水华等。
2 0.52~0.60 30m 绿波段对健康茂盛植物的反射敏感,对绿的穿透力强,用于探测健康植物绿色反射率,按绿峰反射评价植物的生活状况,区分林型,树种和反映水下特征。
在所有的波段组合中,TM 波段-2 的分类精度是最高的,达到了75.6%。
3 0.63~0.69 30m 红波段叶绿素的主要吸收波段,反映不同植物叶绿素吸收,植物健康状况,用于区分植物种类与植物覆盖率,其信息量大多为可见光最佳波段,广泛用于地貌,岩性,土壤,植被,水中泥沙等方面4 0.76~0.90 30m 近红外对无病害植物近红外反射敏感,对绿色植物类别差异最敏感,为植物通用波段,用于目视调查,作物长势测量,水域测量,生物量测定及水域判别。
5 1.55~1.75 30m 中红外对植物含水量和云的不同反射敏感,处于水的吸收波段,一般1.4-1.9UM内反映含水量,用于土壤湿度植物含水量调查,水分善研究,作物长势分析,从而提高了区分不同作用长势的能力,可判断含水量和雪、云。
在TM7个波段光谱图像中,一般第5个波段包含的地物信息最丰富。
6 10.40~12.50 120m 远红外可以根据辐射响应的差别,区分农林覆盖长势,差别表层湿度,水体岩石,以及监测与人类活动有关的热特征,作温度图,植物热强度测量1、传感器:Spot1,2,3上搭载的传感器HRV采用CCD(charge coupled device )S作为探测元件来获取地面目标物体的图像。
HRV具有多光谱XS具和PA两种模式,其余全色波段具有10m 的空间分布率,多光谱具有20m的空间分布率。
Spot4上搭载的是HRVIR传感器和一台植被仪。
pot5上搭载包括两个高分辨几何装置(HRG)和一个高分辨率立体成像装置(HRS)传感器。
一、Landsat卫星
波段波长范围分辨率颜色特点
1~30m蓝波段对叶绿素和叶色素浓度敏感,对水体穿透强,用于区分土壤与植被、落叶林与针叶林、近海水域制图,有助于判别水深及水中叶绿素分布以及水中是否有水华等。
2~30m绿波段对健康茂盛植物的反射敏感,对绿的穿透力强,用于探测健康植物绿色反射率,按绿峰反射评价植物的生活状况,区分林型,树种和反映水下特征。
在所有的波段组合中,TM 波段-2 的分类精度是最高的,达到了 %。
3~30m红波段叶绿素的主要吸收波段,反映不同植物叶绿素吸收,植物健康状况,用于区分植物种类与植物覆盖率,其信息量大多为可见光最佳波段,广泛用于地貌,岩性,土壤,植被,水中泥沙等方面
4~30m近红外对无病害植物近红外反射敏感,对绿色植物类别差异最敏感,为植物通用波段,用于目视调查,作物长势测量,水域测量,生物量测定及水域判别。
5~30m中红外对植物含水量和云的不同反射敏感,处于水的吸收波段,一般内反映含水量,用于土壤湿度植物含水量调查,水分善研究,作物长势分析,从而提高了区分不同作用长势的能力,可判断含水量和雪、云。
在TM7个波段光谱图像中,一般第5个波段包含的地物信息最丰富。
6~120m远红外可以根据辐射响应的差别,区分农林覆盖长势,差别表层湿度,水体岩石,以及监测与人类活动有关的热特征,作温度图,植物热强度测量
7~30m中红外为地质学家追加波段,处于水的强吸收带,水体呈黑色,可用于区分主要岩石类型,岩石的热蚀度,探
1、传感器:
Spot1,2,3上搭载的传感器HRV采用CCD(charge coupled device )S作为探测元件来获取地面目标物体的图像。
HRV具有多光谱XS具和PA两种模式,其余全色波段具有10m的空间分布率,多光谱具有20m的空间分布率。
Spot4上搭载的是HRVIR传感器和一台植被仪。
pot5上搭载包括两个高分辨几何装置(HRG)和一个高分辨率立体成像装置(HRS)传感器。
2、波普段
1)绿谱段(500~590nm):该谱段位于植被叶绿素光谱反射曲线最大值的波长附近,同时位于水体最小衰减值的长波一边,这样就能探测水的混浊度和10~20m的水深。
2)红谱段(610—680nm):这一谱段与陆地卫星的MSS的第5通道相同(专题制图仪TM仍然保留了这一谱段),它可用来提供作物识别、裸露土壤和岩石表面的情况。
3)近红外谱段(790—890nm):能够很好的穿透大气层。
在该谱段,植被表现的特别明亮,水体表现的非常黑。
尽管硅的光谱灵敏度可以延伸到1100urn,但设计时为了避免大气中水汽的影响,并没有把近红外谱段延伸到990nm。
同时,红和近红外谱段的综合应用对植被和生物的研究是相当有利的。
该系统的多谱段图像配准精度相当高,通常采用二向色棱镜进行光谱分离,粗制多谱段图像的配准精度误差小于个象元。
3、特点
SPOT卫星比美国“陆地卫星”的优越之处是,SPOT卫星图像的分辨率可达10~20m,超过了“陆地卫星”系统,加之SPOT卫星可以拍摄立体像对,因而在绘制基本地形图和专题图方面将会有更广泛的应用。
为了达到这些要求,SPOT卫星在轨道设计、飞行平台和传感器等方面都有它自己的独到之处。
三、Modis传感器
1、简介
modis的全称为中分辨率成像光谱仪(moderate-resolution imaging spectroradiometer),是搭载在terra 和aqua卫星上的一个重要的传感器,是卫星上唯一将实时观测数据通过x波段向全世界直接广播,并可以免费接收数据并无偿使用的星载仪器。
2、光谱波段
MODIS是当前世界上新一代“图谱合一”的光学遥感仪器,有36个离散光谱波段,光谱范围宽,从微米(可见光)到微米(热红外)全光谱覆盖。
3、用途
可用于对陆表、生物圈、固态地球、大气和海洋进行长期全球观测。
4、分辨率
中分辨率成像光谱仪(MODIS)最大空间分辨率可达250米,扫描宽度2330公里。
MODIS是CZCS、AVHRR、HIRS和TM等仪器的继续。
MODIS是被动式成像分光辐射计。
共有490个探测器,分布在36个光谱波段,从微米(可见光)到微米(热红外)全光谱覆盖。
5、特点和优势
MODIS仪器与NOAA卫星和陆地卫星相比,有以下特点和优势:
1.空间分辨率大幅提高。
空间分辨率提高了一个量级,由NOAA的千米级提高到了MODIS的百米级。
2.时间分辨率有优势。
一天可过境4次,对各种突发性、快速变化的自然灾害有更强的实时监测能力。
3.光谱分辨率大大提高。
有36个波段,这种多通道观测大大增强了对地球复杂系统的观测能力和对地表类型的识别能力。