二次曲面的几个性质
- 格式:pdf
- 大小:120.74 KB
- 文档页数:4
第七章 二次型与二次曲面二次型的定义定义:n 个变量n ,x ,,x x 21的二次齐次多项式()ji ij n i nj j i ij n a a ,x x a ,x ,,x x Q ==∑∑==1121称为n 元二次型或二次形式。
当系数ij a 取实数时,称为实二次型;ij a 取复数时,称为复二次型。
例:()3221213213x x x x x ,x ,x x Q +-=例:()233221213212x x x x x x x ,x ,x x Q ++-=()()()⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=++++++++++++===∑∑==n nn n n n n n nnn n n n n nn n n ji ij n i nj j i ij n x x x a a a a a a a a a ,x ,,x x x a x x a x x a x x a x a x x a x x a x x a x a a a ,x x a ,x ,,x x Q 212122221112112122211222222122111211221111121令()()TijTn A A a ,A ,x ,,x x x ===则,21 ,且二次型可表示为 ()Ax x ,x ,,x x Q Tn = 21,称A 为二次型的矩阵。
()x x x x x x x ,x ,x x Q T ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=+-=02302302102113322121321 例:写出下列二次型对应的矩阵,假设A 为实对称矩阵,且r (A )=n .()∑∑===n i nj j i ij n x x |A|A ,x ,,x x Q 1121矩阵的相合设n n ,β,,ββ,,α,,αα 2121是n 维线性空间V 的两组基,这两组基的过渡矩阵为P ,即()()P ,α,,αα,β,,ββn n 2121= 设向量V ∈α在两组基下的坐标分别为()()Tn Tn ,y ,,y y ,y ,x ,,x x x 2121==则有坐标变换公式(也称可逆的线性替换):x P y Py x 1-==或。
第六章 二次曲面的一般理论教学目的: 本章讨论了一般二次曲面的渐近方向、中心、切线、切平面、径面奇向、主径面与主方向等重要概念,从不同角度对二次曲面进行了分类.研究了二次曲面的几何性质,并通过坐标变换和不变量、半不变量两种形式,化二次曲面的一般方程为规范方程,对二次曲面进行了分类和判定,是二次曲面理论的推广和扩充.教学重难点: 通过坐标变换和运用不变量、半不变量化二次曲面的一般方程为规范方程,既是重点又是难点. 基本概念二次曲面: 在空间,由三元二次方程022222244342414231312233222211=+++++++++a z a y a x a yz a xz a xy a z a y a x a (1)所表示的曲面.虚元素:空间中,有序三复数组),,(z y x 叫做空间复点的坐标,如果三坐标全是实数,那么它对应的点是实点,否则叫做虚点二次曲面的一些记号≡),,(z y x F 44342414231312233222211222222a z a y a x a yz a xz a xy a z a y a x a +++++++++ 141312111),,(a z a y a x a z y x F +++≡242323122),,(a z a y a x a z y x F +++≡ 343323133),,(a z a y a x a z y x F +++≡ 443424144),,(a z a y a x a z y x F +++≡yz a xz a xy a z a y a x a z y x 231312233222211222),,(+++++≡Φz a y a x a z y x 1312111),,(++≡Φ z a y a x a z y x 2322122),,(++≡Φz a y a x a z y x 3323133),,(++≡Φ z a y a x a z y x 3424144),,(++≡Φ即有恒等式成立: ≡),,(z y x F ),,(),,(),,(),,(4321z y x F z y x zF z y x yF z y x xF +++),,(),,(),,(),,(321z y x z z y x y z y x x z y x Φ+Φ+Φ≡Φ二次曲面),,(z y x F 的系数矩阵: ⎪⎪⎪⎪⎪⎭⎫⎝⎛=44342414343323132423221214131211a a a a a a a a a a a a a a a a A 而由),,(z y x Φ的系数矩阵为 ⎪⎪⎪⎭⎫ ⎝⎛=*332313232212131211a a a a a a a a a A 二次曲面(1)的矩阵A 的第一,第二,第三,与第四行的元素分别是),,(1z y x F ,),,(2z y x F ,),,(3z y x F ,),,(4z y x F 的系数。
二次曲面的形状二次曲面是一个重要的数学概念,在几何学以及数学分析中都有广泛的应用。
本文将介绍二次曲面的形状,并探讨其一些重要特性。
二次曲面是由二次方程定义的曲面,其一般方程可以表示为:Ax^2 + By^2 + Cz^2 + Dxy + Exz + Fyz + Gx + Hy + Iz + J = 0其中,A、B、C、D、E、F、G、H、I和J是常数,且不全为零。
通过这个方程,我们可以推断二次曲面的形状种类。
根据方程的系数,我们可以将二次曲面分为多种情况:1. 椭圆面:当A、B和C的符号都相同时,且AB和AC的比值小于1时,二次曲面呈现为一个椭圆形状。
2. 双曲面:当A、B和C的符号都相同时,且AB和AC的比值大于1时,二次曲面呈现为一个双曲线形状。
3. 抛物面:当A、B和C的符号有一个不同,且D、E和F等于零时,二次曲面呈现为一个抛物线形状。
4. 锥面:当A、B和C有一个为零时,且D、E和F等于零时,二次曲面呈现为一个尖锥形状。
除了以上情况,二次曲面还可能呈现其他特殊形态,如点、线和平面。
除了形状种类外,二次曲面还有一些重要的特性需要了解:1. 对称性:二次曲面通常具有一些特殊的对称性,如旋转对称性、对称轴等。
2. 曲率:二次曲面在不同点上具有不同的曲率,对于椭圆面和双曲面来说,曲率可以有正和负两种情况。
3. 焦点和直纹:对于椭圆面和双曲面来说,焦点和直纹是其重要特性,可以通过二次曲面的方程来确定。
了解二次曲面的形状和特性,对于解决几何问题、优化问题以及建模等领域都非常重要。
掌握了这些基础知识,我们可以更好地理解和运用二次曲面的相关概念。
总结起来,二次曲面的形状多种多样,可以根据方程的系数判断具体形态。
在研究二次曲面时,我们还需了解其特性,如对称性、曲率、焦点和直纹等。
掌握这些知识,对于深入理解数学和几何学都具有重要意义。
二次曲线的分类和二次曲面的分类-概述说明以及解释1.引言1.1 概述概述:二次曲线和二次曲面是解析几何学中重要的研究对象,它们具有许多美妙的几何性质。
在本文中,我们将讨论二次曲线和二次曲面的分类,包括椭圆、抛物线、双曲线、椭球面、抛物面和双曲面等。
通过对这些曲线和曲面的特点和性质进行深入的研究,我们可以更好地理解它们在几何学中的应用和意义。
本文将分析这些曲线和曲面的方程、图像和几何特征,帮助读者全面了解它们的分类和区分。
希望本文能够对二次曲线和二次曲面的研究有所启发,并为相关领域的学习和研究提供参考和帮助。
文章结构部分内容如下:1.2 文章结构:本文主要分为引言、正文和结论三个部分。
在引言部分,将概述二次曲线和二次曲面的概念,说明文章结构和目的。
在正文部分,将详细讨论二次曲线和二次曲面的分类,包括椭圆、抛物线、双曲线以及椭球面、抛物面、双曲面的形态和特点。
最后在结论部分,对文章进行总结,并探讨二次曲线和二次曲面在实际应用中的意义,展望未来可能的发展方向。
整个文章结构严谨有序,逻辑清晰,旨在帮助读者更深入地了解二次曲线和二次曲面的分类和特性。
文章1.3 目的:本文旨在对二次曲线和二次曲面进行分类和介绍,帮助读者更好地理解和区分不同类型的二次曲线和曲面。
通过本文的阐述,读者将了解椭圆、抛物线、双曲线、椭球面、抛物面和双曲面的定义、性质和特点。
同时,本文也旨在展示二次曲线和曲面在数学、物理和工程等领域的应用,以及未来对其研究的展望。
通过本文的阅读,读者将深入了解二次曲线和曲面的重要性和应用价值。
": {}}}}请编写文章1.3 目的部分的内容2.正文2.1 二次曲线的分类二次曲线是一个二次方程所描述的平面曲线。
在代数几何学中,二次曲线可以分为三种基本类型:椭圆、抛物线和双曲线。
这些曲线在平面上具有不同的几何性质和形态。
2.1.1 椭圆椭圆是一个闭合的曲线,其定义为所有到两个定点的距离之和等于一个常数的点的集合。
二次曲线在数学中的性质二次曲线是数学中一个重要的概念,它在几何学和代数学中都有广泛的应用。
二次曲线由二次方程定义,通常表示为Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0。
在这篇文章中,我们将探讨二次曲线的性质,包括它的形状、焦点、对称性以及与坐标轴的关系。
首先,我们来讨论二次曲线的形状。
根据二次方程的系数,二次曲线可以是椭圆、抛物线或双曲线。
当系数A、B和C都不为零时,二次曲线是椭圆。
椭圆是一个闭合的曲线,它的形状类似于一个圆或椭圆形。
当系数A和C相等,而系数B为零时,二次曲线是抛物线。
抛物线是一个开口向上或向下的曲线,它具有对称性和无限延伸性。
当系数A和C有相反的符号时,二次曲线是双曲线。
双曲线有两个分支,它们的形状类似于一个开口向左或向右的抛物线。
其次,我们来讨论二次曲线的焦点。
焦点是二次曲线的一个重要属性,它在椭圆和双曲线中起着关键的作用。
对于椭圆和双曲线,焦点是曲线上到两个定点的距离之和等于常数的点。
这个常数被称为焦距。
焦点与曲线的形状和位置有关,它可以帮助我们确定二次曲线的几何特性。
接下来,我们来探讨二次曲线的对称性。
二次曲线可以具有对称轴,它是曲线的一个轴线,将曲线分成两个对称的部分。
对称轴可以是垂直于x轴或y轴的直线,也可以是倾斜的直线。
对称轴的位置和方向取决于二次曲线的方程。
通过找到对称轴,我们可以更好地理解二次曲线的形状和特性。
最后,我们来讨论二次曲线与坐标轴的关系。
二次曲线与x轴和y轴的交点称为顶点。
顶点是二次曲线的一个重要特征,它可以帮助我们确定曲线的位置和方向。
当二次曲线是抛物线时,顶点是曲线的最高点或最低点。
当二次曲线是椭圆或双曲线时,顶点是曲线的中心点。
总结起来,二次曲线在数学中有着重要的性质。
通过了解二次曲线的形状、焦点、对称性以及与坐标轴的关系,我们可以更好地理解和分析二次曲线的特性。
这些性质在几何学、代数学以及应用数学中都有广泛的应用,帮助我们解决各种实际问题。
二次曲面方程1. 什么是二次曲面方程?在数学中,二次曲面是一个三维空间中的曲面,可以用一个二次方程来描述。
这个二次方程通常包含了三个变量:x、y和z。
一般来说,一个二次曲面可以是一个椭球体、一个双曲抛物面、一个椭圆柱体或者一个双曲柱体。
2. 一般形式的二次曲面方程一般形式的二次曲面方程可以表示为:Ax^2 + By^2 + Cz^2 + Dxy + Exz + Fyz + Gx + Hy + Iz + J = 0其中A、B和C是非零常数,并且D、E和F是任意实数。
3. 不同类型的二次曲面a) 椭球体椭球体是一种平滑的闭合表面,它在每个坐标轴上都有不同的半径。
它的方程可以写成:(x - h)2/a2 + (y - k)2/b2 + (z - l)2/c2 = 1其中(h, k, l)是椭球体的中心点坐标,a、b和c分别代表在x、y和z轴上的半径。
b) 双曲抛物面双曲抛物面是一个开口向上或向下的曲面。
它的方程可以写成:(x - h)2/a2 + (y - k)2/b2 - (z - l)2/c2 = 1其中(h, k, l)是双曲抛物面的顶点坐标,a、b和c分别代表在x、y和z轴上的半径。
c) 椭圆柱体椭圆柱体是一个沿着一个或多个坐标轴延伸的椭圆。
它的方程可以写成:(x - h)2/a2 + (y - k)2/b2 = 1其中(h, k)是椭圆柱体底部中心点坐标,a和b分别代表在x和y轴上的半径。
d) 双曲柱体双曲柱体是一个沿着一个或多个坐标轴延伸的双曲线。
它的方程可以写成:(x - h)2/a2 - (y - k)2/b2 = 1其中(h, k)是双曲柱体底部中心点坐标,a和b分别代表在x和y轴上的半径。
4. 如何确定二次曲面类型?通过观察二次曲面方程中各项系数的符号,我们可以确定二次曲面的类型。
如果A、B和C的符号都相同,那么二次曲面是一个椭球体。
如果A和C的符号相反,并且B为正数,那么二次曲面是一个双曲抛物面。
7.9 二次曲面与平面解析几何中规定的二次曲线相类似,我们把三元二次方程所表示的曲面叫做二次曲面.关于一般的三元方程0),,(=z y x F 所表示的曲面的形状,已难以用描点法得到,本节采用称之为截痕法的方式来研究二次曲面,即用坐标面和平行于坐标面的平面与曲面相截,考察其交线(即截痕)的形状,然后加以综合从而了解曲面的全貌.作为例子研究椭球面的方程1222222=++cz b y a x并化出其图形.(1) 对称性: 方程的图形关于各个坐标面及原点对称(2) 在坐标轴上的截距: 方程的图形在x 轴、y 轴、z 轴上的截距分别是c b a ±±±,,(c b a ,,分别称为椭球面的半轴).并且由1,1,1222222≤≤≤cz b y a x 得方程的图形位于平面c z b y a x ±=±=±=.,为界的长方体内.(3) 在坐标面上的截痕: 方程的图形在xoy 面、yoz 面、xoz 面上的截痕分别为椭圆⎪⎩⎪⎨⎧==+012222z b y a x ⎪⎩⎪⎨⎧==+012222x c z b y ⎪⎩⎪⎨⎧==+012222y c z ax (4) 平行截痕,研究与xoy 面平行的平面h z =(c h <)与方程图形的截痕,截痕曲线为 ⎪⎩⎪⎨⎧==++h z cz b y a x 1222222 或 ⎪⎪⎩⎪⎪⎨⎧==-+-hz c h b y c h a x 1)1()1(22222222这是一个在平面h z =上以221c h a -和221ch b -为半轴的椭圆.当h 由0逐渐增大时,两个半轴逐渐减少,当c h =时,截痕缩为一点.同样,分别讨论与yoz 面及xoz 面平行的平面与方程图形的截痕,它们也是椭圆.综合以上讨论可知,方程的图形如图7.40示,今后称这个曲面为椭球面. 当c b a ==时,椭球面变为球面.当b a =时椭球方程为122222=++cz a y x 它是椭圆⎪⎩⎪⎨⎧==+012222x c z b y 或 ⎪⎩⎪⎨⎧==+012222y c z ax 绕z 轴旋转而成的旋转椭球面,它在平行于xoy 面的平面上的截痕都是圆(图7.40)除椭球面外,常见的二次曲面有以下几种.下面我们列出它们的标准方程与图. 1 椭圆抛物面(图7.41)pz by a x22222=+ )0,0,0(≠>>p b a2 单叶双曲面(图7.42)1222222=-+cz b y a x )0,0,0(>>>c b a3双叶双曲面(图7.43)1222222-=-+cz b y a x )0,0,0(>>>c b a4双曲抛物面(图7.44)pz by a x 22222=- )0,0,0(≠>>p b a5锥面(图7.45)0222222=-+cz b y a x )0,0,0(>>>c b a图7.40 图7.41图7。