新课标苏教版小学六年级(下册)数学毕业总复习知识点概括归纳
- 格式:doc
- 大小:76.50 KB
- 文档页数:9
苏教版数学六年级下册知识点总结与归纳第一单元扇形统计图一、扇形统计图的意义:用整个圆的面积表示总数,用圆内各个扇形面积表示各部分数量同总数之间的关系。
也就是各部分数量占总数的百分比(因此也叫百分比图)。
二、常用统计图的优点:1、条形统计图:可以清楚的看出各种数量的多少。
2、折线统计图:不仅可以看出各种数量的多少,还可以清晰看出数量的增减变化情况。
3、扇形统计图:能够清楚的反映出各部分数量同总数之间的关系。
三、扇形面积的大小表示的意义:在同一个圆中,扇形的大小与这个扇形的圆心角的大小有关,圆心角越大,扇形越大。
(因此扇形面积占圆面积的百分比,同时也是该扇形圆心角度数占圆周角度数的百分比。
)第二单元圆柱和圆锥知识点一:圆柱、圆锥的认识相关概念:①圆柱由一个上底面、一个下底面和一个侧面组成。
上下底面是两个完全相同的圆形;侧面是一个曲面。
②圆柱的高:上下底面之间的距离。
圆柱有无数条高,每条高相等。
③圆锥由一个底面和一个侧面组成。
底面是一个圆形;侧面是一个曲面。
④圆锥的高:圆锥的定点到底面圆心的距离。
圆锥只有一条高。
知识点二:圆柱侧面积的计算方法理解掌握:圆柱的侧面展开图:有可能是长方形,也有可能是正方形。
①假如是长方形,那么长方形的长a,就是圆柱底面的周长C,宽b 就是圆柱的高h。
长方形的面积S=a×b=C×h=2πr×h=2πrh,就是圆柱的侧面积。
②假如是正方形,那么正方形的边长a既等于圆柱底面的周长C,也等于圆柱的高h,也就是说底面周长和高相等。
正方形的面积S=a×a=C×h=2πr×h=2πrh,就是圆柱的侧面积。
所以圆柱的侧面积公式=Ch或者=2πrh或者=πdh知识点三:圆柱表面积的计算方法理解掌握:圆柱的表面积由一个侧面加上两个底面组成,计算方法是S表=S侧+2S底,因为S侧=Ch,S底=πr2,所以S表=Ch+2πr2=2πrh+2πr2用乘法分配率得圆柱的表面积公式=2πr(h+r)知识点四:圆柱体积的计算方法理解掌握:利用我们以前学过的长方体的体积公式V长方体=S底×h,可以得到圆柱的体积公式V圆柱= S底×h,长方体的底面积是长方形或正方形,而圆柱的底面积是圆。
小学数学概念及知识要点1.分数的基本性质:分数的分子和分母同时乘或除以相同的数(0除外),分数的大小不变;商不变性质:除法中的被除数和除数同时乘或除以相同的数(0除外),商不变;比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),分数的大小不变;2.小数的性质:小数的末尾添上“0”或去掉“0”,小数的大小不变;3.数位顺序表:4.单位换算:高化低:用高级单位数×进率如:0.5千克=()克列式:0.5×1000=500低化高:用低级单位数÷进率如:3厘米=()米列式:3÷100=0.035.比与除法、分数的关系:a:b=ba=a÷b (b≠0)6.分数的意义:把单位“1”平均分成若干分,表示其中一份或几份的数,叫做分数。
分数单位:把单位“1”平均分成若干分,表示其中一份的数,叫做分数单位。
可以表示两者之间的关系;可以表示具体的数量(可以带单位)百分数的意义:表示一个数是另一个数百分之几的数,叫做分数。
表示两者之间的关系;不能表示具体的数量(不能带单位)。
说明:整数的计数单位是“1”,当用“1”作单位不能准确地表示数值时,就要把单位“1”平均分成若干份,用分数或小数来表示。
小数是分母是10、100、1000……的分数,百分数是一种更加特殊的分数,只能用来表示两个数之间的倍比关系。
7.小数点的位置移动引起小数大小变化的规律一个数的小数点向右移动一位、两位、三位……这个数就扩大10倍、100倍、1000倍……。
一个数的小数点向左移动一位、两位、三位……这个数就缩小10倍、100倍、1000倍……。
整数部分小数点小数部分数位…万级个级.十分位百分位千分位万分位…千万位百万位十万位万位千位百位十位个位计数单位…千万百万十万万千百十一︵个︶十分之一百分之一千分之一万分之一…8.数的分类整数自然数如:0、1、2、3、4、5、6……负数如:-1、-2、-3、-4、-5……分数真分数:分子小于分母的分数。
苏教版六年级数学下册知识点梳理归纳及复习要点一、知识点梳理归纳第一单元扇形统计图一、扇形统计图的意义:用整个圆的面积表示总数,用圆内各个扇形面积表示各部分数量同总数之间的关系。
也就是各部分数量占总数的百分比(因此也叫百分比图)。
二、常用统计图的优点:1、条形统计图:可以清楚的看出各种数量的多少。
2、折线统计图:不仅可以看出各种数量的多少,还可以清晰看出数量的增减变化情况。
3、扇形统计图:能够清楚的反映出各部分数量同总数之间的关系。
三、扇形面积的大小表示的意义:在同一个圆中,扇形的大小与这个扇形的圆心角的大小有关,圆心角越大,扇形越大。
(因此扇形面积占圆面积的百分比,同时也是该扇形圆心角度数占圆周角度数的百分比。
)第二单元圆柱和圆锥知识点一:圆柱、圆锥的认识相关概念:①圆柱由一个上底面、一个下底面和一个侧面组成。
上下底面是两个完全相同的圆形;侧面是一个曲面。
②圆柱的高:上下底面之间的距离。
圆柱有无数条高,每条高相等。
③圆锥由一个底面和一个侧面组成。
底面是一个圆形;侧面是一个曲面。
④圆锥的高:圆锥的定点到底面圆心的距离。
圆锥只有一条高。
知识点二:圆柱侧面积的计算方法理解掌握:圆柱的侧面展开图:有可能是长方形,也有可能是正方形。
①假如是长方形,那么长方形的长a,就是圆柱底面的周长C,宽b就是圆柱的高h。
长方形的面积 S=a×b=C×h=2πr×h=2πrh,就是圆柱的侧面积。
②假如是正方形,那么正方形的边长a既等于圆柱底面的周长C,也等于圆柱的高h,也就是说底面周长和高相等。
正方形的面积 S=a×a=C×h=2πr×h=2πrh,就是圆柱的侧面积。
所以圆柱的侧面积公式=Ch或者=2πrh或者=πdh知识点三:圆柱表面积的计算方法理解掌握:圆柱的表面积由一个侧面加上两个底面组成,计算方法是S表=S侧+2S底,因为S侧=Ch,S底=πr2,所以S表=Ch+2πr2 =2πrh+2πr2用乘法分配率得圆柱的表面积公式 =2πr(h+r)例1:一个圆柱形的罐头盒,高是12.56厘米,它的侧面展开图是一个正方形,做一个这样的罐头盒需要多少铁皮?解析:本题中罐头盒的侧面展开图是正方形,说明圆柱的底面周长和高相等,都等于12.56厘米,可以根据圆的周长公式C=2πr,把r先求出,最后再用圆柱的表面积公式。
苏教版六年级下册数学知识要点总结
本文档旨在总结苏教版六年级下册数学课程的主要知识要点,
帮助学生复和掌握相关知识。
1. 整数的运算
- 整数的加法和减法运算:正数与正数相加、负数与负数相加、正数与负数相加的规律
- 整数的乘法和除法运算:正数与正数相乘、负数与负数相乘、正数与负数相乘的规律
- 整数的运算定律:加法和乘法的结合律、交换律和分配律
2. 分数的运算
- 分数的加法和减法运算:通分、化简、按规定格式进行计算
- 分数的乘法和除法运算:乘法的规律、除法的规律、分子分
母的计算
3. 小数的认识与运算
- 小数的表示方法:有限小数和循环小数
- 小数的加法和减法运算:按规定格式进行计算
- 小数的乘法和除法运算:乘法的规律、除法的规律、小数位数的控制
4. 平面图形的认识与计算
- 点、线、面的基本概念与特征
- 三角形、四边形、圆的性质与判断
- 平面镶嵌图形的认识与构造
5. 条形统计图的制作与分析
- 数据收集与整理
- 条形统计图的制作步骤
- 数据的分析与解读
以上是苏教版六年级下册数学课程的主要知识要点总结。
希望这份文档能够对学生的学习和复习有所帮助。
苏教版六年级数学下册知识点梳理
苏教版六年级数学下册知识点总结
第一单元:百分数的应用(2课时)
大分率减小分率等于相差的分率,实分率减计分率等于实比计多的分率。
利息等于本金乘以利率乘以时间,实际售价等于原价乘以折扣。
第二单元:圆柱和圆锥(3课时)
圆的直径是圆的两个切点之间的距离,半径是圆心到圆上任一点的距离,周长是圆的边界长度,面积是圆内部的区域。
圆柱是一个由一个圆和它的平行剖面所组成的几何体,侧面积等于圆周长乘以高,表面积等于两个底面积加上侧面积,体积等于底面积乘以高。
圆锥是一个由一个圆和一个顶点所组成的几何体,体积等于圆柱体积的1/3.
第三单元:比例(1课时)
两个比相等的式子叫做比例。
基本性质是两个外项的积等于两个内项的积。
比例尺是图上距离与实际距离的比值,应注意面积变化。
第四单元:确定位置(5课时)
知道物体的方向和距离,就能确定物体的位置。
方向标包括上北下南左西右东。
第五单元:正比例和反比例(1课时)
路程与时间的比例是速度,单价与数量的乘积是总价。
第六单元:解决问题的策略(1课时)
学会用转化的策略寻求解决问题的思路,并能根据具体的问题确定合理的解题方法,从而有效的解决问题。
第七单元:统计(5课时)
扇形统计图可以清楚地表示出各部分数量同总数量之间的关系。
众数是一组数据出现次数最多的数,中位数是一组数据中正中间的一个数或中间两个数的平均数,平均数是总数之和除以个数。
总复习观点整理一.整数和小数1.最小的一位数是1,最小的自然数是 02.小数的意义:把整数“1”均匀分红10份、100份、1000份这样的一份或几份分别是十分之几、百分之几、千分之几能够用小数来表示。
3.小数点左侧挨次是整数部分,小数点右侧是小数部分,挨次是十分位、百分位、千分位4.小数的分类:小数有限小数无穷小数无穷循环小数无穷不循环小数5.整数和小数都是依照十进制计数法写出的数。
整数和小数相邻计数单位间的进率都是106.小数的性质:小数的末端添上0或许去掉0,小数的大小不变。
7.小数点向右挪动一位、二位、三位本来的数分别扩大10倍、100倍、1000倍小数点向左挪动一位、二位、三位本来的数分别减小10倍、100倍、1000倍二.分数和百分数1.分数的意义:把单位“1”均匀分红若干份,表示这样的一份或几份的数叫做分数。
分数既能够表示一个详细的数目,也能够表示一个数是另一个数的几分之几,因此分数后边能够带单位,也能够不带单位。
2.分数单位:把单位“1”均匀分红若干份,表示此中一份的数,叫做分数单位。
3.分数和除法的联系:分数的分子就是除法中的被除数,分母就是除法中的除数。
分数和小数的联系:小数实质上就是分母是10、100、1000的分数。
分数和比的联系:分数的分子就是比的前项,分数的分母就是比的后项。
4.分数的分类:分数能够分为真分数和假分数。
5.真分数:分子小于分母的分数叫做真分数。
真分数小于1。
假分数:分子大于或等于分母的分数叫做假分数。
假分数大于或许等于1。
6.最简分数:分子与分母互质的分数叫做最简分数。
7.分数的基天性质:分数的分子和分母同时乘或除以同样的数(零除外),分数的大小不变。
8.这样的分数能够化成有限小数:前提是这个分数要是最简分数,假如分母只含有2、5这2个质因数,这样的分数就能化成有限小数。
9.百分数:表示一个数是另一个数的百分之几的数叫做百分数。
百分数也叫做百分率或许百分比。
习”后面是几就读作几。
0是最小的自然数,但0不是最小的一位数,最小的一位数是1。
易错点:误认为75.075读作七十五点七十五。
要注意读小数部分时一定要从高位起,依次读出每个数位上的数字,即使是连续的几个0,也要一一读出来。
小数的计数单位是0.1,0.01,0.001…是十进制分数的另一种表现形式。
正、负数表示两种具有相反意义的量。
小数部分·的整数部分,余数就是带分数的分数部分的分子,原分母不变。
③整数化成假分数的方法:把整数化成假分数,用指定的分母作分母,用分母和整数的乘积作分子。
④带分数化成假分数的方法:把带分数化成假分数,用原来的分母作分母,用分母和整数的乘积再加上原来的分子作分子。
(2)判断一个分数能否化成有限小数的方法。
a.要看这个分数是不是最简分数。
b.如果是最简分数,就要看其分母中含有哪些质因数。
如果分母中只含有质因数2和5,这个分数就能化成有限小数;如果分母中含有2和5以外的其他质因数,这个分数就不能化成有限小数。
(3)分数、小数与百分数之间的互化。
四、常见的量1. 常见的计量单位及其进率。
(1)质量单位及其进率。
①常见的质量单位有吨.........、.千克..、.克.。
. ②1吨=1000千克 1千克=1000克 (2)时间单位及其进率。
①时间单位有世纪.......、.年.、.月.、.日.、.时.、.分.、.秒.,.季度..、.星.期等。
...②日、时、分、秒等时间单位的关系。
③1世纪=100年 1日=24时 1时=60分 1分=60秒 1星期=7日④平年、闰年的判断方法。
根据公历年份判断........,.一般情况下.....,.整百、整千的年份是.........400...的倍数...,.其他年份是.....4.的倍数的都是闰年........,.反之则是平年。
.......(3)人民币的单位及其进率。
①人民币的单位有元........、.角.、.分.。
苏教版六年级数学下册复习重点整理1 每份数×份数=总数总数÷每份数=份数总数÷份数=每份数2 1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数3 速度×时间=路程路程÷速度=时间路程÷时间=速度4 单价×数量=总价总价÷单价=数量总价÷数量=单价5 工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率6 加数+加数=和和-一个加数=另一个加数7 被减数-减数=差被减数-差=减数差+减数=被减数8 因数×因数=积积÷一个因数=另一个因数9 被除数÷除数=商被除数÷商=除数商×除数=被除数小学数学图形计算公式1 正方形C周长S面积a边长周长=边长×4C=4a面积=边长×边长S=a×a2 正方体V:体积a:棱长表面积=棱长×棱长×6S表=a×a×6体积=棱长×棱长×棱长V=a×a×a3 长方形C周长S面积a边长周长=(长+宽)×2C=2(a+b)面积=长×宽S=ab4 长方体V:体积s:面积a:长b: 宽h:高(1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh)(2)体积=长×宽×高V=abh5 三角形s面积a底h高面积=底×高÷2s=ah÷2三角形高=面积×2÷底三角形底=面积×2÷高6 平行四边形s面积a底h高面积=底×高s=ah7 梯形s面积a上底b下底h高面积=(上底+下底)×高÷2s=(a+b)× h÷2S面积C周长∏ d=直径r=半径(1)周长=直径×∏=2×∏×半径C=∏d=2∏r(2)面积=半径×半径×∏9 圆柱体v:体积h:高s;底面积r:底面半径c:底面周长(1)侧面积=底面周长×高(2)表面积=侧面积+底面积×2(3)体积=底面积×高(4)体积=侧面积÷2×半径10 圆锥体v:体积h:高s;底面积r:底面半径体积=底面积×高÷3总数÷总份数=平均数和差问题的公式(和+差)÷2=大数(和-差)÷2=小数和倍问题和÷(倍数-1)=小数小数×倍数=大数(或者和-小数=大数)差÷(倍数-1)=小数小数×倍数=大数(或小数+差=大数)小学奥数公式和差问题的公式(和+差)÷2=大数(和-差)÷2=小数和倍问题的公式和÷(倍数-1)=小数小数×倍数=大数(或者和-小数=大数) 差倍问题的公式差÷(倍数-1)=小数小数×倍数=大数(或小数+差=大数) 植树问题的公式1 非封闭线路上的植树问题主要可分为以下三种情形:⑴如果在非封闭线路的两端都要植树,那么:株数=段数+1=全长÷株距-1全长=株距×(株数-1)株距=全长÷(株数-1)⑵如果在非封闭线路的一端要植树,另一端不要植树,那么:株数=段数=全长÷株距全长=株距×株数株距=全长÷株数⑶如果在非封闭线路的两端都不要植树,那么:株数=段数-1=全长÷株距-1全长=株距×(株数+1)株距=全长÷(株数+1)2 封闭线路上的植树问题的数量关系如下株数=段数=全长÷株距全长=株距×株数株距=全长÷株数盈亏问题的公式(盈+亏)÷两次分配量之差=参加分配的份数(大盈-小盈)÷两次分配量之差=参加分配的份数(大亏-小亏)÷两次分配量之差=参加分配的份数相遇问题的公式相遇路程=速度和×相遇时间相遇时间=相遇路程÷速度和速度和=相遇路程÷相遇时间追及问题的公式追及距离=速度差×追及时间追及时间=追及距离÷速度差速度差=追及距离÷追及时间流水问题顺流速度=静水速度+水流速度逆流速度=静水速度-水流速度静水速度=(顺流速度+逆流速度)÷2水流速度=(顺流速度-逆流速度)÷2浓度问题的公式溶质的重量+溶剂的重量=溶液的重量溶质的重量÷溶液的重量×100%=浓度溶液的重量×浓度=溶质的重量溶质的重量÷浓度=溶液的重量利润与折扣问题的公式利润=售出价-成本利润率=利润÷成本×100%=(售出价÷成本-1)×100%涨跌金额=本金×涨跌百分比折扣=实际售价÷原售价×100%(折扣<1)利息=本金×利率×时间税后利息=本金×利率×时间×(1-20%)(一)数的读法和写法1.整数的读法:从高位到低位,一级一级地读。
苏教版小学六年级(下册)数学毕业总复习知识点概括归纳编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(苏教版小学六年级(下册)数学毕业总复习知识点概括归纳)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为苏教版小学六年级(下册)数学毕业总复习知识点概括归纳的全部内容。
2017最新苏教版【目录】第一部分常用的数量关系第二部分小学数学图形计算公式第三部分常用单位换算第四部分基本概念第一章数和数的运算第二章代数初步知识第三章空间与图形第四章简单的统计班级 ________________姓名 ________________二零一八年三月一、【常用的数量关系】1、速度×时间=路程;路程÷速度=时间;路程÷时间=速度2、单价×数量=总价; 总价÷单价=数量;总价÷数量=单价3、工作效率×工作时间=工作总量; 工作总量÷工作效率=工作时间;工作总量÷工作时间=工作效率;工作总量÷工作效率和=合作时间4、加数+加数=和和———个加数=另一个加数5、被减数-减数=差被减数-差=减数; 差+减数=被减数6、因数×因数=积;积÷一个因数=另一个因数7、被除数÷除数=商被除数÷商=除数商×除数=被除数二、【小学数学图形计算公式】(一)几种简单的平面图形的周长、面积的计算公式表。
四边形h—高三角形S—面积 a—底h—高——S =梯形S—面积 a—上底b—下底 h—高——S =圆S—面积 c—周长r—半径 d-直径C = πdC =2πrS =πr2(二)、立体图形的底面积、侧面积、表面积和体积的计算公式名称字母意义底面积侧面积表面积体积长方体a—长 b—宽h—高S=abS侧=(ah+bh)×2S表=(ab+ah+bh)×2V=abh正方体a-棱长S=a2S侧=4a2S表=6a2V=a3圆柱体r-底面半径h—高, C—底面圆周长S底=πr2S侧=chS表=S侧+S底×2V=s底h圆锥体r—底面半径h—高S底=πr2———-V= s底h三、【常用单位换算】换算方法:(1)高级单位→低级单位的方法:高级单位的数×进率(2)低级单位→高级单位的方法:低级单位的数÷进率自然数(一)长度单位换算1千米=1000米; 1米=10分米; 1分米=10厘米;1米=100厘米;1厘米=10毫米(二)面积单位换算: 1平方千米=100公顷; 1公顷=10000平方米;1平方米=100平方分米; 1平方分米=100平方厘米; 1平方厘米=100平方毫米(三)体积(容积)单位换算:1立方米=1000立方分米; 1立方分米=1000立方厘米;1立方分米=1升; 1立方厘米=1毫升; 1立方米=1000升(四)重量单位换算: 1吨=1000千克; 1千克=1000克; 1千克=1公斤(五)人民币单位换算: 1元=10角; 1角=10分; 1元=100分(六)时间单位换算: 1世纪=100年; 1年=12月;【大月(31天)有:1、3、5、7、8、10、12月】; 【小月(30天)有:4、6、9、11月】【平年:2月有28天;全年有365天】; 【闰年:2月有29天;全年有366天】1日=24小时; 1时=60分=3600秒; 1分=60秒;四、【基 本 概 念】第一章 数和数的运算一、概念(一)整 数1。
总复习概念整理一.整数和小数1.最小的一位数是1,最小的自然数是02.小数的意义:把整数“1”平均分成10份、100份、1000份……这样的一份或几份分别是十分之几、百分之几、千分之几……可以用小数来表示。
3.小数点左边依次是整数部分,小数点右边是小数部分,依次是十分位、百分位、千分位……4.小数的分类:小数有限小数无限小数无限循环小数无限不循环小数5.整数和小数都是按照十进制计数法写出的数。
整数和小数相邻计数单位间的进率都是106.小数的性质:小数的末尾添上0或者去掉0,小数的大小不变。
7.小数点向右移动一位、二位、三位……原来的数分别扩大10倍、100倍、1000倍……小数点向左移动一位、二位、三位……原来的数分别缩小10倍、100倍、1000倍……二.分数和百分数1.分数的意义:把单位“1”平均分成若干份,表示这样的一份或几份的数叫做分数。
分数既可以表示一个具体的数量,也可以表示一个数是另一个数的几分之几,所以分数后面可以带单位,也可以不带单位。
2.分数单位:把单位“1”平均分成若干份,表示其中一份的数,叫做分数单位。
3.分数和除法的联系:分数的分子就是除法中的被除数,分母就是除法中的除数。
分数和小数的联系:小数实际上就是分母是10、100、1000……的分数。
分数和比的联系:分数的分子就是比的前项,分数的分母就是比的后项。
4.分数的分类:分数可以分为真分数和假分数。
5.真分数:分子小于分母的分数叫做真分数。
真分数小于1。
假分数:分子大于或等于分母的分数叫做假分数。
假分数大于或者等于1。
6.最简分数:分子与分母互质的分数叫做最简分数。
7.分数的基本性质:分数的分子和分母同时乘或除以相同的数(零除外),分数的大小不变。
8.这样的分数可以化成有限小数:前提是这个分数要是最简分数,如果分母只含有2、5这2个质因数,这样的分数就能化成有限小数。
9.百分数:表示一个数是另一个数的百分之几的数叫做百分数。
【目录】第一部分常用的数量关系-------1第二部分小学数学图形计算公式-1第三部分常用单位换算---------2第四部分基本概念3第一章数和数的运算--3第二章代数初步知识--4第三章空间与图形----5第四章简单的统计----7姓名_________________一、【常用的数量关系】1、速度×时间=路程;路程÷速度=时间;路程÷时间=速度2、单价×数量=总价;总价÷单价=数量;总价÷数量=单价3、工作效率×工作时间=工作总量;工作总量÷工作效率=工作时间;工作总量÷工作时间=工作效率;工作总量÷工作效率和=合作时间4、加数+加数=和和 -- -个加数=另一个加数5、被减数-减数=差被减数-差=减数;差+减数=被减数6、因数×因数=积;积÷一个因数=另一个因数7、被除数÷除数=商被除数÷商=除数商×除数=被除数二、【小学数学图形计算公式】(一)几种简单的平面图形的周长、面积的计算公式表。
名称字母意义周长公式面积公式长方形c—周长 s—面积a—长 b—宽c =(a+b)×2 s =ab正方形c—周长 s—面积a—边长C =4a s =a2平行四边形s—面积 a—底h—高——S=ah三角形s—面积 a—底h—高——S =梯形s—面积 a—上底b—下底 h—高——S =圆s—面积 c—周长r—半径 d—直径C = πdC =2πrS =πr2名称字母意义底面积侧面积表面积体积长方体A—长 b—宽h—高S=abS侧=(ah+bh)×2S表=(ab+ah+bh)×2V=abh正方体a—棱长S=a2S侧=4a2S表=6a2V=a3圆柱体r—底面半径h—高,c—底面圆周长S底=πr2S侧=chS表=S底+S底×2 V=s底h自然数 圆锥体 r —底面半径h —高 S 底=πr 2 —— —— V= s 底h三、【常用单位换算】换算方法:(1)高级单位→低级单位的方法:高级单位的数×进率(2)低级单位→高级单位的方法:低级单位的数÷进率(一)长度单位换算1千米=1000米; 1米=10分米; 1分米=10厘米;1米=100厘米;1厘米=10毫米(二)面积单位换算: 1平方千米=100公顷; 1公顷=10000平方米;1平方米=100平方分米; 1平方分米=100平方厘米; 1平方厘米=100平方毫米(三)体积(容积)单位换算:1立方米=1000立方分米; 1立方分米=1000立方厘米;1立方分米=1升; 1立方厘米=1毫升; 1立方米=1000升(四)重量单位换算: 1吨=1000千克; 1千克=1000克; 1千克=1公斤(五)人民币单位换算: 1元=10角; 1角=10分; 1元=100分(六)时间单位换算: 1世纪=100年; 1年=12月;【大月(31天)有:1、3、5、7、8、10、12月】; 【小月(30天)有:4、6、9、11月】【平年:2月有28天;全年有365天】; 【闰年:2月有29天;全年有366天】1日=24小时; 1时=60分=3600秒; 1分=60秒;四、【基 本 概 念】第一章 数和数的运算一、概念(一)整 数1.自然数、负数和整数(1)、自然数 :我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。
苏教版六年级下册数学知识点归纳
一、简单数量比较和计算
1. 利用试探的方法,比较数量的大小
2. 了解带单位数量的表达方式,并利用口算进行比较与计算
3. 掌握计数法,按给定格式计算结果
二、整数的运算
1. 学习整数的加减法
2. 掌握逆运算,对计算题进行求解
3. 了解整数的乘法,学习合并乘法计算
三、分数的加减
1. 掌握带分数的加减运算规律
2. 理解分数加减问题
3. 了解带分子带分母乘法、混合运算
四、一元二次方程
1. 学习一元二次方程的解题思路
2. 掌握了解判别式含义
3. 掌握联立方程解题的方法
五、图形的认识
1. 掌握直角坐标系的概念
2. 了解直线斜率含义
3. 理解折线图和柱状图的意义
六、三角形应用
1. 掌握解三角形的方法
2. 了解三角形的性质
3. 学习利用变量的方法解三角形
七、根据比例进行数量变换
1. 掌握比、比例的概念
2. 了解黄金分割比例
3. 理解利用比例来变换数量的方法
八、统计与概率
1. 掌握统计方法,理解更多数据背后的意义
2. 了解概率的定义,学习计算事件概率
3. 理解有理数的意义,学习运用有理数进行计算。
苏教版六年级数学下册知识点梳理归纳及复习要点苏教版六年级数学下册知识点梳理归纳及复习要点一、知识点梳理归纳第一单元扇形统计图一、扇形统计图的意义:用整个圆的面积表示总数,用圆内各个扇形面积表示各部分数量同总数之间的关系。
也就是各部分数量占总数的百分比(因此也叫百分比图)。
二、常用统计图的优点:1、条形统计图:可以清楚的看出各种数量的多少。
2、折线统计图:不仅可以看出各种数量的多少,还可以清晰看出数量的增减变化情况。
3、扇形统计图:能够清楚的反映出各部分数量同总数之间的关系。
三、扇形面积的大小表示的意义:在同一个圆中,扇形的大小与这个扇形的圆心角的大小有关,圆心角越大,扇形越大。
(因此扇形面积占圆面积的百分比,同时也是该扇形圆心角度数占圆周角度数的百分比。
)第二单元圆柱和圆锥知识点一:圆柱、圆锥的认识相关概念:①圆柱由一个上底面、一个下底面和一个侧面组成。
高低底面是两个完全不异的圆形;侧面是一个曲面。
②圆柱的高:高低底面之间的间隔。
圆柱有无数条高,每条高相称。
③圆锥由一个底面和一个侧面组成。
底面是一个圆形;侧面是一个曲面。
④圆锥的高:圆锥的定点到底面圆心的间隔。
圆锥只有一条高。
知识点二:圆柱侧面积的计算方法理解掌握:圆柱的侧面展开图:有可能是长方形,也有可能是正方形。
①假如是长方形,那么长方形的长a,就是圆柱底面的周长C,宽b就是圆柱的高h。
长方形的面积S=a×b=C×h=2πr×h=2πrh,就是圆柱的侧面积。
②假如是正方形,那么正方形的边长a 既等于圆柱底面的周长C,也等于圆柱的高h,也就是说底面周长和高相等。
正方形的面积S=a×a=C×h=2πr×h=2πrh,就是圆柱的侧面积。
所以圆柱的侧面积公式=Ch或者=2πrh 或者=πdh常识点三:圆柱表面积的计较办法理解掌握:圆柱的表面积由一个侧面加上两个底面组成,计算方法是S表=S侧+2S底,因为S侧=Ch,S底=πr2,所以S表=Ch+2πr2=2πrh+2πr2用乘法分配率得圆柱的表面积公式=2πr(h+r)例1:一个圆柱形的罐头盒,高是12.56厘米,它的侧面展开图是一个正方形,做一个如许的罐头盒需求多少铁皮?解析:本题中罐头盒的侧面展开图是正方形,说明圆柱的底面周长和高相称,都等于12.56厘米,可以根据圆的周长公式C=2πr,把r先求出,最后再用圆柱的表面积公式。
苏教版小学六年级数学下册知识点归纳苏教版小学六年级数学下册知识点归纳六年级数学下册知识点归纳一、负数: 1、在熟悉的生活情境中初步认识负数,能正确的读、写正数和负数,知道0既不是正数也不是负数。
2、初步学会用负数表示一些日常生活中的实际问题,体验数学与生活的密切联系。
3、能借助数轴初步学会比较正数、0和负数之间的大小。
二、圆柱和圆锥1、认识圆柱和圆锥,掌握它们的基本特征。
认识圆柱的底面、侧面和高。
认识圆锥的底面和高。
2、探索并掌握圆柱的侧面积、表面积的计算方法,以及圆柱、圆锥体积的计算公式,会运用公式计算体积,解决有关的简单实际问题。
3、通过观察、设计和制作圆柱、圆锥模型等活动,了解平面图形与立体图形之间的联系,发展学生的空间观念。
三、比例1、理解比例的意义和基本性质,会解比例。
2、苏教版小学六年级数学下册知识点归纳:理解正比例和反比例的意义,能找出生活中成正比例和成反比例量的实例,能运用比例知识解决简单的实际问题。
3、认识正比例关系的图像,能根据给出的有正比例关系的数据在有坐标系的方格纸上画出图像,会根据其中一个量在图像中找出或估计出另一个量的值。
4、了解比例尺,会求平面图的比例尺以及根据比例尺求图上距离或实际距离。
5、认识放大与缩小现象,能利用方格纸等形式按一定的比例将简单图形放大或缩小,体会图形的相似。
6、渗透函数思想,使学生受到辩证唯物主义观点的启蒙教育四、统计1、会综合应用学过的统计知识,能从统计图中准确提取统计信息,能够正确解释统计结果。
2、能根据统计图提供的信息,做出正确的判断或简单预测。
五、数学广角1、经历抽屉原理的探究过程,初步了解抽屉原理,会用抽屉原理解决简单的实际问题。
2、通过抽屉原理的灵活应用感受数学的魅力。
六、整理和复习1、比较系统地掌握有关整数、小数、分数和百分数、负数、比和比例、方程的基础知识。
能比较熟练地进行整数、小数、分数的四则运算,能进行整数、小数加、减、乘、除的估算,会使用学过的简便算法,合理、灵活地进行计算;会解学过的方程;养成检查和验算的习惯。
可编辑修改精选全文完整版苏教版数学六年级下册知识点总结与归纳第一单元扇形统计图一、扇形统计图的意义:用整个圆的面积表示总数,用圆内各个扇形面积表示各部分数量同总数之间的关系。
也就是各部分数量占总数的百分比(因此也叫百分比图)。
二、常用统计图的优点:1、条形统计图:可以清楚的看出各种数量的多少。
2、折线统计图:不仅可以看出各种数量的多少,还可以清晰看出数量的增减变化情况。
3、扇形统计图:能够清楚的反映出各部分数量同总数之间的关系。
三、扇形面积的大小表示的意义:在同一个圆中,扇形的大小与这个扇形的圆心角的大小有关,圆心角越大,扇形越大。
(因此扇形面积占圆面积的百分比,同时也是该扇形圆心角度数占圆周角度数的百分比。
)第二单元圆柱和圆锥知识点一:圆柱、圆锥的认识相关概念:①圆柱由一个上底面、一个下底面和一个侧面组成。
上下底面是两个完全相同的圆形;侧面是一个曲面。
②圆柱的高:上下底面之间的距离。
圆柱有无数条高,每条高相等。
③圆锥由一个底面和一个侧面组成。
底面是一个圆形;侧面是一个曲面。
④圆锥的高:圆锥的定点到底面圆心的距离。
圆锥只有一条高。
知识点二:圆柱侧面积的计算方法理解掌握:圆柱的侧面展开图:有可能是长方形,也有可能是正方形。
①假如是长方形,那么长方形的长a,就是圆柱底面的周长C,宽b 就是圆柱的高h。
长方形的面积S=a×b=C×h=2πr×h=2πrh,就是圆柱的侧面积。
②假如是正方形,那么正方形的边长a既等于圆柱底面的周长C,也等于圆柱的高h,也就是说底面周长和高相等。
正方形的面积S=a×a=C×h=2πr×h=2πrh,就是圆柱的侧面积。
所以圆柱的侧面积公式=Ch或者=2πrh或者=πdh知识点三:圆柱表面积的计算方法理解掌握:圆柱的表面积由一个侧面加上两个底面组成,计算方法是S表=S侧+2S底,因为S侧=Ch,S底=πr2,所以S表=Ch+2πr2=2πrh+2πr2用乘法分配率得圆柱的表面积公式=2πr(h+r)知识点四:圆柱体积的计算方法理解掌握:利用我们以前学过的长方体的体积公式V长方体=S底×h,可以得到圆柱的体积公式V圆柱= S底×h,长方体的底面积是长方形或正方形,而圆柱的底面积是圆。
2017最新苏教版【目录】第一部分常用的数量关系第二部分小学数学图形计算公式第三部分常用单位换算第四部分基本概念第一章数和数的运算第二章代数初步知识第三章空间与图形第四章简单的统计班级________________姓名________________二零一七年四月一、【常用的数量关系】1、速度×时间=路程;路程÷速度=时间;路程÷时间=速度2、单价×数量=总价;总价÷单价=数量;总价÷数量=单价3、工作效率×工作时间=工作总量;工作总量÷工作效率=工作时间;工作总量÷工作时间=工作效率;工作总量÷工作效率和=合作时间4、加数+加数=和和 -- -个加数=另一个加数5、被减数-减数=差被减数-差=减数;差+减数=被减数6、因数×因数=积;积÷一个因数=另一个因数7、被除数÷除数=商被除数÷商=除数商×除数=被除数二、【小学数学图形计算公式】(一)几种简单的平面图形的周长、面积的计算公式表。
名称字母意义周长公式面积公式长方形c—周长 s—面积a—长 b—宽c =(a+b)×2 s =ab正方形c—周长 s—面积a—边长C =4a s =a2平行四边形s—面积 a—底h—高——S=ah三角形s—面积 a—底h—高——S =梯形s—面积 a—上底b—下底 h—高——S =圆s—面积 c—周长r—半径 d—直径C = πdC =2πrS =πr2(二)、立体圆形的底面积、侧面积、表面积和体积的计算公式名称字母意义底面积侧面积表面积体积长方体A—长 b—宽h—高S=ab S侧=(ah+bh)×2S表=(ab+ah+bh)×2V=abh正方体a—棱长S=a2S侧=4a2S表=6a2V=a3圆柱体r—底面半径h—高,c—底面圆周长S底=πr2S侧=chS表=S底+S底×2 V=s底h圆锥体r—底面半径h—高S底=πr2————V= s底h自然数三、【常用单位换算】换算方法: (1)高级单位→低级单位的方法:高级单位的数×进率(2)低级单位→高级单位的方法:低级单位的数÷进率(一)长度单位换算1千米=1000米; 1米=10分米; 1分米=10厘米;1米=100厘米;1厘米=10毫米(二)面积单位换算: 1平方千米=100公顷; 1公顷=10000平方米;1平方米=100平方分米; 1平方分米=100平方厘米; 1平方厘米=100平方毫米(三)体积(容积)单位换算:1立方米=1000立方分米; 1立方分米=1000立方厘米;1立方分米=1升; 1立方厘米=1毫升; 1立方米=1000升(四)重量单位换算: 1吨=1000千克; 1千克=1000克; 1千克=1公斤(五)人民币单位换算: 1元=10角; 1角=10分; 1元=100分(六)时间单位换算: 1世纪=100年; 1年=12月;【大月(31天)有:1、3、5、7、8、10、12月】; 【小月(30天)有:4、6、9、11月】【平年:2月有28天;全年有365天】; 【闰年:2月有29天;全年有366天】1日=24小时; 1时=60分=3600秒; 1分=60秒;四、【基 本 概 念】第一章 数和数的运算一、概念(一)整 数1.自然数、负数和整数(1)、自然数 :我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。
一个物体也没有,用0表示。
0也是自然数。
1是自然数的基本单位,任何一个自然数都是由若干个1组成。
0是最小的自然数,没有最大的自然数。
(2)、负数:在正数前面加上“-”的数叫做负数,“-”叫做负号。
正整数(1、2、3、4、……) (3)整 数 零 (0既不是正数,也不是负数)负整数(-1、-2、-3、-4……)2、零的作用(1)表示数位。
读写数时,某个单位上一个单位也没有,就用0表示。
(2)占位作用。
(3)作为界限。
如“零上温度与零下温度的界限”。
3、计数单位 :一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。
每相邻两个计数单位之间的进率都是10。
这样的计数法叫做十进制计数法。
4、数位 :计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。
5、数的整除 :整数a 除以整数b(b ≠ 0),除得的商是整数而没有余数,我们就说a 能被b 整除,或者说b能整除a 。
(1)如果数a 能被数b (b ≠ 0)整除,a 就叫做b 的倍数,b 就叫做a 的约数(或a 的因数)。
(2)一个数的约数的个数是有限的,其中最小的约数是1,最大的 约数是它本身。
(3)一个数的倍数的个数是无限的,其中最小的倍数是它本身。
(4)个位上是0、2、4、6、8的数,都能被2整除,(5)个位上是0或5的数,都能被5整除,(6)一个数的各位上的数的和能被3整除,这个数就能被3整除,(7)能被2整除的数叫做偶数。
不能被2整除的数叫做奇数。
0也是偶数。
自然数按能否被2 整除的特征可分为奇数和偶数。
(8)一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数)。
100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。
(9)一个数,如果除了1和它本身还有别的约数,这样的数叫做合数。
(10)1不是质数也不是合数,自然数除了1外,不是质数就是合数。
如果把自然数按其约数的个数的不同分类,可分为质数、合数和1。
(11)几个数公有的约数,叫做这几个数的公约数。
其中最大的一个,叫做这几个数的最大公约数。
(12)公约数只有1的两个数,叫做互质数,成互质关系的两个数,有下列几种情况:①1和任何自然数互质。
②相邻的两个自然数互质。
③两个不同的质数互质。
④当合数不是质数的倍数时,这个合数和这个质数互质。
⑤两个合数的公约数只有1时,这两个合数互质,如果几个数中任意两个都互质,就说这几个数两两互质。
⑥如果较小数是较大数的约数,那么较小数就是这两个数的最大公约数。
⑦如果两个数是互质数,它们的最大公约数就是1。
(13)几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,①如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数。
②如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。
③几个数的公约数的个数是有限的,而几个数的公倍数的个数是无限的。
(二)小数1 、小数的意义(1)把整数1平均分成10份、100份、1000份……得到的十分之几、百分之几、千分之几……可以用小数表示。
(2)一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几……(3)一个小数由整数部分、小数部分和小数点部分组成。
数中的圆点叫做小数点,小数点左边的数叫做整数部分,小数点右边的数叫做小数部分。
(4)在小数里,每相邻两个计数单位之间的进率都是10。
小数部分的最高分数单位“十分之一”和整数部分的最低单位“一”之间的进率也是10。
2、小数的分类(1)纯小数:整数部分是零的小数,叫做纯小数。
例如: 0.25 、 0.368 都是纯小数。
(2)带小数:整数部分不是零的小数,叫做带小数。
例如: 3.25 、 5.26 都是带小数。
(3)有限小数:小数部分的数位是有限的小数,叫做有限小数。
(4)无限小数:小数部分的数位是无限的小数,叫做无限小数。
(5)无限不循环小数:一个数的小数部分,数字排列无规律且位数无限,这样的小数叫做无限不循环小数。
(6)循环小数:一个数的小数部分,有一个数字或者几个数字依次不断重复出现,这个数叫做循环小数。
(7)一个循环小数的小数部分,依次不断重复出现的数字叫做这个循环小数的循环节。
(8)纯循环小数:循环节从小数部分第一位开始的,叫做纯循环小数。
(9)混循环小数:循环节不是从小数部分第一位开始的,叫做混循环小数。
(10)写循环小数的时候,为了简便,小数的循环部分只需写出一个循环节,并在这个循环节的首、末位数字上各点一个圆点。
如果循环节只有一个数字,就只在它的上面点一个点。
(三)分数1、分数的意义(1)把单位“1”平均分成若干份,表示这样的一份或者几份的数叫做分数。
(2)在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“1”平均分成多少份;分数线下面的数叫做分子,表示有这样的多少份。
(3)把单位“1”平均分成若干份,表示其中的一份的数,叫做分数单位。
2、分数的分类真分数:分子比分母小的分数叫做真分数。
真分数小于1。
假分数:分子比分母大或者分子和分母相等的分数,叫做假分数。
假分数大于或等于1。
带分数:假分数可以写成整数与真分数合成的数,通常叫做带分数。
3、约分和通分把一个分数化成同它相等但是分子、分母都比较小的分数,叫做约分。
分子分母是互质数的分数,叫做最简分数。
把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。
(四)百分数:表示一个数是另一个数的百分之几的数叫做百分数,也叫做百分率或百分比。
百分数通常用"%"来表示。
百分号是表示百分数的符号。
二、性质和规律(一)商不变的规律商不变的规律:在除法里,被除数和除数同时扩大或者同时缩小相同的倍,商不变。
(二)小数的性质小数的性质:在小数的末尾添上零或者去掉零小数的大小不变。
(三)小数点位置的移动引起小数大小的变化1、小数点向右移动一位,原来的数就扩大10倍;小数点向右移动两位,原来的数就扩大100倍;小数点向右移动三位,原来的数就扩大1000倍……2、小数点向左移动一位,原来的数就缩小10倍;小数点向左移动两位,原来的数就缩小100倍;小数点向左移动三位,原来的数就缩小1000倍……3、小数点向左移或者向右移位数不够时,要用“0"补足位。
(四)分数的基本性质分数的基本性质:分数的分子和分母都乘以或者除以相同的数(零除外),分数的大小不变。
(五)分数与除法的关系被除数1、被除数÷除数=除数2、因为零不能作除数,所以分数的分母不能为零。
3、被除数相当于分子,除数相当于分母。
三、应用(这里主要复习分数和百分数的应用)1、分数加减法应用题:分数加减法的应用题与整数加减法的应用题的结构、数量关系和解题方法基本相同,所不同的只是在已知数或未知数中含有分数。
2、分数乘法应用题:是指已知一个数,求它的几分之几是多少的应用题。
特征:已知单位“1”的量和分率,求与分率所对应的实际数量。
解题关键:准确判断单位“1”的量。
找准要求问题所对应的分率,然后根据一个数乘分数的意义正确列式。
3、分数除法应用题:(1)求一个数是另一个数的几分之几(或百分之几)是多少。