高教版中职数学基础模块上册4.4对数函数3优质课件.ppt
- 格式:ppt
- 大小:1001.00 KB
- 文档页数:21
4.3.1 对数的概念一、教材分析 对数的概念选自《中等职业教育课程改革国家规划新教材数学教科书(基础模块)上册,是《指数函数与对数函数》这一章的基础内容,对数的引入是进一步解决方程)10(≠>=a a N a b且 中已知两个量求第三个量的问题的延续:是初中所学幂运算的必要补充,也是4.2.1所学指数运算的逆运算;是“概念—运算—函数”研究路径的又一次强化,也是对数运算乃至对数函数学习的启蒙课;是大数处理的关键概念和必备工具,也是高中对数函数模型学习的必要准备. 对数概念的引入充满逻辑推理的必然性奥义,也渗透着一般概念建构以及创生的多个方面:在建构概念的过程中既要考虑要概念的存在性和引入的必然性,还要考虑新概念与旧知识的相互关联和印证,更要关注新概念下知识体系的逐步搭建.因此,这部分内容对于培养学生的创新精神,渗透数学学习过程中的逻辑推理、形象直观、数学运算素养有不容忽略的价值,应当引起充分重视!二、学情分析高一学生已经学习了函数的概念、函数的表示方法与函数的一般性质,对函数有了初步的认识.学生已经完成了分数指数幂和指数函数的学习,了解了研究函数的一般方法,经历过从特殊到一般,具体到抽象的研究过程.对数的概念对学生来说,是全新的,需要教师引导学生利用指数与指数函数的相关知识理解对数的概念.在教学过程中,力求让学生体会运用从特殊到一般,类比等数学方法来理解对数式与指数式之间的内在联系,将对数这一新知纳入已有的知识结构中. 三、教学设计学科 中职数学 课题 4.3.1对数的概念课型新授课 授课班级授课人教学目标知识与技能理解对数的概念,了解对数与指数的关系;掌握对数式与指数式的互化;理解对数的性质,掌握以上知识并形成技能。
过程与方法通过事例使学生认识对数的模型,体会引入对数的必要性;通过师生观察分析得出对数的概念及对数式与指数式的互化。
通过学生分组探究进行活动,掌握对数的重要性质。
培养学生的类比、分析、归纳,等价转化能力。