航空航天先进复合材料

  • 格式:docx
  • 大小:58.55 KB
  • 文档页数:20

下载文档原格式

  / 20
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

航空航天先进复合材料现状

2014-08-10 Lb23742

摘要:回顾了树脂基复合材料的发展史;综述了先进复合材料工业上通常使用环氧树脂的品种、性能和特性;复合材料使用的增强纤维;国防、军工及航空航天用树脂基复合材料;用于固体发动机壳体的树脂基体;用于固体发动机喷管的耐热树脂基体;火箭发动机壳体用韧性环氧树脂基体;树脂基结构复合材料;防弹结构复合材料;先进战斗机用复合材料;树脂基体;航天器用外热防护涂层材料;飞机结构受力构件用的高性能环氧树脂复合材料;碳纤维增强树脂基复合材料在航空航天中的其它应用;民用大飞机复合材料;国产大飞机的软肋还是技术问题;复合材料之惑。

关键词:树脂基体;复合材料;国防;军工;航空航天;结构复合材料

0 前言

复合材料与金属、高聚物、陶瓷并称为四大材料。今天,一个国家或地区的复合材料工业水平,已成为衡量其科技与经济实力的标志之一。先进复合材料是国家安全和国民经济具有竞争优势的源泉。到2020年,只有复合材料才有潜力获得20-25%的性能提升。

环氧树脂是优良的反应固化型性树脂。在纤维增强复合材料领域中,环氧树脂大显身手。它与高性能纤维:PAN基碳纤维、芳纶纤维、聚乙烯纤维、玄武岩纤维、S或E玻璃纤维复合,便成为不可替代的重要的基体材料和结构材料,广泛运用在电子电力、航天航空、运动器材、建筑补强、压力管雄、化工防腐等六个领域。本文重点论述航空航天先进树脂基体复合材料的国内外现状及中国的技术软肋问题

1 树脂基复合材料的发展史

树脂基复合材料(Resin Matrix Composite)也称纤维增强塑料(Fiber Reinforced Plastics),是技术比较成熟且应用最为广泛的一类复合材料。这种材料是用短切的或连续纤维及其织物增强热固性或热塑性树脂基体,经复合而成。以玻璃纤维作为增强相的树脂基复合材料在世界范围内已形成了产业,在我国不科学地俗称为玻璃钢。

树脂基复合材料于1932年在美国出现,1940年以手糊成型制成了玻璃纤维增强聚酯的军用飞机的雷达罩,其后不久,美国莱特空军发展中心设计制造了一架以玻璃纤维增强树脂为机身和机翼的飞机,并于1944年3月在莱特-帕特空军基地试飞成功。1946年纤维缠绕成型技术在美国出现,为纤维缠绕压力容器的制造提供了技术贮备。1949年研究成功玻璃纤维预混料并制出了表面光洁,尺寸、形状准确的复合材料模压件。1950年真空袋和压力袋成型工艺研究成功,并制成直升飞机的螺旋桨。60年代在美国利用纤维缠绕技术,制造出北极星、土星等大型固体火箭发动机的壳体,为航天技术开辟了轻质高强结构的最佳途径。在此期间,玻璃纤维-聚酯树脂喷射成型技术得到了应用,使手糊工艺的质量和生产效率大为提高。1961年片状模塑料(Sheet Molding Compound, 简称SMC)在法国问世,利用这种技术可制出大幅面表面光洁,尺寸、形状稳定的制品,如汽车、

船的壳体以及卫生洁具等大型制件,从而更扩大了树脂基复合材料的应用领域。1963年前后在美、法、日等国先后开发了高产量、大幅宽、连续生产的玻璃纤维复合材料板材生产线,使复合材料制品形成了规模化生产。拉挤成型工艺的研究始于50年代,60年代中期实现了连续化生产,在70年代拉挤技术又有了重大的突破。在70年代树脂反应注射成型(Reaction Injection Molding, 简称RIM)和增强树脂反应注射成型(Reinforced Reaction Injection Molding, 简称RRIM)两种技术研究成功,现已大量用于卫生洁具和汽车的零件生产。1972年美国PPG公司研究成功热塑性片状模型料成型技术,1975年投入生产。80年代又发展了离心浇铸成型法,英国曾使用这种工艺生产10m长的复合材料电线杆、大口径受外压的管道等。从上述可知,新生产工艺的不断出现推动着聚合物复合材料工业的发展。

进入20世纪70年代,对复合材料的研究发迹了仅仅采用玻璃纤维增强树脂的局面,人们一方面不断开辟玻纤-树脂复合材料的新用途,同时也开发了一批如碳纤维、碳化硅纤维、氧化铝纤维、硼纤维、芳纶纤维、高密度聚乙烯纤维等高性能增强材料,并使用高性能树脂、金属与陶瓷为基体,制成先进复合材料(Advanced Composite Materials, 简称ACM)。这种先进复合材料具有比玻璃纤维复合材料更好的性能,是用于飞机、火箭、卫星、飞船等航空航天飞行器的理想材料。

自从先进复合材料投入应用以来,有三件值得一提的成果。第一件是美国全部用碳纤维复合材料制成一架八座商用飞机--里尔芳2100号,并试飞成功。第二件是采用大量先进复合材料制成的哥伦比亚号航天飞机,这架航天飞机用碳纤维/环氧树脂制作长18.2m、宽4.6m的主货舱门,用凯芙拉纤维/环氧树脂制造各种压力容器。在这架代表近代最尖端技术成果的航天收音机上使用了树脂、金属和陶瓷基复合材料。第三件是使用了先进复合材料作为主承力结构,制造了这架可载80人的波音-767大型客运飞机,不仅减轻了重量,还提高了飞机的各种飞行性能。复合材料在这几个飞行器上的成功应用,表明了复合材料的良好性能和技术的成熟,这对于复合材料在重要工程结构上的应用是一个极大的推动。

2 先进复合材料工业上通常使用环氧树脂的品种、性能和特性

复合材料工业上使用量最大的环氧树脂品种是缩水甘油醚类环氧树脂,而其中又以双酚A型环氧树脂为主,双酚F型环氧树脂(DGEBF)和双酚S型环氧树脂。其次是缩水甘油胺类环氧树脂和缩水甘油酯类环氧树脂。其他还有酚醛环氧树脂;间苯二酚型环氧树脂、间苯二酚-甲醛型环氧树脂、四酚基乙烷型环氧树脂、三羟苯基甲烷型环氧树脂、富有柔韧性脂肪族多元醇缩水甘油醚型环氧树脂、环氧丙烯酸树脂和耐候性的脂环族环氧树脂,其可单独或者与通用E型树脂共混,供作高性能复合材料(ACM)。

缩水甘油胺类环氧树脂的优点是多官能度、环氧当量高,交联密度大,耐热性显著提高。目前国内外已利用缩水甘油胺环氧树脂优越的粘接性和耐热性,来制造碳纤维增强的复合材料(CFRP)用于飞机二次结构材料。

3 复合材料使用的增强纤维

复合材料所用各种纤维材料性能比较见表1。

表1对一些材料的性能进行了比较。由表1可见,仅玻璃纤维就比金属材料的比强度、比模量分别提高了540%、31%,碳纤维的提高则更为显著。据文献报道,由键能和键密度计算得出的单晶石墨理论强度高达150GPa[1]。因此碳纤维的进一步开发潜力是十分巨大的。日本东丽公司的近期目标是使碳纤维抗拉强度达到