频率计测频原理
- 格式:ppt
- 大小:578.50 KB
- 文档页数:22
频率和波长的测量一 实验目的:1.学会使用基本的测频仪器和信号发生器。
2.掌握基本的测量频率和波长的方法3.利用3cm 波导测试系统,使用吸收式频率计作频率测量电磁波频率;使用测量线来测量波长和频率二 实验原理1、电磁波的频率和波长可由它在媒质中的传播速度联系起来:f V λ=式中f 是频率,λ 是波长,而V 是电磁波的传播速度。
电磁波在空气中的传播速度近似地等于自由空间内的速度,通常取 V=3×1010厘米/秒。
沿Z 轴方向传播TE 10波的各个分量为222()0()0()2sin()0sin()cos()0j t y x z j t x j t z y E E X e aE E H E X e a H j E X e a aH ωβωβωβπβπωμππωμ---====-== 其中,相位常数 2gπβλ=,波导波长g λ==临界波长02c a c fλλ==所以0g λλ>,为了使波导内只传播TE 10波,波导截面尺寸应满足,022a b λλλ<<<<一般取0.7a λ≈, 0.3~0.5b λ≈目前,我国通常取22.86,10.16a mm b mm ==其主模频率范围为8.20~12.50GHz ,截止频率为6.557GHz 。
2、实验系统的连接如图二所示,是用吸收式频率计作频率测量的实验图二测量方法:系统中的PX16频率计为吸收式频率计,其结构如图三所示。
当传输线中相当一部分功率进入频率计谐振腔内,而另一部分从耦合元件处反射回去,在谐振时,腔中场很强,反射回去也强。
使之频率计的输出在谐振时明显减小,如图四所示。
00f f =图 三 吸收式频率计结构 图 四 2)测量线来测量波长传输在终端短路情况下,可根据全反射的驻波分布情况,找出相邻的驻波最小点1D 和2D (也可选择驻波相邻最大值点),如图。
相邻两个最小点的距离即为半个波导波长,因此:122g D D λ=-通过测量出的波导波长,也就可计算出频率和波长,它们之间有一一对应的关系,如下图所示。
电路的几种测量方法及原理
电路的几种测量方法及原理有:
1. 电压测量:使用电压表或示波器测量电路中的电压。
原理是通过测量电路两个端点间的电位差来确定电压大小。
2. 电流测量:使用电流表或电流表夹测量电路中的电流。
原理是通过测量电流表或电流表夹的内阻和测得的电压来计算电流。
3. 电阻测量:使用万用表或电桥测量电路中的电阻。
原理是基于欧姆定律,通过测量电阻两个端点间的电压差和流经电阻的电流来计算电阻值。
4. 频率测量:使用频率计或示波器测量电路中的频率。
原理是通过测量电路中信号的周期时间来计算频率。
5. 电感测量:使用LCR表或示波器测量电路中的电感值。
原理是基于电感元件对电流变化的反应来测量电感值。
6. 电容测量:使用LCR表或示波器测量电路中的电容值。
原理是通过测量电容元件对电压变化的反应来测量电容值。
7. 噪声测量:使用噪声仪或示波器测量电路中的噪声水平。
原理是通过测量电路中的噪声信号来评估电路的性能。
以上是电路的几种常见的测量方法及其原理,不同的测量方法适用于不同的电路参数测量需求。
频率计的制作实验报告实验目的:本实验的目的是通过制作一个简单的频率计,了解频率计的工作原理以及实际应用。
实验仪器与材料:1. 模块化电子实验箱2. 函数信号发生器3. 示波器4. 电压表5. 电阻、电容等基本元件实验原理:频率计是用于测量信号频率的一种仪器。
其基本原理是利用周期性信号的周期长度与频率之间的倒数关系,通过计算周期长度来确定信号的频率。
实验步骤:第一步:搭建电路1. 将函数信号发生器的输出接入电路板上的输入端,作为输入信号源。
2. 将电路板上的元件按照电路图连接,包括电容、电阻等。
确保电路连接正确。
第二步:调试电路1. 将函数信号发生器的频率设置为一个已知的数值,例如1000Hz。
2. 使用示波器测量电路输出端信号的周期长度。
3. 使用计算器计算出信号的频率。
4. 调整电路参数,直到测量到的频率与设定的频率相等。
第三步:验证测量准确性1. 将函数信号发生器的频率调整到其他已知值,例如2000Hz。
2. 重复上述步骤,测量并计算信号的频率。
3. 比较测量到的频率与设定的频率,验证测量准确性。
实验结果与分析:通过实验,我们成功制作了一个简单的频率计。
在调试电路的过程中,我们可以通过测量输出信号的周期长度,并利用频率的倒数与周期长度的关系计算出信号的频率。
通过与设定的频率进行比较,验证了测量的准确性。
实验中可能存在的误差主要来自于电路元件的稳定性以及测量设备的精度。
为了提高测量准确性,可以选择更稳定的元件,并使用更精确的测量设备。
实验结论:本实验通过制作一个简单的频率计,深入了解了频率计的工作原理和实际应用。
通过测量信号的周期长度并计算出频率,我们可以准确地测量信号的频率。
实验结果验证了测量的准确性,并提出了进一步提高准确性的建议。
频率计在电子测量中具有重要的应用价值,可以广泛应用于通信、电子设备维修等领域。
频率计的工作原理:测量波频率的神器频率计是一种用于测量电波频率的仪器,它采用谐振电路作为测量元件,通过对电路谐振点的检测,求出测量信号的频率。
下面我们就来详细了解频率计的工作原理。
频率计的工作原理主要是利用谐振电路的特性进行频率测量。
谐振电路是一个有固定频率的振荡电路,当外界信号的频率等于谐振电路的固定频率时,电路输出信号振幅将得到最大增益,此时电路处于谐振状态。
利用这个特性,可以通过检测电路的谐振点,求出信号的精确频率。
频率计通常采用的是谐振电桥电路或谐振环电路进行测量。
谐振电桥电路是基于电桥原理设计的一种频率计,它由谐振源、比较器和数字显示器等组成。
当输入信号的频率接近谐振源的频率时,比较器将输出电平变化,这个变化的电平可以被计算机控制和数字显示,从而得到输入信号的频率。
谐振环电路也是一种常用的频率计测量电路。
它由一个反馈环路和比较器等组成,当输入信号频率和谐振环电路本身的共振频率一致时,电路将达到共振状态,此时反馈回路的输出电压将达到最大值,经过比较器处理后,数字显示器中将显示出测量信号的频率。
除了上述谐振电桥电路和谐振环电路外,还有锁相环频率计、计数频率计、混频器频率计等不同类型的频率计常用于频率测量。
不同类型的频率计根据应用场景和测量精度的要求,选择不同种类的谐振电路进行频率测量。
在使用频率计测量时,还需特别注意检测范围和精度要求,因为不同频率的信号需要选择不同的测量范围,否则测量结果可能不准确。
此外,还需保持频率计的电源供应稳定,避免外界干扰,以确保测量结果的可靠性和精度。
总之,频率计是一种非常重要的测量仪器,它能够在电子技术领域、通信领域、精密测量领域等多个行业中发挥重要作用。
掌握频率计的工作原理,将有助于我们更好地应用这个神器进行频率测量和信号分析。
等精度数字频率计测量方式:一、测频原理所谓“频率”,确实是周期性信号在单位时刻转变的次数。
电子计数器是严格依照f =N/T的概念进行测频,其对应的测频原理方框图和工作时刻波形如图1 所示。
从图中能够看出测量进程:输入待测信号通过脉冲形成电路形成计数的窄脉冲,时基信号发生器产生计数闸门信号,待测信号通过闸门进入计数器计数,即可取得其频率。
假设闸门开启时刻为T、待测信号频率为fx,在闸门时刻T内计数器计数值为N,那么待测频率为:fx = N/T假设假设闸门时刻为1s,计数器的值为1000,那么待测信号频率应为1000Hz 或1.000kHz,现在,测频分辨力为1Hz。
图1 测频原理框图和时刻波形二、方案设计2.1整体方案设计等频率计测频范围1Hz~100MHz,测频全域相对误差恒为百万分之一,故由此系统设计提供100MHz作为标准信号输入,被测信号从tclk端输入,由闸门操纵模块进行自动调剂测试频率的大小所需要的闸门时刻,如此能够精准的测试到被测的频率,可不能因闸门开启的时刻快慢与被测频率信号转变快慢而阻碍被测频率信号致使误差过大,被测信号输入闸门操纵模块后,在闸门操纵模块开始工作时使encnt端口输出有效电平,encnt有效电平作用下使能标准计数模块(cnt模块)和被测计数模块(cnt模块),计数模块开始计数,直到encnt 从头回到无效电平,计数模块就将所计的数据送到下一级寄放模块,在总操纵模块的作用下,将数据进行load(锁存),然后寄放器里的数据会自动将数据送到下一模块进行数据处置,最后送到数码管或液晶显示屏(1602)进行被测信号的数据显示。
PIN_84VCCreset INPUTPIN_31VCCtclk INPUTcnt_time 100Signed IntegerParameter Value Typeclken_1kHztclkclrloadencntcnt_eninst4cnt_w idth32Signed IntegerParameter Value Typeclkclrencntout[cnt_width-1..0]cntinst1cnt_w idth32Signed IntegerParameter Value Typeclkclrencntout[cnt_width-1..0]cntinst2cnt_w idth32Signed IntegerParameter Value Typeclken_1kHzclrlock_endata[cnt_width-1..0]regout[cnt_width-1..0]bcnt_reginst3cnt_w idth32Signed IntegerParameter Value Typeclken_1kHzclrlock_endata[cnt_width-1..0]regout[cnt_width-1..0]tcnt_reginst5clken_1kHzresetenencntclr_cntlockclr_regload_encntcontrolinst6clken_1kHzresetclearreset_cntinst16被测频率信号输入闸门信号控制器100M标准频率信号计数器被测频率信号计数器100M标准频率数据寄存被测信号频率数据寄存复位模块闸门、计数、寄存的总控制模块clk_100MHztclk1loadclk_100MHzen_1kHzclk_100MHzen_1kHzen_1kHzclk_100MHzloaden_1kHzclk_100MHzclk_100MHzen_1kHzset_f ashion[4]tclk1reset1cnt_numb[31..0]cnt_numt[31..0]两路数据送到下一级进行数据处理2.2理论分析采纳等精度测量法,其测量原理时序如图1所示从图1中能够取得闸门时刻不是固定的值,而是被测信号的整周期的倍数,即与被测信号同步,因此,不存在对被测信号计数的±1 误差,可取得:变形后可得:对上式进行微分,可得:由于 dn=± 1 ,因此可推出:从式(5)能够看出:测量误差与被测信号频率无关,从而实现了被测频带的等精度测量;增大T或提高fs能够提高测量精度;标准频率误差为dfs/fs,因为晶体的稳固度很高,再加上FPGA核心芯片里集成有PLL锁相环可对频率进一步的稳固,标准频率的误差能够进行校准,校准后的标准误差即能够忽略。
摘要在电子技术中, 频率是最基本的参数之一, 在数字电路中,数字频率计属于时序电路,它主要由具有记忆功能的触发器构成。
在计算机及各种数字仪表中,都得到了广泛的应用。
在CMOS电路系列产品中,数字频率计是用量最大、品种很多的产品,是计算机、通讯设备、音频视频等科研生产领域不可缺少的测量仪器,并且与许多电参量的测量方案、测量结果都有十分密切的关系, 频率是反映信号特性的基本参量之一,频率测量在应用电子技术领域有着重要的地位。
测量的数字化、智能化是当前测量技术发展的趋势。
本文数字频率计是用数字显示被测信号频率的仪器,被测信号可以是正弦波,方波或其它周期性变化的信号。
如配以适当的传感器,可以对多种物理量进行测试,比如机械振动的频率,转速,声音的频率以及产品的计件等等。
因此,数字频率计是一种应用很广泛的仪器。
数字电路制造工业的进步,使得系统设计人员能在更小的空间内实现更多的功能,从而提高系统可靠性和速度。
本次设计选择以集成芯片作为核心器件,设计了一个简易七位数显频率计,以触发器和计数器为核心,由信号输入、放大、整形、计数、数据处理和数据显示等功能模块组成。
放大整型电路:对被测信号进行预处理;闸门电路:读取单位时间内进入计数器的脉冲个数;时基信号:产生一个秒信号;计数器译码电路:计数译码集成在一块芯片上,记录单位时间内脉冲个数,把十进制计数器计数结果译成BCD码;显示:把BCD码译码在数码管上显示出来。
文中首先对七位数显频率计的整体设计方案进行了分析和论证,并对用Protel99se软件画原理图及PCB图的制作了具体介绍。
关键词:频率,集成电路,Protel99se软件IAbstractIn electronic technology, the frequency is one of the most basic parameters, in digital circuits, digital frequency meter are sequential circuit, it has a memory function by the composition of the flip-flop. In the computer and various digital instruments, they are widely used. CMOS products in the circuit, the digital frequency meter is the amount of the largest varieties of many products, computers, communications equipment, audio, video and other essential areas of research and production of measuring instruments, and with a number of electrical parameters of the measurement program, the measurement results are very closely related to the frequency characteristics of reflected signals, one of the basic parameters, This article is a digital frequency meter with digital display of the equipment under test signal frequency, the measured signal can be sine wave, square wave or other periodic signal change. Such as with the appropriate sensors, can test a wide range of physical quantities, such as the frequency of mechanical vibration, speed, sound frequency, as well as piece-rate products and so on.The design of the main choice of integrated chips as the core devices, we designed a simple digital frequency meter 7 to flip-flop and counters at the core, by the signal input, amplification, shaping, counting, data processing and data display function module group into. Cosmetic surgery to enlarge the circuit: The pre-processing of measured signals; gate circuit: read per unit time the number of pulses into the counter; time base signal: 1 seconds generated signal; Counter Decoder: Decoding count on a single chip integrated , recording the number of pulses per unit time,Count the results of the decimal counter to BCD code; show: the BCD code decoding in the digital tube display. Protel99se use of schematic and PCB drawing maps for the details.Keywords: Frequency, Intergrated circuit, software Protel99II目录摘要 (I)Abstract (II)目录 (III)第一章引言 (1)1.1课题的目的及意义 (1)1.2国内外发展现状及研究概况 (1)1.3设计的主要技术指标与参数 (2)1.4设计的主要内容 (2)第二章方案的比较与论证 (3)2.1测量方法分析 (3)2.2误差分析 (4)2.3方案的选择与确立 (5)第三章总体电路设计 (6)3.1电路的组成及工作原理 (6)3.1.1电路的组成 (6)3.1.2频率计的工作原理 (6)3.2原理方框图 (8)3.3电路工作各部分原理 (9)3.3.1计数显示电路 (9)3.3.2放大分频整形电路 (10)3.3.3秒脉冲发生电路和控制电路 (11)3.3.4 测晶振电路 (13)3.3.5电源供电电路 (14)3.4整体电路原理图 (15)第四章各部分芯片介绍 (16)4.1MC14543的介绍 (16)4.2 MC14553的介绍 (18)III4.3 HCF4033的介绍 (20)4.4 CD4060的介绍 (21)4.5 CD4017的介绍 (22)4.6 AD829的介绍 (24)第五章Protel99SE的介绍 (26)5.1 Prote l的发展 (26)5.2 Protel99SE的简介 (26)5.3原理图设计步骤 (27)5.4 PCB板图的设计 (28)5.5 PCB版图 (31)结论 (32)参考文献 (33)致谢 (34)附录原件明细表 (35)IV第一章引言1.1课题的目的及意义数字频率计是用数字显示被测信号频率的仪器,是一些科研生产领域不可缺少的测量仪器,被测信号可以是正弦波,方波,三角波或其它周期性变化的信号。
频率计的发展简介频率计是一种用于测量信号频率的仪器。
它广泛应用于电子、通信、无线电、自动化控制等领域。
本文将对频率计的发展历程进行简要介绍。
一、频率计的起源频率计的起源可以追溯到19世纪末。
当时,无线电通信技术刚刚兴起,人们迫切需要一种能够准确测量信号频率的仪器。
最早的频率计是基于机械振荡器的,通过机械振荡器的频率与待测信号频率进行比较来实现测量。
二、频率计的发展过程1. 早期机械频率计早期的频率计主要采用机械振荡器和机械计数器的组合。
机械振荡器通过机械共振实现稳定的振荡频率,机械计数器则通过机械传动实现频率计数。
这种频率计具有测量范围窄、精度低的特点,但在当时仍然是一种重要的测量工具。
2. 电子频率计的浮现20世纪初,随着电子技术的发展,电子频率计开始浮现。
电子频率计利用电子元件的特性来实现频率测量,具有测量范围广、精度高、稳定性好的优点。
电子频率计的浮现极大地提高了频率测量的准确性和可靠性。
3. 数字频率计的应用随着计算机技术的发展,数字频率计逐渐取代了传统的摹拟频率计。
数字频率计利用数字信号处理技术对输入信号进行采样和处理,通过数学算法计算出信号的频率。
数字频率计具有测量速度快、精度高、灵便性强的特点,广泛应用于科研、工业生产等领域。
4. 频率计的功能扩展随着科技的进步,频率计的功能也得到了不断扩展。
现代频率计不仅可以测量信号的频率,还可以测量相位、脉宽、占空比等参数。
一些高级频率计还具备频谱分析、信号发生器、计时功能等,满足了不同领域对频率测量的需求。
三、频率计的应用领域频率计广泛应用于电子、通信、无线电、自动化控制等领域。
在电子领域,频率计常用于测量电路中的振荡频率、时钟频率等。
在通信领域,频率计用于测量无线电信号的频率、调制频率等。
在自动化控制领域,频率计用于测量机电转速、控制系统的频率响应等。
四、频率计的发展趋势随着科技的不断进步,频率计的发展也呈现出以下几个趋势:1. 小型化:随着集成电路技术的进步,频率计体积越来越小,便于携带和使用。