成考高数二知识点总结
- 格式:docx
- 大小:18.79 KB
- 文档页数:3
成人高考高等数学二知识点数学是知识的工具,亦是其它知识工具的泉源。
所有研究顺序和度量的科学均和数学有关。
接下来小编在这里给大家分享一些关于成人高考高等数学二知识点,供大家学习和参考,希望对大家有所帮助。
图片加载中…成人高考高等数学二知识点篇一连续1、知识范围(1)函数连续的概念函数在一点处连续的定义、左连续与右连续函数在一点处连续的充分必要条件、函数的间断点及其分类(2)函数在一点处连续的性质连续函数的四则运算、复合函数的连续性、反函数的连续性(3)闭区间上连续函数的性质有界性定理、值与最小值定理、介值定理(包括零点定理)(4)初等函数的连续性2、要求(1)理解函数在一点处连续与间断的概念,理解函数在一点处连续与极限存在的关系,掌握判断函数(含分段函数)在一点处的连续性的方法。
(2)会求函数的间断点及确定其类型。
(3)掌握在闭区间上连续函数的性质,会用介值定理推证一些简单命题。
(4)理解初等函数在其定义区间上的连续性,会利用连续性求极限。
一元函数微分学(一)导数与微分1、知识范围(1)导数概念导数的定义、左导数与右导数、函数在一点处可导的充分必要条件导数的几何意义与物理意义、可导与连续的关系(2)求导法则与导数的基本公式导数的四则运算、反函数的导数、导数的基本公式(3)求导方法复合函数的求导法、隐函数的求导法、对数求导法由参数方程确定的函数的求导法、求分段函数的导数(4)高阶导数高阶导数的定义、高阶导数的计算(5)微分微分的定义、微分与导数的关系、微分法则一阶微分形式不变性2、要求(1)理解导数的概念及其几何意义,了解可导性与连续性的关系,掌握用定义求函数在一点处的导数的方法。
(2)会求曲线上一点处的切线方程与法线方程。
(3)熟练掌握导数的基本公式、四则运算法则及复合函数的求导方法,会求反函数的导数。
(4)掌握隐函数求导法、对数求导法以及由参数方程所确定的函数的求导方法,会求分段函数的导数。
(5)理解高阶导数的概念,会求简单函数的阶导数。
2020年成人高考专升本高等数学二知识点复习第一章:极限与连续1-1、极限的运算1、极限的概念(1)设函数y=f(x)在点x0的某个邻域内有定义,如果当x无限趋于x0时函数f(x)无限地趋于f(x)=A一个常数A,则称A为函数f(x)当x→x0时的极限,记作limx→x0(2)左极限、右极限;在某点极限存在,左右极限存在且唯一。
limf(x)=Ax→x0−f(x)=Alimx→x0+2、无穷小量与无穷大量无穷小量定义:对于函数y=f(x),如果当x在某个变化过程中,函数f(x)的极限为0,则f(x)=0称在该变化过程中, f(x)为无穷小量,记作limx→x0无穷大量定义:对于函数y=f(x),如果当x在某个变化过程中,函数f(x)的极限值越来越f(x)=∞大,则称在该变化过程中, f(x)为无穷大量,记作limx→x03、无穷小量与无穷大量的关系为无穷小量;在同一变化过程中,如果f(x)为无穷大量,且f(x)≠0,则1f(x)为无穷大量;在同一变化过程中,如果f(x)为无穷小量,且f(x)≠0,则1f(x)4、无穷小量的性质性质1:有限个无穷小量的代数和仍是无穷小量★性质2:无穷小量与有界函数的积仍是无穷小量5、无穷小量的比较与替换定义:设α,β是同一变化过程中的无穷小量,即limα=0,limβ=0=0,则称β是α比较高阶的无穷小量(1)如果limβα(2)如果limβα=∞,则称β是α比较低阶的无穷小量(3)如果lim βα=c ≠0,则称β是与α同阶的无穷小量(4)如果lim βα=1,则称β与α是等价的无穷小量★常见的等价无穷小量:当x →0时,x ~sin x ~tan x ~ arc sin x ~ arc tan x ~ e x −1 ~ ln (1+x) 1−cos x ~12x 2★★6、两个重要极限 (1)limx→0sin x x=1(2)lim x→∞(1+1x )x=e 或lim x→0(1+x)1x=e★★7、求极限的方法 (1)直接代入法:分母不为零 (2)分子分母消去为0公因子 (3)分子分母同除以最高次幂(4)利用等价代换法求极限(等价无穷小) (5)利用两个重要极限求极限 (6)洛必达求导法则(见第二章)1-2、函数的连续性1、函数在某一点上的连续性定义1:设函数y =f(x)在点x 0的某个邻域内有定义,如果有自变量∆x 趋近于0时,相应的函数改变量∆y 也趋近于0,即lim ∆x→0[f (x 0+∆x )−f (x 0)]=0,则称函数y =f(x)在x 0处连续。
成人高考数学二知识点在现代社会中,学历的重要性越来越被人们所重视。
成人高考作为一种继续教育的途径,为那些没有机会或没有时间进入常规高校的人们提供了实现自己教育梦想的机会。
而数学二作为成人高考的科目之一,在考试中往往是让很多考生望而却步的一门课程。
下面我们就来系统地了解一下成人高考数学二的知识点。
1. 实数实数是数学中最基础、最常用的概念之一。
它包括有理数和无理数两个部分。
有理数是可以表示为两个整数的比的数,可以是整数、分数或小数。
无理数则是不能表示为两个整数的比的数,如根号2和圆周率π等。
了解实数的性质和运算规律是进行后续知识学习的基础。
2. 函数与方程函数是数学中非常重要的概念,它描述两个集合之间的对应关系。
在成人高考数学二中,我们常见的函数有线性函数、二次函数、指数函数、对数函数等。
函数方程则是函数与常数之间的关系,通过解方程我们可以求得函数的未知数。
建立函数与方程的基本概念,是后续知识点的理解和应用的基础。
3. 三角函数与解三角形三角函数是数学中研究角度大小与边长比值的函数,常见的三角函数有正弦函数、余弦函数和正切函数等。
解三角形是根据已知条件来确定三角形的各个角度和边长,主要基于正弦定理和余弦定理。
4. 平面向量与几何应用平面向量是数学中研究空间物体位移和力的概念,是解决几何问题的重要工具。
学习平面向量,可以帮助我们理解几何问题的本质,并应用于实际问题的解决中。
5. 导数与微分导数是函数在某一点处的变化率,微分则是描述函数的局部性质。
在成人高考数学二中,我们需要学习函数的导数与微分的计算方法,以及其在解决最值问题、切线问题、曲线图形研究等方面的应用。
6. 积分与面积积分是导数的反运算,是对曲线下面积的计算。
学习积分的方法和应用,可以帮助我们计算函数的定积分,解决几何中的面积问题以及应用于函数图形的研究中。
7. 统计与概率统计和概率是数学中非常重要的两个分支,也是成人高考数学二中的考点。
统计学习了数据的收集、整理、分析和推断,概率学习了事件发生的可能性及其计算。
第一章 函数、极限和连续§1.1 函数一、 主要内容 ㈠ 函数的概念1. 函数的定义: y=f(x), x ∈D定义域: D(f), 值域: Z(f). 2.分段函数:⎩⎨⎧∈∈=21)()(D x x g D x x f y3.隐函数: F(x,y)= 04.反函数: y=f(x) → x=φ(y)=f -1(y)y=f -1(x)定理:如果函数: y=f(x), D(f)=X, Z(f)=Y 是严格单调增加(或减少)的; 则它必定存在反函数:y=f -1(x), D(f -1)=Y, Z(f -1)=X且也是严格单调增加(或减少)的。
㈡ 函数的几何特性1.函数的单调性: y=f(x),x ∈D,x 1、x 2∈D 当x 1<x 2时,若f(x 1)≤f(x 2),则称f(x)在D 内单调增加( );若f(x 1)≥f(x 2),则称f(x)在D 内单调减少( );若f(x 1)<f(x 2),则称f(x)在D 内严格单调增加( );若f(x 1)>f(x 2),则称f(x)在D 内严格单调减少( )。
2.函数的奇偶性:D(f)关于原点对称 偶函数:f(-x)=f(x) 奇函数:f(-x)=-f(x)3.函数的周期性:周期函数:f(x+T)=f(x), x ∈(-∞,+∞) 周期:T ——最小的正数4.函数的有界性: |f(x)|≤M , x ∈(a,b) ㈢ 基本初等函数1.常数函数: y=c , (c 为常数)2.幂函数: y=x n, (n 为实数)3.指数函数: y=a x, (a >0、a ≠1) 4.对数函数: y=log a x ,(a >0、a ≠1) 5.三角函数: y=sin x , y=con xy=tan x , y=cot x y=sec x , y=csc x6.反三角函数:y=arcsin x, y=arccon x y=arctan x, y=arccot x ㈣ 复合函数和初等函数1.复合函数: y=f(u) , u=φ(x)y=f[φ(x)] , x ∈X2.初等函数:由基本初等函数经过有限次的四则运算(加、减、乘、除)和复合所构成的,并且能用一个数学式子表示的函数§1.2 极 限一、 主要内容 ㈠极限的概念1. 数列的极限:A y n n =∞→lim称数列{}n y 以常数A 为极限;或称数列{}n y 收敛于A.定理: 若{}n y 的极限存在⇒{}ny 必定有界.2.函数的极限: ⑴当∞→x 时,)(x f 的极限:A x f A x f A x f x x x =⇔⎪⎪⎭⎫==∞→+∞→-∞→)(lim )(lim )(lim ⑵当0x x →时,)(x f 的极限:A x f x x=→)(lim 0左极限:A x f x x =-→)(lim 0右极限:A x f x x =+→)(lim 0⑶函数极限存的充要条件: 定理:A x f x f A x f x x x x xx ==⇔=+-→→→)(lim )(lim )(lim 0㈡无穷大量和无穷小量1. 无穷大量:+∞=)(lim x f 称在该变化过程中)(x f 为无穷大量。
专科起点升本科高等数学(二)知识点汇总常用知识点:一、常见函数的定义域总结如下:(1)c bx ax y b kx y ++=+=2一般形式的定义域:x ∈R(2)x k y =分式形式的定义域:x ≠0 (3)x y = 根式的形式定义域:x ≥0(4)x y a log = 对数形式的定义域:x >0二、函数的性质1、函数的单调性当21x x <时,恒有)()(21x f x f <,)(x f 在21x x ,所在的区间上是增加的。
当21x x <时,恒有)()(21x f x f >,)(x f 在21x x ,所在的区间上是减少的。
2、 函数的奇偶性定义:设函数)(x f y =的定义区间D 关于坐标原点对称(即若D x ∈,则有D x ∈-)(1) 偶函数)(x f ——D x ∈∀,恒有)()(x f x f =-。
(2) 奇函数)(x f ——D x ∈∀,恒有)()(x f x f -=-。
三、基本初等函数1、常数函数:c y =,定义域是),(+∞-∞,图形是一条平行于x 轴的直线。
2、幂函数:ux y =, (u 是常数)。
它的定义域随着u 的不同而不同。
图形过原点。
3、指数函数定义: x a x f y ==)(, (a 是常数且0>a ,1≠a ).图形过(0,1)点。
4、对数函数定义: x x f y a log )(==, (a 是常数且0>a ,1≠a )。
图形过(1,0)点。
5、三角函数(1) 正弦函数: x y sin =π2=T , ),()(+∞-∞=f D , ]1,1[)(-=D f 。
(2) 余弦函数: x y cos =.π2=T , ),()(+∞-∞=f D , ]1,1[)(-=D f 。
(3) 正切函数: x y tan =.π=T , },2)12(,|{)(Z R ∈+≠∈=k k x x x f D π, ),()(+∞-∞=D f . (4) 余切函数: x y cot =.π=T , },,|{)(Z R ∈≠∈=k k x x x f D π, ),()(+∞-∞=D f .5、反三角函数(1) 反正弦函数: x y sin arc =,]1,1[)(-=f D ,]2,2[)(ππ-=D f 。
成人高考专升本《高等数学二》公式大全1.函数的导数公式:1)常数函数求导:(C)'=02)幂函数求导:(x^n)' = nx^(n-1), 其中n为常数3)指数函数求导:(a^x)' = a^x * ln(a), 其中a>0且a≠14)对数函数求导:(log_a(x))' = 1 / (x * ln(a)), 其中a>0且a≠15)三角函数求导:(sin(x))' = cos(x), (cos(x))' = -sin(x), (tan(x))' = sec^2(x), (cot(x))' = -csc^2(x)6)反三角函数求导:(arcsin(x))' = 1 / sqrt(1 - x^2), (arccos(x))' = -1 / sqrt(1 - x^2), (arctan(x))' = 1 / (1 + x^2)2.高等数学中的极限公式:1)常数函数极限:lim(C) = C, 其中C为常数2)多项式函数极限:lim(a_n*x^n + a_(n-1)*x^(n-1) + ... +a_1*x + a_0) = a_n*x^n, 其中n为正整数,a_n为非零常数3)指数函数极限:lim(a^x) = 1, 其中a>0且a≠14)对数函数极限:lim(log_a(x)) = log_a(1) = 0, 其中a>0且a≠15)三角函数极限:lim(sin(x) / x) = 1, lim((1 - cos(x)) / x) = 0, 当x趋近于0时3.定积分公式:1)换元积分法:∫f(g(x)) * g'(x)dx = ∫f(u)du, 其中u = g(x) 2)分部积分法:∫u * dv = u * v - ∫v * du3)凑微分法:∫f(x)dx = ∫f(x) *1dx = ∫f(x) *[g'(x)/g'(x)]dx = ∫(f(x) * g'(x))/g'(x)dx4.微分方程公式:1)一阶线性微分方程:dy/dx + P(x)y = Q(x), y = e^(-∫P(x)dx) * ∫[Q(x) * e^(∫P(x)dx)]dx2)一阶齐次线性微分方程:dy/dx = f(y/x), 令v = y/x, 可得dv = [(f(v) - v)/x]dx5.级数公式:1)等比数列前n项和:S_n=a(1-q^n)/(1-q),其中a为首项,q为公比2)调和级数:∑(1/n)是发散级数3)幂级数展开:e^x = ∑(x^n)/n!, sin(x) = ∑[(-1)^n *(x^(2n+1))/(2n+1)!], cos(x) = ∑[(-1)^n * (x^(2n))/(2n)!]。
高等数学二知识点总结高等数学二知识点总结【5篇】生命教育是一种以培养生命素养和生态环保意识为目标的教育方式。
经济学是一种以资源配置和价值创造为研究对象的学科,涉及微观经济学和宏观经济学等基本领域。
下面就让小编给大家带来高等数学二知识点总结,希望大家喜欢!高等数学二知识点总结11、向量的加法向量的加法满足平行四边形法则和三角形法则。
AB+BC=AC。
a+b=(x+x ,y+y )。
a+0=0+a=a。
向量加法的运算律:交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c)。
2、向量的减法如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0 AB-AC=CB. 即“共同起点,指向被减”a=(x,y) b=(x ,y ) 则 a-b=(x-x ,y-y ).3、数乘向量实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣·∣a∣。
当λ 0时,λa与a同方向;当λ 0时,λa与a反方向;当λ=0时,λa=0,方向任意。
当a=0时,对于任意实数λ,都有λa=0。
注:按定义知,如果λa=0,那么λ=0或a=0。
实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。
当∣λ∣ 1时,表示向量a的有向线段在原方向(λ 0)或反方向(λ 0)上伸长为原来的∣λ∣倍;当∣λ∣ 1时,表示向量a的有向线段在原方向(λ 0)或反方向(λ 0)上缩短为原来的∣λ∣倍。
数与向量的乘法满足下面的运算律结合律:(λa)·b=λ(a·b)=(a·λb)。
向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.数乘向量的消去律:① 如果实数λ≠0且λa=λb,那么a=b。
② 如果a≠0且λa=μa,那么λ=μ。
4、向量的的数量积定义:两个非零向量的夹角记为〈a,b〉,且〈a,b〉∈[0,π]。
全国各类成人高考总复习教材专科起点升本科高等数学(二)考点精解与真题解析成人高考专科起点升本科经管类高数二第一章极限和连续一、常见的考试知识点1.极限(1)函数在一点处的左极限与右极限以及函数在一点处极限存在的充分必要条件.(2)极限的性质、极限的四则运算.(3)无穷小量的概念、性质及无穷小量阶的比较.等价无穷小量代换及其应用.(4)两个重要极限及其应用.2.连续(1)函数在一点处连续与间断的概念及连续的判定.(2)闭区间上连续函数的性质.3.试卷内容比例本章内容约占试卷总分的15%,共计22分左右.二、常用的解题方法与技巧(一)极限求函数(或数列)极限的常用方法主要有:(1)利用极限的四则运算法则.(2)(3)(4)(5)方法求解.(6)利用两个重要极限:注意两个重要极限的结构式分别为:其中方块“口”内可以为x,也可以为x的函数,只要满足上述结构形式,公式都正确.特别要记住下列常用的公式:其中的a,b,d为常数.(7)利用无穷小量的性质.主要是“无穷小量与有界变量之积为无穷小量”以及“无穷大量的倒数为无穷小量”.(8)利用等价无穷小量代换.利用等价无穷小量代换常能简化运算,但是等价无穷小量代换能在乘除法中使用,限于知识面的原因不要在加减法中使用.常用的等价无穷小量代换有:当x→0时,(9)求分段函数在分段点处的极限时,一定要分别求左极限与右极限,然后再判定极限是否存在.(二)连续1.判定ƒ (x)在点x。
处连续性的方法先考察ƒ(x)是否为初等函数,x0点是否为ƒ(x)的定义区间内的点.如果给定函数为分段函数,且x0又是分段点,则需利用连续性定义来判定,特别是在分段点两侧函数表达式不同的时候,应该用左连续、右连续判定.2.判定ƒ(x)间断点的方法连续性的三个要素之一得不到满足的点,即为函数的间断点,因此判定函数间断点的步骤通常是:(1)(2)断点.(3)三、常见的考试题型与评析(一)无穷小量的概念及无穷小量的比较本部分内容1994--2013年共考了8次,考到的概率为40%.1.典型试颢(1)A.高阶的无穷小量B.等价的无穷小量C.非等价的同阶无穷小量D.低阶的无穷小量(2)(0408)(3)(1012)2.解题方法与评析【解析】(I)选B.无穷小量阶的比较就是先求两个无穷小量之比的极限,再根据定义来确定选项.解法1利用等价无穷小量代换.解法2利用重要极限Ⅱ.(2)填1.利用等价无穷小量的定义.(3)填1.利用等价无穷小量的定义.(二)型不定式的极限本部分内容1994--2013年共考了20次,属于必考题.1.典型试题(1)(0521)(2)(0621)(3)(0721)(4)(0821)(5)(0921)(6)(1021)(7)(1221)(8)(1321)2.解题方法与评析【解析】型不定式极限的求法是每年专升本试题中必考的内容之一,考生必须熟练掌握.求型不定式极限的常用方法是利用等价无穷小量代换以及洛必达法则求解.对于极限式中有根式的,首先有理化,再进行计算较简捷.常用的等价无穷小量代换有:当x→0时,(1) 或(2) 或(3) 或或(4)或(5)(6)(7)(8)【评析】(1)(2)等价无穷小量代换:此方法常用于一些可直接用等价无穷小量代换的函数,如题(3).由于知识面的原因,希望考生不要在加减运算中使用等价无穷小量代换,只能在乘除运算中(3)(4)捷的方法.求极限的最佳方法是等价无穷小量代换与洛必达法则的混合使用.例如:(三)“”型不定式的极限本部分内容1994--2013年共考了5次,考到的概率为25%.1.典型试题(1)(0116)(2)(0308)(3)(0701)A.0B.1/2C.1D.2(4)(0801)A.1/4B.0C.2/3D.1(5)(1011)2.解题方法与评析【解析】型不定式极限的计算,常用的办法是约去分子与分母中最高阶无穷因子或直接用洛必达法则求解.(1)(2)填了1/3.或(3)选B.(4)选C.或(5)填0.或【评析】型不定式极限的计算,主要是约去分子与分母中最高阶的无穷因子或直接用洛必达法则求解.在用洛必达法则求解时,一定要注意分子与分母是否满足洛必达法则定理中的条件.本大题的题(1)与题(3)就不满足洛必达法则定理中的条件,因为分子与分母都是离散变量的函数,既不连续,也不可导.(四)重要极限I本部分内容1994—2013年共考了11次,考到的概率为55%.1.典型试题(1)(0403)A.1/3B.1C.2D.3(2)(0501)A.0B.1/5C.1D.5(3)(0612)(4)(0712)(5)(0812)(6)(1021)(7)(1112)(8)(1212)2.解题方法与评析【解析】(1)所以α=3.也可这样求解:(2)选D.或(3)填3.或(4)填1/2.或(5)填2.(6)与题(4)相同.(7)填1.(8)填2/3.【评析】重要极限I是特殊的型不定式极限,所以前面介绍的求型不定式极限的方法均适用.上述各题均可用洛必达法则求解.如果极限式中含有三角函数或反三角函数,应优先考虑用重要极限I求解.(五)重要极限Ⅱ本部分内容1994——2013年共考了13次,考到的概率为65%.1.典型试题(1)(0118)(2)(0521)(3)(0601)A.1B.EC.2eD.e2(4)(0912)(5)(1121)(6)(1315)2.解题方法与评析【解析】(1)(2)(3)选D.(4)(5)(6)【评析】(六)连续性本部分内容1994——2013年共考了12次,考到的概率为60%.1.典型试题(1)(9801)A.一1B.1C.2D.3(2)(0007)(3)(0209)(4)(0613)(5)(0811)(6)(0913)(7)(1013)(8)(1111)(9)(1213)(10)(1312)2.解题方法与评析【解析】(1)(2)填2.所以k=2.(3)填1.方法同题(2),可得α=1.(4)填2.方法同题(2),可得α=2.(5)填1.因为ƒ(0)=(2x+1)|x=0=1.(6)填8.因为则(7)填1.因为则由ƒ (0-0)= ƒ (0+0),得α=1.(8)填0.(9)填1.(10)填1.【评析】判定函数ƒ (x)在一点X0处连续,需依次检查连续性的三个要素.如果X0为ƒ (x)的分段点,且在X0两侧ƒ (x)的表达式不同,需分别计算X0的左极限与右极限以及在X0处的函数值,从而确定在点X0处的连续性.成人高考专科起点升本科经管类高数二第二章一元函数微分学一、常见的考试知识点1.导数与微分(1)导数的概念及几何意义,用定义求函数在一点处的导数值.(2)曲线上一点的切线方程和法线方程.(3)导数的四则运算及复合函数的求导.(4)隐函数的求导及对数求导法.(5)高阶导数的求法.(6)微分法则.2.洛必达法则及导数的应用(1)用洛必达法则求各类不定式的极限.(2)用导数求函数的单调区间.(3)函数的极值、最值.(4)曲线的凹凸性、拐点及曲线的水平渐近线与铅直渐近线.(5)证明不等式.3.试卷内容比例本章内容约占试卷总分的30%,共计45分左右.二、常用的解题方法与技巧(一)导数与微分1.导数的定义2.导数的几何意义3.可导与可微的关系可微必定可导,反之也对,且如果求微分dx可以先求出yˊ,再代入上式即可.4.求导数的常见方法(1)利用基本初等函数的求导公式与导数的四则运算法则.(2)利用复合函数链式法则,为了不遗漏每一个复合层次,可以由外到里一次求得一个层次的导数.(3)对隐函数求导时,只需将所给式子两端出现的y当作中间变量,两端分别关于x求导,整理并解出yˊ.(4)对数求导法,主要解决幂指函数求导与连乘除、乘幂形式的函数的求导问题.(二)导数的应用1.利用导数判定函数ƒ (x)单调性的通常步骤(1)求出ƒ(x)的定义域.(2)求出ƒˊ(x),令ƒˊ(x)=0,求出(x)的所有驻点,并求出ƒ(x)不可导的点.(3)判定上述两相邻点间ƒ '(x)的符号,其中ƒ (x)>0时名的取值范围即为ƒ (x)单调递增的范围; ƒˊ(x)<0时x的取值范围即为ƒ (x)单调递减的范围.2.利用导数判定函数f(x)极值的通常步骤(1)求出ƒ(x)的定义域.(2)求出ƒˊ(x),令ƒˊ(x)=0,求出八ƒ(x)的所有驻点,并求出定义域内ƒ(x)不可导的点.(3)若f(x)在上述点的某邻域内可导,可以利用极值的第一充分条件判定上述点是否为极值点.(4)若在ƒ(x)的驻点处ƒ(x)二阶可导,且二阶导数易求,则可以利用极值的第二充分条件判定驻点是否为极值点.3.利用导数求连续函数ƒ(x)在区间[a,b]上的最大、最小值的通常步骤(1)求出ƒ(x)在(a,b)内所有的驻点(即ƒˊ(x)=0的点)及不可导的点:x1,…,x k4.利用导数判定曲线y=ƒ (x)的凹凸性与拐点的通常步骤(1)求出ƒ (x)在(a,b)内二阶导数为0的点及二阶导数不存在的点.(2)判定ƒ″(x)在上述点的两侧是否异号.若在x0两侧ƒ″(x)异号,则点x0,ƒ (x0))为曲线的拐点.在ƒ″(x)<0的x取值范围内,曲线y=ƒ (x)为凸的;在ƒ″(x)>0的x取值范围内,曲线y=ƒ (x)为凹的.三、常见的考试题型与评析(一)利用导数的定义求极限或求函数在某点的导数值本部分内容1994--2013年共考了8次,考到的概率为40%.1.典型试题(1)(0222)(2)(0303)( ).A.0B.1C.2D.4(3)(0702)A.一2B.0C.2D.4(4)(0802)A.0B.1C.3D.62.解题方法与评析【解析】函数y=ƒ (x)在点X0处导数的定义,其结构式为x0处的导数.如果不符合上式结构,则应通过变形或化简后变成上式结构才成立.(1)(2)选D.(3)选D.方法同(1).(4)选C.方法同(1).(二)利用四则运算法则求函数的导数(微分)或求函数在某点的导数值本部分内容1994--2013年共考了20次,属于必考题.1.典型试题(1)(0210)(2)(0310)(3)(0419)(4)(0522)(5)(0622)(6)(0705)A.B.C.D.(7)(0822)(8)(0903)A.0B.1C.eD.2e(9)(1022)(10)(1122)(11)(1203)A.-1B.-1/2C.0D.1(12)(1302)A.B.C.1/3D.2.解题方法与评析【解析】这些题都可以利用基本初等函数的求导公式及导数的四则运算法则来计算.(1)(2)填1.(3)(4)(5)(6)选C.(7)(8)选C.因为(9)因为所以(10)(11)选A.(12)选A.【评析】这些试题都是考试大纲要求熟练掌握的基本运算,因此希望考生一定要牢记基本初等函数的导数公式及四则运算法则.对其他求微分的试题,考生可自行练习.(三)复合函数的求导本部分内容1994—2013年共考了18次,考到的概率为90%。
成考专升本高数二知识点一、知识概述《成考专升本高数二知识点》①基本定义:成考专升本高数二包含很多内容呢,像函数、极限、导数、积分之类的。
函数就是像y = 2x这样,一个变量x通过一种规则确定另一个变量y。
极限嘛,简单说就是当自变量靠近某个值的时候,函数值接近的那个数。
导数则是函数在某一点上的变化率,就好比车的速度是路程函数的导数。
积分有点像是导数的逆运算,可以用来求面积这些。
②重要程度:在专升本学科里很重要,它是理工科类专业学习的基础,很多后续的专业课都会用到高数二的知识,像是工程力学之类的课程。
③前置知识:要掌握高中的基本数学知识,像代数式、方程、函数的简单概念,还有基本的运算,如加减乘除、幂运算等。
④应用价值:在实际生活中有用处,比如计算物体的运动速度、加速度,工程上计算材料的强度、工程量等。
像盖房子要计算建材用量就可能用到积分的知识。
二、知识体系①知识图谱:在高数整个学科里,高数二处于中级难度的地位,很多专升本的自然科学、工程类专业都会考查它。
它是建立在高数的一些基础概念之上,与后续的工程数学等又相关。
②关联知识:与高数一中的函数、极限概念联系紧密,都是在这个基础上深入和拓展的。
它还和一些工程课程中的物理、力学概念有联系,因为常常要用到高数二的计算。
③重难点分析:- 掌握难度:对一些从来没有接触过导数、积分概念的同学比较难。
导数的概念比较抽象,积分的计算规则比较复杂。
- 关键点:理解导数的定义和意义,掌握积分的基本计算方法,像换元积分法、分部积分法等。
④考点分析:- 在考试中的重要性:是成考专升本理工科类专业必考的科目,成绩对能否顺利升本很重要。
- 考查方式:主要以选择题、填空题、计算题、解答题等形式出现。
选择题考查基本概念,计算题主要考查导数、积分的计算能力。
三、详细讲解【理论概念类- 函数】①概念辨析:函数就是一种对应关系,对于定义域内每个自变量的值,通过某种规则都有唯一确定的函数值与之对应。
成考高等数学二必背公式一、极限与连续1. 重要极限:- $\lim_{x\to0}\frac{\sin x}{x}=1$- $\lim_{x\to\infty}(1+\frac{1}{x})^x=e$- $\lim_{n\to\infty}(1+\frac{1}{n})^n=e$- $\lim_{x\to0}(1+x)^{\frac{1}{x}}=e$- $\lim_{x\to\infty}\frac{\ln x}{x}=0$2. 无穷小量计算:- 当$x$是无穷小量时,$a^x-1\approx x\ln a$,其中$a>0$且$a\neq1$- 当$x$是无穷小量时,$(1+x)^n-1\approx nx$,其中$n$为常数- 当$x$是无穷小量时,$\sqrt[m]{1+x}-1\approx\frac{x}{m}$,其中$m$为常数3. 极限的四则运算:- $\lim_{x\to x_0}(f(x)+g(x))=\lim_{x\to x_0}f(x)+\lim_{x\to x_0}g(x)$- $\lim_{x\to x_0}(f(x)-g(x))=\lim_{x\to x_0}f(x)-\lim_{x\to x_0}g(x)$- $\lim_{x\to x_0}(f(x)\cdot g(x))=\lim_{x\to x_0}f(x)\cdot\lim_{x\to x_0}g(x)$- $\lim_{x\to x_0}(\frac{f(x)}{g(x)})=\frac{\lim_{x\to x_0}f(x)}{\lim_{x\to x_0}g(x)}$(其中$\lim_{x\to x_0}g(x)\neq0$)二、导数与微分1. 基本求导公式:- $(C)'=0$,其中$C$为常数- $(x^n)'=nx^{n-1}$,其中$n$为常数- $(e^x)'=e^x$- $(\ln x)'=\frac{1}{x}$,其中$x>0$- $(\sin x)'=\cos x$- $(\cos x)'=-\sin x$- $(\tan x)'=\sec^2 x$- $(\cot x)'=-\csc^2 x$- $(\sec x)'=\sec x\tan x$- $(\csc x)'=-\csc x\cot x$2. 常用求导法则:- $(u\pm v)'=u'+v'$- $(cu)'=cu'$,其中$c$为常数- $(uv)'=u'v+uv'$- $(\frac{u}{v})'=\frac{u'v-uv'}{v^2}$,其中$v\neq0$- $(f(g(x)))'=f'(g(x))\cdot g'(x)$3. 高阶导数:- 若$f'(x)$存在,则称$f(x)$可导,$f''(x)$为$f(x)$的二阶导数,以此类推- $f^{(n)}(x)$表示$f(x)$的$n$阶导数- $f^{(n)}(x)$可表示为$f^{(n)}(x)=\frac{d^n}{dx^n}f(x)$三、定积分与不定积分1. 基本积分公式:- $\int x^n dx=\frac{1}{n+1}x^{n+1}+C$,其中$n\neq-1$,$C$为常数- $\int e^x dx=e^x+C$- $\int \frac{1}{x} dx=\ln|x|+C$,其中$x\neq0$,$C$为常数- $\int \sin x dx=-\cos x+C$- $\int \cos x dx=\sin x+C$- $\int \tan x dx=-\ln|\cos x|+C$- $\int \cot x dx=\ln|\sin x|+C$- $\int \sec x dx=\ln|\sec x+\tan x|+C$- $\int \csc x dx=\ln|\csc x-\cot x|+C$2. 基本定积分公式:- $\int_a^b f(x)dx=F(b)-F(a)$,其中$F(x)$为$f(x)$的一个原函数3. 常用积分法则:- 第一换元法:设$u=g(x)$可导,则$\int f(g(x))g'(x)dx=\int f(u)du$- 第二换元法(逆函数法):设$u=f(x)$可导且$f'(x)\neq0$,则$\int f(x)dx=\int f(f^{-1}(u))du$四、级数1. 常见级数:- 等比数列:$S_n=a+ar+ar^2+\ldots+ar^{n-1}=\frac{a(1-r^n)}{1-r}$,其中$r\neq1$- 幂级数:$S_n=\sum_{k=0}^n a_k=\sum_{k=0}^n q^k=\frac{1-q^{n+1}}{1-q}$,其中$q\neq1$2. 收敛级数:- 若级数$\sum_{n=1}^\infty a_n$的部分和数列$S_n$有极限$S$,则称级数$\sum_{n=1}^\infty a_n$收敛于$S$,记作$\sum_{n=1}^\infty a_n=S$- 若级数$\sum_{n=1}^\infty a_n$收敛,则$\lim_{n\to\infty}a_n=0$3. 常见收敛级数:- 调和级数:$\sum_{n=1}^\infty\frac{1}{n}$收敛- 几何级数:$\sum_{n=1}^\infty q^n$收敛当且仅当$|q|<1$总结:本文介绍了成考高等数学二中的必背公式。
成人高考高数二公式大全1.代数1.1二次方程的解:一元二次方程的通解:若ax^2+bx+c=0(a≠0),则其根的求解公式为 x = (-b±√(b^2-4ac))/(2a)。
1.2一次方程组的解:设要解的方程为:a₁₁x₁+a₁₂x₂+…+a₁ₙxₙ=b₁a₂₁x₁+a₂₂x₂+…+a₂ₙxₙ=b₂aₙ₁x₁+aₙ₂x₂+…+aₙₙxₙ=bₙ用初等行变换将系数矩阵化为行简化阶梯形矩阵,得出方程的解。
1.3逻辑与命题包括逻辑运算(与、或、非、异或等)、命题的充分条件和必要条件、充要条件等。
2.几何2.1直线的方程点斜式方程:设直线上一点为P(x₁,y₁),直线的斜率为k,则该直线的点斜式方程为y-y₁=k(x-x₁)。
斜截式方程:设直线与y轴交于点A(0,b),直线的斜率为k,则该直线的斜截式方程为y = kx + b。
截距式方程:设直线与x轴交于点B(a,0),直线与y轴交于点A(0,b),则该直线的截距式方程为x/a+y/b=12.2圆的方程圆的标准方程:(x-h)²+(y-k)²=r²,其中(h,k)为圆心坐标,r为半径。
2.3三角函数相关公式正弦定理:a/sinA = b/sinB = c/sinC,其中a、b、c为三角形的边长,A、B、C为对应的角。
余弦定理:c² = a² + b² - 2abcosC,其中c为三角形的边长,A、B、C为对应的角。
正切定理:tanA = a/b,tanB = b/a,tanC = c/a。
2.4平面向量向量叉积:若A(a₁,a₂)和B(b₁,b₂)是两个向量,其向量叉积AB=a₁b₂-a₂b₁。
向量模的计算:向量AB的模(长度)为,AB,=√(a²+b²)。
3.概率与统计3.1概率事件A的概率P(A)=事件A发生的次数/总的可能性次数。
事件的互斥:事件A和事件B互斥的概率P(A∪B)=P(A)+P(B)。
2020年成人高考专升本高等数学二知识点复习第一章:极限与连续1-1、极限的运算1、极限的概念(1)设函数y=f(x)在点x0的某个邻域内有定义,如果当x无限趋于x0时函数f(x)无限地趋于f(x)=A一个常数A,则称A为函数f(x)当x→x0时的极限,记作limx→x0(2)左极限、右极限;在某点极限存在,左右极限存在且唯一。
limf(x)=Ax→x0−f(x)=Alimx→x0+2、无穷小量与无穷大量无穷小量定义:对于函数y=f(x),如果当x在某个变化过程中,函数f(x)的极限为0,则f(x)=0称在该变化过程中, f(x)为无穷小量,记作limx→x0无穷大量定义:对于函数y=f(x),如果当x在某个变化过程中,函数f(x)的极限值越来越f(x)=∞大,则称在该变化过程中, f(x)为无穷大量,记作limx→x03、无穷小量与无穷大量的关系为无穷小量;在同一变化过程中,如果f(x)为无穷大量,且f(x)≠0,则1f(x)为无穷大量;在同一变化过程中,如果f(x)为无穷小量,且f(x)≠0,则1f(x)4、无穷小量的性质性质1:有限个无穷小量的代数和仍是无穷小量★性质2:无穷小量与有界函数的积仍是无穷小量5、无穷小量的比较与替换定义:设α,β是同一变化过程中的无穷小量,即limα=0,limβ=0=0,则称β是α比较高阶的无穷小量(1)如果limβα(2)如果limβα=∞,则称β是α比较低阶的无穷小量(3)如果lim βα=c ≠0,则称β是与α同阶的无穷小量(4)如果lim βα=1,则称β与α是等价的无穷小量★常见的等价无穷小量:当x →0时,x ~sin x ~tan x ~ arc sin x ~ arc tan x ~ e x −1 ~ ln (1+x) 1−cos x ~12x 2★★6、两个重要极限 (1)limx→0sin x x=1(2)lim x→∞(1+1x )x=e 或lim x→0(1+x)1x=e★★7、求极限的方法 (1)直接代入法:分母不为零 (2)分子分母消去为0公因子 (3)分子分母同除以最高次幂(4)利用等价代换法求极限(等价无穷小) (5)利用两个重要极限求极限 (6)洛必达求导法则(见第二章)1-2、函数的连续性1、函数在某一点上的连续性定义1:设函数y =f(x)在点x 0的某个邻域内有定义,如果有自变量∆x 趋近于0时,相应的函数改变量∆y 也趋近于0,即lim ∆x→0[f (x 0+∆x )−f (x 0)]=0,则称函数y =f(x)在x 0处连续。
2021年成人高考〔专升本〕高等数学二〔第一章样本,完整版共14页〕严格依据大纲编写:笔记目录第一章极限和连续第一节极限[复习考试要求]1.了解极限的概念〔对极限定义等形式的描述不作要求〕.会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件.2.了解极限的有关性质,掌握极限的四那么运算法那么.3.理解无穷小量、无穷大量的概念,掌握无穷小量的性质、无穷小量与无穷大量的关系.会进展无穷小量阶的比拟〔高阶、低阶、同阶和等价〕.会运用等价无穷小量代换求极限.4.熟练掌握用两个重要极限求极限的方法.第二节函数的连续性[复习考试要求]1.理解函数在一点处连续与连续的概念,理解函数在一点处连续与极限存在之间的关系,掌握判断函数〔含分段函数〕在一点处连续性的方法.2.会求函数的连续点.3.掌握在闭区间上连续函数的性质会用它们证明一些简单命题.4.理解初等函数在其定义区间上的连续性,会利用函数连续性求极限.第二章一元函数微分学第一节导数与微分[复习考试要求]1.理解导数的概念及其几何意义,了解可导性与连续性的关系,会用定义求函数在一点处的导数.2.会求曲线上一点处的切线方程与法线方程.3.熟练掌握导数的根本公式、四那么运算法那么以及复合函数的求导方法.4.掌握隐函数的求导法与对数求导法.会求分段函数的导数.5.了解高阶导数的概念.会求简单函数的高阶导数.6.理解微分的概念,掌握微分法那么,了解可微和可导的关系,会求函数的一阶微分.第二节导数的应用[复习考试要求]1.熟练掌握用洛必达法那么求“0·∞〞、“∞-∞〞型未定式的极限的方法.2.掌握利用导数判定函数的单调性及求函数的单调增、减区间的方法.会利用函数的单调性证明简单的不等式.3.理解函数极值的概念,掌握求函数的驻点、极值点、极值、最大值与最小值的方法,会解简单的应用题.4.会判断曲线的凹凸性,会求曲线的拐点.5.会求曲线的水平渐近线与铅直渐近线第三章一元函数积分学第一节不定积分[复习考试要求]1.理解原函数与不定积分的概念及其关系,掌握不定积分的性质.2.熟练掌握不定积分的根本公式.3.熟练掌握不定积分第一换元法,掌握第二换元法〔仅限三角代换与简单的根式代换〕.4.熟练掌握不定积分的分部积分法.5.掌握简单有理函数不定积分的计算.第二节定积分及其应用[复习考试要求]1.理解定积分的概念及其几何意义,了解函数可积的条件2.掌握定积分的根本性质3.理解变上限积分是变上限的函数,掌握对变上限积分求导数的方法.4.熟练掌握牛顿—莱布尼茨公式.5.掌握定积分的换元积分法与分部积分法.6.理解无穷区间的广义积分的概念,掌握其计算方法.7.掌握直角坐标系下用定积分计算平面图形的面积以及平面图形绕坐标轴旋转所生成的旋转体的体积.第四章多元函数微分学[复习考试要求]1.了解多元函数的概念,会求二元函数的定义域.了解二元函数的几何意义.2.了解二元函数的极限与连续的概念.3.理解二元函数一阶偏导数和全微分的概念,掌握二元函数的一阶偏导数的求法.掌握二元函数的二阶偏导数的求法,掌握二元函数的全微分的求法.4.掌握复合函数与隐函数的一阶偏导数的求法.5.会求二元函数的无条件极值和条件极值.6.会用二元函数的无条件极值及条件极值解简单的实际问题.第五章概率论初步[复习考试要求]1.了解随机现象、随机试验的根本特点;理解根本领件、样本空间、随机事件的概念.2.掌握事件之间的关系:包含关系、相等关系、互不相容关系及对立关系.3.理解事件之间并〔和〕、交〔积〕、差运算的意义,掌握其运算规律.4.理解概率的古典型意义,掌握事件概率的根本性质及事件概率的计算.5.会求事件的条件概率;掌握概率的乘法公式及事件的独立性.6.了解随机变量的概念及其分布函数.7.理解离散性随机变量的意义及其概率分布掌握概率分布的计算方法.8.会求离散性随机变量的数学期望、方差和标准差.第一章极限和连续第一节极限[复习考试要求]1.了解极限的概念〔对极限定义等形式的描述不作要求〕.会求函数在一点处的左极限与右极限,了解函数在一点处极限存在的充分必要条件.2.了解极限的有关性质,掌握极限的四那么运算法那么.3.理解无穷小量、无穷大量的概念,掌握无穷小量的性质、无穷小量与无穷大量的关系.会进展无穷小量阶的比拟〔高阶、低阶、同阶和等价〕.会运用等价无穷小量代换求极限.4.熟练掌握用两个重要极限求极限的方法.[主要知识内容]〔一〕数列的极限1.数列定义按一定顺序排列的无穷多个数称为无穷数列,简称数列,记作{x n},数列中每一个数称为数列的项,第n项x n为数列的一般项或通项,例如〔1〕1,3,5,…,〔2n-1〕,…〔等差数列〕〔2〕〔等比数列〕〔3〕〔递增数列〕〔4〕1,0,1,0,…,…〔震荡数列〕都是数列.它们的一般项分别为〔2n-1〕,.对于每一个正整数n,都有一个x n与之对应,所以说数列{x n}可看作自变量n的函数x n=f〔n〕,它的定义域是全体正整数,当自变量n依次取1,2,3…一切正整数时,对应的函数值就排列成数列.在几何上,数列{x n}可看作数轴上的一个动点,它依次取数轴上的点x1,x2,x3,...x n,….2.数列的极限定义对于数列{x n},如果当n→∞时,x n无限地趋于一个确定的常数A,那么称当n趋于无穷大时,数列{x n}以常数A为极限,或称数列收敛于A,记作比方:无限的趋向0,无限的趋向1否那么,对于数列{x n},如果当n→∞时,x n不是无限地趋于一个确定的常数,称数列{x n}没有极限,如果数列没有极限,就称数列是发散的.比方:1,3,5,…,〔2n-1〕,…1,0,1,0,…数列极限的几何意义:将常数A及数列的项依次用数轴上的点表示,假设数列{x n}以A为极限,就表示当n趋于无穷大时,点x n可以无限靠近点A,即点x n与点A之间的距离|x n-A|趋于0.比方:无限的趋向0无限的趋向1〔二〕数列极限的性质与运算法那么1.数列极限的性质定理1.1〔惟一性〕假设数列{x n}收敛,那么其极限值必定惟一.定理1.2〔有界性〕假设数列{x n}收敛,那么它必定有界.注意:这个定理反过来不成立,也就是说,有界数列不一定收敛.比方:1,0,1,0,…有界:0,12.数列极限的存在准那么定理1.3〔两面夹准那么〕假设数列{x n},{y n},{z n}满足以下条件:〔1〕,〔2〕,那么定理1.4假设数列{x n}单调有界,那么它必有极限.3.数列极限的四那么运算定理.定理1.5〔1〕〔2〕〔3〕当时,〔三〕函数极限的概念1.当x→x0时函数f〔x〕的极限〔1〕当x→x0时f〔x〕的极限定义对于函数y=f〔x〕,如果当x无限地趋于x0时,函数f〔x〕无限地趋于一个常数A,那么称当x→x0时,函数f〔x〕的极限是A,记作或f〔x〕→A〔当x→x0时〕例y=f〔x〕=2x+1x→1,f〔x〕→?x<1x→1x>1x→1〔2〕左极限当x→x0时f〔x〕的左极限定义对于函数y=f〔x〕,如果当x从x0的左边无限地趋于x0时,函数f〔x〕无限地趋于一个常数A,那么称当x→x0时,函数f〔x〕的左极限是A,记作或f〔x0-0〕=A〔3〕右极限当x→x0时,f〔x〕的右极限定义对于函数y=f〔x〕,如果当x从x0的右边无限地趋于x0时,函数f〔x〕无限地趋于一个常数A,那么称当x→x0时,函数f〔x〕的右极限是A,记作或f〔x0+0〕=A例子:分段函数,求,解:当x从0的左边无限地趋于0时f〔x〕无限地趋于一个常数1.我们称当x→0时,f〔x〕的左极限是1,即有当x从0的右边无限地趋于0时,f〔x〕无限地趋于一个常数-1.我们称当x→0时,f〔x〕的右极限是-1,即有显然,函数的左极限右极限与函数的极限之间有以下关系:定理1.6当x→x0时,函数f〔x〕的极限等于A的必要充分条件是反之,如果左、右极限都等于A,那么必有.x→1时f(x)→?x≠1x→1f(x)→2对于函数,当x→1时,f〔x〕的左极限是2,右极限也是2.2.当x→∞时,函数f〔x〕的极限〔1〕当x→∞时,函数f〔x〕的极限y=f(x)x→∞f(x)→?y=f(x)=1+x→∞f(x)=1+→1定义对于函数y=f〔x〕,如果当x→∞时,f〔x〕无限地趋于一个常数A,那么称当x→∞时,函数f〔x〕的极限是A,记作或f〔x〕→A〔当x→∞时〕〔2〕当x→+∞时,函数f〔x〕的极限定义对于函数y=f〔x〕,如果当x→+∞时,f〔x〕无限地趋于一个常数A,那么称当x→+∞时,函数f〔x〕的极限是A,记作这个定义与数列极限的定义根本上一样,数列极限的定义中n→+∞的n是正整数;而在这个定义中,那么要明确写出x→+∞,且其中的x不一定是正整数,而为任意实数.y=f(x)x→+∞f(x)x→?x→+∞,f(x)=2+→2例:函数f〔x〕=2+e-x,当x→+∞时,f〔x〕→?解:f〔x〕=2+e-x=2+,x→+∞,f〔x〕=2+→2所以〔3〕当x→-∞时,函数f〔x〕的极限定义对于函数y=f〔x〕,如果当x→-∞时,f〔x〕无限地趋于一个常数A,那么称当x→-∞时,f〔x〕的极限是A,记作x→-∞f(x)→?那么f(x)=2+(x<0)x→-∞,-x→+∞f(x)=2+→2例:函数,当x→-∞时,f〔x〕→?解:当x→-∞时,-x→+∞→2,即有由上述x→∞,x→+∞,x→-∞时,函数f〔x〕极限的定义,不难看出:x→∞时f〔x〕的极限是A充分必要条件是当x→+∞以及x→-∞时,函数f〔x〕有一样的极限A.例如函数,当x→-∞时,f〔x〕无限地趋于常数1,当x→+∞时,f〔x〕也无限地趋于同一个常数1,因此称当x→∞时的极限是1,记作其几何意义如图3所示.f(x)=1+y=arctanx不存在.但是对函数y=arctanx来讲,因为有即虽然当x→-∞时,f〔x〕的极限存在,当x→+∞时,f〔x〕的极限也存在,但这两个极限不一样,我们只能说,当x→∞时,y=arctanx的极限不存在. x)=1+y=arctanx不存在.但是对函数y=arctanx来讲,因为有即虽然当x→-∞时,f〔x〕的极限存在,当x→+∞时,f〔x〕的极限也存在,但这两个极限不一样,我们只能说,当x→∞时,y=arctanx的极限不存在. 〔四〕函数极限的定理定理1.7〔惟一性定理〕如果存在,那么极限值必定惟一.定理1.8〔两面夹定理〕设函数在点的某个邻域内〔可除外〕满足条件:〔1〕,〔2〕那么有.注意:上述定理1.7及定理1.8对也成立.下面我们给出函数极限的四那么运算定理定理1.9如果那么〔1〕〔2〕〔3〕当时,时,上述运算法那么可推广到有限多个函数的代数和及乘积的情形,有以下推论:〔1〕〔2〕〔3〕用极限的运算法那么求极限时,必须注意:这些法那么要求每个参与运算的函数的极限存在,且求商的极限时,还要求分母的极限不能为零.另外,上述极限的运算法那么对于的情形也都成立.〔五〕无穷小量和无穷大量1.无穷小量〔简称无穷小〕定义对于函数,如果自变量x在某个变化过程中,函数的极限为零,那么称在该变化过程中,为无穷小量,一般记作常用希腊字母,…来表示无穷小量.定理1.10函数以A为极限的必要充分条件是:可表示为A与一个无穷小量之和.注意:〔1〕无穷小量是变量,它不是表示量的大小,而是表示变量的变化趋势无限趋于为零.〔2〕要把无穷小量与很小的数严格区分开,一个很小的数,无论它多么小也不是无穷小量.〔3〕一个变量是否为无穷小量是与自变量的变化趋势严密相关的.在不同的变化过程中,同一个变量可以有不同的变化趋势,因此结论也不尽一样.例如:振荡型发散〔4〕越变越小的变量也不一定是无穷小量,例如当x越变越大时,就越变越小,但它不是无穷小量.〔5〕无穷小量不是一个常数,但数“0〞是无穷小量中惟一的一个数,这是因为.2.无穷大量〔简称无穷大〕定义;如果当自变量〔或∞〕时,的绝对值可以变得充分大〔也即无限地增大〕,那么称在该变化过程中,为无穷大量.记作.注意:无穷大〔∞〕不是一个数值,“∞〞是一个记号,绝不能写成或.3.无穷小量与无穷大量的关系无穷小量与无穷大量之间有一种简单的关系,见以下的定理.定理1.11在同一变化过程中,如果为无穷大量,那么为无穷小量;反之,如果为无穷小量,且,那么为无穷大量.当无穷大无穷小当为无穷小无穷大4.无穷小量的根本性质性质1有限个无穷小量的代数和仍是无穷小量;性质2有界函数〔变量〕与无穷小量的乘积是无穷小量;特别地,常量与无穷小量的乘积是无穷小量.性质3有限个无穷小量的乘积是无穷小量.性质4无穷小量除以极限不为零的变量所得的商是无穷小量.5.无穷小量的比拟定义设是同一变化过程中的无穷小量,即.〔1〕如果那么称是比拟高阶的无穷小量,记作;〔2〕如果那么称与为同阶的无穷小量;〔3〕如果那么称与为等价无穷小量,记为;〔4〕如果那么称是比拟低价的无穷小量.当等价无穷小量代换定理:如果当时,均为无穷小量,又有且存在,那么.均为无穷小又有这个性质常常使用在极限运算中,它能起到简化运算的作用.但是必须注意:等价无穷小量代换可以在极限的乘除运算中使用.常用的等价无穷小量代换有:当时,sinx~x;tan~x;arctanx~x;arcsinx~x;〔六〕两个重要极限1.重要极限Ⅰ重要极限Ⅰ是指下面的求极限公式令这个公式很重要,应用它可以计算三角函数的型的极限问题.其构造式为:2.重要极限Ⅱ重要极限Ⅱ是指下面的公式:其中e是个常数〔银行家常数〕,叫自然对数的底,它的值为e=2.718281828495045……其构造式为:重要极限Ⅰ是属于型的未定型式,重要极限Ⅱ是属于“〞型的未定式时,这两个重要极限在极限计算中起很重要的作用,熟练掌握它们是非常必要的. 〔七〕求极限的方法:1.利用极限的四那么运算法那么求极限;2.利用两个重要极限求极限;3.利用无穷小量的性质求极限;4.利用函数的连续性求极限;5.利用洛必达法那么求未定式的极限;6.利用等价无穷小代换定理求极限.根本极限公式〔2〕〔3〕〔4〕例1.无穷小量的有关概念〔1〕[9601]以下变量在给定变化过程中为无穷小量的是A. B.C. D. [答]CA.发散D.〔2〕[0202]当时,与x比拟是A.高阶的无穷小量B.等价的无穷小量C.非等价的同阶无穷小量D.低阶的无穷小量[答]B解:当,与x是极限的运算:[0611]解:[答案]-1例2.型因式分解约分求极限〔1〕[0208] [答]解:〔2〕[0621]计算[答]解:例3.型有理化约分求极限〔1〕[0316]计算 [答]解:〔2〕[9516] [答]解:例4.当时求型的极限 [答]〔1〕[0308]一般地,有例5.用重要极限Ⅰ求极限〔1〕[9603]以下极限中,成立的是A. B.C. D. [答]B〔2〕[0006] [答]解:例6.用重要极限Ⅱ求极限〔1〕[0416]计算 [答][解析]解一:令解二:[0306][0601]〔2〕[0118]计算 [答]解:例7.用函数的连续性求极限[0407] [答]0解:,例8.用等价无穷小代换定理求极限[0317] [答]0解:当例9.求分段函数在分段点处的极限〔1〕[0307]设那么在的左极限[答]1[解析]〔2〕[0406]设,那么 [答]1 [解析]例10.求极限的反问题〔1〕那么常数[解析]解法一:,即,得. 解法二:令,得,解得.解法三:〔洛必达法那么〕即,得.〔2〕假设求a,b的值.[解析]型未定式.当时,.令于是,得.即,所以.[0402][0017],那么k=_____.〔答:ln2〕[解析]前面我们讲的内容:极限的概念;极限的性质;极限的运算法那么;两个重要极限;无穷小量、无穷大量的概念;无穷小量的性质以及无穷小量阶的比拟.第二节函数的连续性[复习考试要求]1.理解函数在一点处连续与连续的概念,理解函数在一点处连续与极限存在之间的关系,掌握判断函数〔含分段函数〕在一点处连续性的方法.2.会求函数的连续点.3.掌握在闭区间上连续函数的性质会用它们证明一些简单命题.4.理解初等函数在其定义区间上的连续性,会利用函数连续性求极限.[主要知识内容]〔一〕函数连续的概念1.函数在点x0处连续定义1设函数y=f〔x〕在点x0的某个邻域内有定义,如果当自变量的改变量△x 〔初值为x0〕趋近于0时,相应的函数的改变量△y也趋近于0,即那么称函数y=f〔x〕在点x0处连续.函数y=f〔x〕在点x0连续也可作如下定义:定义2设函数y=f〔x〕在点x0的某个邻域内有定义,如果当x→x0时,函数y=f 〔x〕的极限值存在,且等于x0处的函数值f〔x0〕,即定义3设函数y=f〔x〕,如果,那么称函数f〔x〕在点x0处左连续;如果,那么称函数f〔x〕在点x0处右连续.由上述定义2可知如果函数y=f〔x〕在点x0处连续,那么f〔x〕在点x0处左连续也右连续. 2.函数在区间[a,b]上连续定义如果函数f〔x〕在闭区间[a,b]上的每一点X处都连续,那么称f〔x〕在闭区间[a,b]上连续,并称f〔x〕为[a,b]上的连续函数.这里,f〔x〕在左端点a连续,是指满足关系:,在右端点b连续,是指满足关系:,即f〔x〕在左端点a处是右连续,在右端点b处是左连续.可以证明:初等函数在其定义的区间内都连续.3.函数的连续点定义如果函数f〔x〕在点x0处不连续那么称点x0为f〔x〕一个连续点.由函数在某点连续的定义可知,假设f〔x〕在点x0处有以下三种情况之一:〔1〕在点x0处,f〔x〕没有定义;〔2〕在点x0处,f〔x〕的极限不存在;〔3〕虽然在点x0处f〔x〕有定义,且存在,但,那么点x0是f〔x〕一个连续点.,那么f〔x〕在A.x=0,x=1处都连续B.x=0,x=1处都连续C.x=0处连续,x=1处连续D.x=0处连续,x=1处连续解:x=0处,f〔0〕=0∵f〔0-0〕≠f〔0+0〕x=0为f〔x〕的连续点x=1处,f〔1〕=1f〔1-0〕=f〔1+0〕=f〔1〕∴f〔x〕在x=1处连续[答案]C[9703]设,在x=0处连续,那么k等于A.0B.C.D.2分析:f〔0〕=k[答案]B例3[0209]设在x=0处连续,那么a=解:f〔0〕=e0=1∵f〔0〕=f〔0-0〕=f〔0+0〕∴a=1 [答案]1〔二〕函数在一点处连续的性质由于函数的连续性是通过极限来定义的,因而由极限的运算法那么,可以得到以下连续函数的性质.定理1.12〔四那么运算〕设函数f〔x〕,g〔x〕在x0处均连续,那么〔1〕f〔x〕±g〔x〕在x0处连续〔2〕f〔x〕·g〔x〕在x0处连续〔3〕假设g〔x0〕≠0,那么在x0处连续.定理1.13〔复合函数的连续性〕设函数u=g〔x〕在x=x0处连续,y=f〔u〕在u0=g 〔x0〕处连续,那么复合函数y=f[g〔x〕]在x=x0处连续.在求复合函数的极限时,如果u=g〔x〕,在x0处极限存在,又y=f〔u〕在对应的处连续,那么极限符号可以与函数符号交换.即定理1.14〔反函数的连续性〕设函数y=f〔x〕在某区间上连续,且严格单调增加〔或严格单调减少〕,那么它的反函数x=f-1〔y〕也在对应区间上连续,且严格单调增加〔或严格单调减少〕.〔三〕闭区间上连续函数的性质在闭区间[a,b]上连续的函数f〔x〕,有以下几个根本性质,这些性质以后都要用到.定理1.15〔有界性定理〕如果函数f〔x〕在闭区间[a,b]上连续,那么f〔x〕必在[a,b]上有界.定理1.16〔最大值和最小值定理〕如果函数f〔x〕在闭区间[a,b]上连续,那么在这个区间上一定存在最大值和最小值.定理1.17〔介值定理〕如果函数f〔x〕在闭区间[a,b]上连续,且其最大值和最小值分别为M和m,那么对于介于m和M之间的任何实数C,在[a,b]上至少存在一个ξ,使得推论〔零点定理〕如果函数f〔x〕在闭区间[a,b]上连续,且f〔a〕与f〔b〕异号,那么在[a,b]内至少存在一个点ξ,使得f〔ξ〕=0〔四〕初等函数的连续性由函数在一点处连续的定理知,连续函数经过有限次四那么运算或复合运算而得的函数在其定义的区间内是连续函数.又由于根本初等函数在其定义区间内是连续的,可以得到以下重要结论.定理1.18初等函数在其定义的区间内连续.利用初等函数连续性的结论可知:如果f〔x〕是初等函数,且x0是定义区间内的点,那么f〔x〕在x0处连续也就是说,求初等函数在定义区间内某点处的极限值,只要算出函数在该点的函数值即可.[0407][0611]例1.证明三次代数方程x3-5x+1=0在区间〔0,1〕内至少有一个实根.证:设f〔x〕=x3-5x+1f〔x〕在[0,1]上连续f〔0〕=1 f〔1〕=-3由零点定理可知,至少存在一点ξ∈〔0,1〕使得f〔ξ〕=0,ξ3-5ξ+1=0即方程在〔0,1〕内至少有一个实根.本章小结函数、极限与连续是微积分中最根本、最重要的概念之一,而极限运算又是微积分的三大运算中最根本的运算之一,必须熟练掌握,这会为以后的学习打下良好的根底.这一章的内容在考试中约占15%,约为22分左右.现将本章的主要内容总结归纳如下:一、概念局部重点:极限概念,无穷小量与等价无穷小量的概念,连续的概念.极限概念应该明确极限是描述在给定变化过程中函数变化的性态,极限值是一个确定的常数.函数在一点连续性的三个根本要素:〔1〕f〔x〕在点x0有定义.〔2〕存在.〔3〕.常用的是f〔x0-0〕=f〔x0+0〕=f〔x0〕.二、运算局部重点:求极限,函数的点连续性的判定.1.求函数极限的常用方法主要有:〔1〕利用极限的四那么运算法那么求极限;对于“〞型不定式,可考虑用因式分解或有理化消去零因子法.〔2〕利用两个重要极限求极限;〔3〕利用无穷小量的性质求极限;〔4〕利用函数的连续性求极限;假设f〔x〕在x0处连续,那么.〔5〕利用等价无穷小代换定理求极限;〔6〕会求分段函数在分段点处的极限;〔7〕利用洛必达法那么求未定式的极限.2.判定函数的连续性,利用闭区间上连续函数的零点定理证明方程的根的存在性.。
成人高考数学二知识点归纳总结在成人高考数学二科目中,有许多重要的知识点需要我们掌握和理解。
在本文中,将对这些知识点进行归纳总结,以帮助考生更好地复习和备考。
一、函数与导数1. 函数的定义与性质函数的自变量与因变量、函数图像、函数的奇偶性、周期性等基本概念。
2. 导数的概念与性质导数的定义、导数与函数图像的关系、导函数与原函数的关系、导数的四则运算等。
3. 常见函数的导数常数函数、幂函数、指数函数、对数函数、三角函数等函数的导数计算方法及其特点。
二、函数的应用1. 函数的极值与最值函数极值的定义、寻找函数的极值点的方法、判断函数最值的方法等。
2. 函数的增减性与凹凸性函数的增减性与导数的关系、函数的凹凸性与导数的关系、寻找函数的拐点等。
3. 函数的应用问题利用函数的性质解决实际问题,如最优化问题、最值问题、曲线的拟合问题等。
三、数列与数列极限1. 数列的定义与性质数列的概念与表示方式、数列的递推公式、常见数列的定义及性质。
2. 数列极限的概念与性质数列极限定义、数列极限的运算法则、数列无穷小与无穷大等。
3. 常见数列的极限计算等差数列、等比数列、斐波那契数列等常见数列的极限计算方法。
四、概率与统计1. 随机事件与概率样本空间和随机事件的概念、概率的定义和性质、概率运算等。
2. 条件概率与独立性条件概率的定义、乘法定理、贝叶斯定理、随机事件的相互独立性等。
3. 统计与抽样调查统计指标的计算、抽样调查的基本思想、样本均值与总体均值的关系等。
五、平面解析几何1. 直线与圆的方程直线的点斜式、一般式、两点式等表示方法、圆的标准方程与一般方程等。
2. 直线与圆的位置关系直线与圆的交点个数、直线与圆的切线与法线等基本性质。
3. 直线与圆的联立解析利用直线与圆的方程联立求解问题的方法与步骤。
以上是成人高考数学二科目的主要知识点归纳总结。
在备考过程中,建议考生针对每个知识点进行系统的梳理和复习,并结合真题进行练习,加深对知识点的理解和运用能力。
成人高考专升本《高等数学二》公式大全一、极限与连续部分:1.无穷小量的性质:(1)一般性质:C*ε=ε;A*ε/A=ε,A≠0;(2)无穷小量与有界函数的乘积:∞Δ;(常值项与无穷小量的乘积为无穷小量)(3)无穷小量相加:ε±ε=ε;(4)无穷小量的逆无穷大量:ε*∞=1;1/∞=0;2.等价无穷小量:(1)正当论证的基本等式;(2)等价无穷小量的性质;(3)等价无穷小量性质的推广;3.无穷大量和有界函数的乘积:(1)∞*k=∞,这里k为常数,正数或负数;(2)∞*ε=未定,ε是无穷小量;(3)∞+∞=∞;4.函数极限的性质:(1)唯一性;(2)迫敛性;(3)局部有界性;(4)四则运算的极限运算;(5)局部变量性;5.极限计算的基本方法:(1)利用极限的四则运算与连续运算法则;(2)替换法;(3)无穷小量比较法与等价无穷小法;(4)用变量代换法;(5)分类讨论法。
二、多元函数部分:1.高阶偏导数的计算:(1)双层微商(交换/不交换次序);(2)高阶偏导数计算;2.隐函数与参数方程求导:(1)隐函数的求导方法;(2)参数方程求导法;(3)参数曲线求切线;3.方向导数与梯度:(1)方向导数的定义与计算公式;(2)梯度的定义与计算公式;(3)平面上的切线与法线;4. 多元函数Taylor公式:(1) 二元函数Taylor展开式;(2) n元函数Taylor展开式。
三、重积分部分:1.二次型的积分:(1)四个标准型;(2)标准型积分公式;2.三重积分的计算:(1)直角坐标系下三重积分;(2)柱面坐标系下的三重积分;(3)球面坐标系下的三重积分;3.曲线坐标系下的重积分:(1)平面曲线的弧长度;(2)空间曲线的弧长度;4.曲面积分:(1)曲面积分的定义与性质;(2)曲面积分的计算方法;(3)双曲面、抛物面、椭球面的曲面积分。
四、级数部分:1.数项级数的概念与性质:(1)常项/变项数列、等比数列等;(2)数项级数的概念与性质;2.正项级数的审敛方法:(1)比较审敛法;(2)极限审敛法;(3)高阶无穷小说审敛法;(4)定积分判别法;(5)莱布尼茨判别法;3.幂级数的收敛域:(1)收敛域的概念;(2)幂级数的收敛域;(3)幂级数在收敛域上的连续性;4.幂级数的运算:(1)幂级数的运算公式;(2)幂级数的逐项积分与逐项导数。
成考专升本高等数学(二)重点知识及解析(占130分左右)第一章、函数、极限和连续(22分左右)第一节、函数(不单独考,了解即可)一、复合函数:要会判断一个复合函数是由哪几个简单函数复合而成的。
2ln sin y x =是由ln y u =,2u v =和sin v x =这三个简单函数复合而成.3arctan x y e =是由arctan y u =,v u e =和3v x =这三个简单函数复合而成.该部分是后面求导的关键! 二、基本初等函数:(1)常值函数:y c = (2)幂函数:y x μ= (3)指数函数:x y a =(a 〉0,1)a ≠且(4)对数函数:log a y x =(a 〉0,1)a ≠且(5)三角函数:sin y x =,cos y x =,tan y x =,cot y x =,sec y x =,csc y x =(6)反三角函数:arcsin y x =,arccos y x =,arctan y x =,cot y arc x = 其中: (正割函数)1sec cos x x =, (余割函数)1csc sin x x= 三、初等函数:由基本初等函数经过有限次的四则运算和复合运算,并能用一个解析式表示的函数称为初等函数。
他是高等数学的主要研究对象!第二节、无穷小及无穷大(有时选择题会单独考到,也是后面求极限的基础)一、无穷小1、定义:以0为极限的量称为无穷小量。
注意:(1)一个变量否是无穷小量及他的自变量的变化趋势紧密相关。
(2)只有0能能作为无穷小的唯一常量,千万不能将无穷小及很小的常量混为一谈。
()21lim 10x x →-=,即当1x →时,变量21x -是无穷小; 但是当0x →时,21x -就不是无穷小,因为此时他的极限值不为零。
所以表述无穷小时必须指明自变量的变化趋势。
例变量在给定的变化过程中为无穷小的是( ).A 、1sin x→(x 0) B 、1x e →(x 0) C 、()2ln 1x +→(x 0) D 、239x x --()3x → E 、1cos x -→(x 0) F 、21x -→(x 0) G 、()211x -1→(x ) H 、sin xx→(x 0) 答案:选C 、E 、F 、H ,因为上述选项的极限值均为零! 二、无穷大1、定义:当o x x →(或x →∞)时,()f x 无限地增大或无限减小,则称()f x 是当o x x →(或x →∞)的无穷大。
成考高数二知识点总结
成考高数二知识点总结
成考高数二知识点总结
1.函数、极限与连续:主要考查极限的计算或已知极限确定原式中的常数;讨论函数连续性和判断间断点类型;无穷小阶的比较;讨论连续函数在给定区间上零点的个数或确定方程在给定区间上有无实根。
2.一元函数微分学:主要考查导数与微分的定义;各种函数导数与微分的计算;利用洛比达法则求不定式极限;函数极值;方程的的个数;证明函数不等式;与中值定理相关的证明;最大值、最小值在物理、经济等方面实际应用;用导数研究函数性态和描绘函数图形;求曲线渐近线。
3.一元函数积分学:主要考查不定积分、定积分及广义积分的计算;变上限积分的求导、极限等;积分中值定理和积分性质的证明;定积分的应用,如计算旋转面面积、旋转体体积、变力作功等。
4.多元函数微分学:主要考查偏导数存在、可微、连续的判断;多元函数和隐函数的一阶、二阶偏导数;多元函数极值或条件极值在与经济上的应用;二元连续函数在有界平面区域上的最大值和最小值。
此外,数学一还要求会计算方向导数、梯度、曲线的切线与法平面、曲面的切平面与法线。
5.多元函数的积分学:包括二重积分在各种坐标下的计算,累次积分交换次序。
数一还要求掌握三重积分,曲线积分和曲面积分以及相关的重要公式。
6.微分方程及差分方程:主要考查一阶微分方程的通解或特解;二阶线
性常系数齐次和非齐次方程的特解或通解;微分方程的建立与求解。
差分方程的基本概念与一介常系数线形方程求解方法
由于微积分的知识是一个完整的体系,考试的题目往往带有很强的综合性,跨章节的题目很多,需要考生对整个学科有一个完整而系统的把握。
最后凯程考研名师预祝大家都能取得好成绩。
凯程教育张老师整理了几个节约时间的准则:一是要早做决定,趁早备考;二是要有计划,按计划前进;三是要跟时间赛跑,争分夺秒。
总之,考研是一场“时间战”,谁懂得抓紧时间,利用好时间,谁就是最后的胜利者。
1.制定详细周密的学习计划。
这里所说的计划,不仅仅包括总的复习计划,还应该包括月计划、周计划,甚至是日计划。
努力做到这一点是十分困难的,但却是非常必要的。
我们要把学习计划精确到每一天,这样才能利用好每一天的时间。
当然,总复习计划是从备考的第一天就应该指定的;月计划可以在每一轮复习开始之前,制定未来三个月的学习计划。
以此类推,具体到周计划就是要在每个月的月初安排一月四周的学习进程。
那么,具体到每一天,可以在每周的星期一安排好周一到周五的学习内容,或者是在每一天晚上做好第二天的学习计划。
并且,要在每一天睡觉之前检查一下是否完成当日的学习任务,时时刻刻督促自己按时完成计划。
方法一:规划进度。
分别制定总计划、月计划、周计划、日计划学习时间表,并把它们
贴在最显眼的地方,时刻提醒自己按计划进行。
方法二:互相监督。
和身边的同学一起安排计划复习,互相监督,共。