非参数统计ch01
- 格式:ppt
- 大小:2.23 MB
- 文档页数:46
非参数统计方法概览非参数统计方法是一种不依赖于总体分布形态的统计方法,它不对总体分布做出任何假设,而是通过对样本数据的排序、计数和排名等操作,来进行统计推断和假设检验。
非参数统计方法在实际应用中具有广泛的适用性和灵活性,能够处理各种类型的数据,包括连续型数据、离散型数据和顺序型数据等。
本文将对非参数统计方法进行概览,介绍其基本原理和常用方法。
一、基本原理非参数统计方法的基本原理是通过对样本数据的排序和计算,来推断总体的统计特征。
与参数统计方法相比,非参数统计方法不需要对总体分布形态做出任何假设,因此更加灵活和适用于各种情况。
非参数统计方法主要基于样本的秩次信息,通过比较和计算秩次差异来进行统计推断和假设检验。
二、常用方法1. Wilcoxon符号秩检验Wilcoxon符号秩检验是一种非参数的假设检验方法,用于比较两个相关样本的差异。
它基于样本的秩次信息,通过计算秩次差异的总和来判断两个样本是否存在显著差异。
Wilcoxon符号秩检验适用于小样本和非正态分布的情况。
2. Mann-Whitney U检验Mann-Whitney U检验是一种非参数的假设检验方法,用于比较两个独立样本的差异。
它基于样本的秩次信息,通过计算秩次和来判断两个样本是否存在显著差异。
Mann-Whitney U检验适用于小样本和非正态分布的情况。
3. Kruskal-Wallis单因素方差分析Kruskal-Wallis单因素方差分析是一种非参数的假设检验方法,用于比较多个独立样本的差异。
它基于样本的秩次信息,通过计算秩次和来判断多个样本是否存在显著差异。
Kruskal-Wallis单因素方差分析适用于小样本和非正态分布的情况。
4. Friedman多因素方差分析Friedman多因素方差分析是一种非参数的假设检验方法,用于比较多个相关样本的差异。
它基于样本的秩次信息,通过计算秩次和来判断多个样本是否存在显著差异。
Friedman多因素方差分析适用于小样本和非正态分布的情况。
非参数统计方法介绍非参数统计方法是一种不依赖于总体分布形态的统计方法,它不对总体分布做出任何假设,而是直接利用样本数据进行统计推断。
非参数统计方法的优势在于适用范围广,可以处理各种类型的数据,不受总体分布形态的限制。
本文将介绍非参数统计方法的基本原理和常用的方法。
一、非参数统计方法的基本原理非参数统计方法是基于样本数据进行统计推断的方法,它不对总体分布形态做出任何假设。
非参数统计方法的基本原理可以概括为以下几点:1. 样本数据的分布形态未知:非参数统计方法不对总体分布形态做出任何假设,因此适用于各种类型的数据,包括连续型数据、离散型数据和顺序型数据等。
2. 依赖于样本数据的排序:非参数统计方法通常基于样本数据的排序进行推断,而不是依赖于总体分布的参数估计。
3. 适用范围广:非参数统计方法不受总体分布形态的限制,适用于各种类型的数据和各种统计问题,如参数估计、假设检验和置信区间等。
二、常用的非参数统计方法非参数统计方法包括了许多不同的方法,下面将介绍其中常用的几种方法。
1. 秩和检验:秩和检验是一种用于比较两个独立样本的非参数方法。
它基于样本数据的排序,通过比较两个样本的秩和来判断两个样本是否来自于同一总体。
2. 秩相关系数:秩相关系数是一种用于衡量两个变量之间相关性的非参数方法。
它基于样本数据的排序,通过计算秩次之间的差异来衡量两个变量之间的相关性。
3. Kruskal-Wallis检验:Kruskal-Wallis检验是一种用于比较多个独立样本的非参数方法。
它基于样本数据的排序,通过比较各个样本的秩和来判断多个样本是否来自于同一总体。
4. Wilcoxon符号秩检验:Wilcoxon符号秩检验是一种用于比较两个相关样本的非参数方法。
它基于样本数据的排序,通过比较两个样本的秩和来判断两个样本是否来自于同一总体。
5. Mann-Whitney U检验:Mann-Whitney U检验是一种用于比较两个独立样本的非参数方法。
非参数统计定义数理统计学的一个分支。
如果在一个统计问题中,其总体分布不能用有限个实参数来刻画,只能对它作一些诸如分布连续、有密度、具有某阶矩等一般性的假定,则称之为非参数统计问题。
举例说明例如,检验“两个总体有相同分布”这个假设,若假定两总体的分布分别为正态分布N(μ1,σ2)和N(μ2,σ2),则问题只涉及三个实参数μ1,μ2,σ2,这是参数统计问题。
若只假定两总体的分布为连续,此外一无所知,问题涉及的分布不能用有限个实参数刻画,则这是非参数统计问题。
又如,估计总体分布的期望μ,若假定总体分布为正态 N(μ,σ2),则问题是参数性的;若只假定总体分布的期望值存在,则问题是非参数性的。
不过参数统计与非参数统计之间并没有泾渭分明的界线例外有的统计问题,从不同的角度,可以理解为参数性的,也可以理解为非参数性的。
例如线性回归(见回归分析)问题,若关心的是估计回归系数,它只是有限个实参数,因而可以看成是参数性的。
但是,如果对随机误差的分布类型没有作任何假定,则从问题的总体分布这个角度看,也可以看成是非参数性的。
统计方法重要的非参数统计方法秩方法是基于秩统计量(见统计量)的一类重要的非参数统计方法。
设有样本X1,X2,…,Xn,把它们由小到大排列,若Xi 在这个次序中占第Ri个位置(最小的占第1个位置), 则称Xi的秩为Ri(i=1,2,…,n)。
1945年F.威尔科克森提出的"两样本秩和检验"是一个有代表性的例子。
设X1,X2,…,Xm和Y1,Y2,…,Yn分别是从分布为 F(x)和 F(x-θ)的总体中抽出的样本,F连续但未知,θ也未知,检验假设H:θ=0,备择假设为θ>0(见假设检验)。
记Yi在混合样本(X1,X2,…,Xm,Y1,Y2,…,Yn)中的秩为Ri,且为诸秩的和,当W >C时,否定假设H,这里C 决定于检验的水平。
这是一个性能良好的检验。
秩方法的一个早期结果是C.斯皮尔曼于1904年提出的秩相关系数。
非参数统计笔记非参数统计是一种不依赖于总体分布形式的统计方法,也称为分布自由统计方法。
在传统的参数统计中,需要对总体分布做出某些假设,然后通过样本数据来估计参数。
而非参数统计则通过利用样本数据的内在结构,直接对总体分布的特征进行估计和推断。
非参数统计方法通常适用于以下情况:1. 总体分布未知或难以确定。
在实际应用中,总体分布往往是未知的或者无法准确描述的。
非参数统计可以通过样本数据的分布特征,对总体的特性进行推断。
2. 数据类型多样且不受限制。
非参数统计方法适用于各种数据类型,包括连续型数据、离散型数据、有序数据等。
不需要对数据做出假设,非参数统计方法具有更广泛的适用性。
3. 数据存在异常值或极端值。
非参数统计方法对异常值和极端值的影响相对较小,不会对结果产生较大的影响。
4. 数据分布不对称或偏态。
对于偏态分布的数据,非参数统计方法可以更好地反映数据的本质特征,不会受到分布形式的限制。
非参数统计方法常见的应用包括:1. 秩和检验:比较两个独立样本的中位数是否有显著差异。
2. 二项分布检验:用于比较两个或多个二项分布的差异。
3. Kruskal-Wallis检验:用于比较多个独立样本的总体分布是否存在显著差异。
4. Mann-Whitney U检验:用于比较两个独立样本的总体分布是否存在显著差异。
非参数统计方法的优点在于它们不依赖于总体分布的假设,更加适用于实际应用中的各种情况。
然而,与参数统计方法相比,非参数统计方法的效率通常较低。
由于不对总体分布做出假设,非参数统计方法通常需要更多的样本数据才能得到准确的结果。
在实际应用中,我们需要根据具体问题选择合适的统计方法。
非参数统计方法是一种重要的工具,可以帮助我们分析和推断数据的总体特征,从而做出有效的决策。