数据结构栈的基本操作
- 格式:doc
- 大小:29.00 KB
- 文档页数:2
【数据结构】堆栈的基本操作堆栈的概念:是⼀组相同类型数据的集合,并且拥有后进先出的特点,所有的操作都在堆栈顶端进⾏。
堆栈的基本操作:Init 创建⼀个空堆栈Push 把数据压⼊堆栈顶端Pop 从堆栈顶弹出数据Top 从栈顶取数据Empty 判断堆栈是否为空堆栈,是则返回true,否则返回falseFull 判断栈是否为满,是则返回true,否则返回false⽤数组实现堆栈:1 typedef struct st_stack{2int size;3int *data;4int top;5 }T_Stack;67int StackInit( T_Stack *ptStack, int *data, int size)8 {9 ptStack->size = size;10 ptStack->data = data;11 ptStack->top = 0;1213return0;14 }1516int StackPush( T_Stack *ptStack, int data )17 {18if( ptStack->top == ptStack->size )19 {20return -1;21 }2223 ptStack->data[ptStack->top++] = data;2425return0;26 }2728int StackPop( T_Stack *ptStack, int *data )29 {30if( ptStack->top == 0 )31 {32return -1;33 }3435 *data = ptStack->data[--ptStack->top];3637return0;38 }3940int StackTop( T_Stack *ptStack, int *data )41 {42if( ptStack->top == 0 )43 {44return -1;45 }4647 *data = ptStack->data[ptStack->top - 1];4849return0;50 }5152int StackIsEmpty( T_Stack *ptStack )53 {54return ( ptStack->top == 0 );55 }5657int StackIsFull( T_Stack *ptStack )58 {59return ( ptStack->top == ptStack->size );60 }。
顺序栈的基本运算顺序栈是一种经典的数据结构,它是基于数组实现的一种数据结构,具有先进后出(LIFO)的特点。
顺序栈在计算机科学和软件开发中有广泛的应用,是我们学习数据结构和算法的重要基础。
顺序栈的基本运算主要包括入栈、出栈、判空和获取栈顶元素。
下面我们将逐一介绍这些运算。
1. 入栈:入栈即向顺序栈中添加一个元素。
入栈操作需要把元素放入数组中的下一个空闲位置,并更新栈顶指针。
当数组已满时,无法进行入栈操作,这种情况称为栈溢出。
2. 出栈:出栈即从顺序栈中移除栈顶元素。
出栈操作实际上是将栈顶指针减一,并返回栈顶元素的值。
当栈为空时,无法进行出栈操作,这种情况称为栈下溢。
3. 判空:判空操作是判断顺序栈中是否没有任何元素。
可以通过检查栈顶指针是否为-1来判断栈是否为空。
4. 获取栈顶元素:获取栈顶元素是通过返回栈顶指针指向的元素来实现的。
获取栈顶元素不会改变栈的状态。
以上就是顺序栈的基本运算,通过这些运算,我们可以方便地进行栈的操作。
顺序栈的使用可以帮助我们解决许多实际问题。
顺序栈在实际中有许多应用。
例如,我们可以使用顺序栈来实现浏览器的前进和后退功能。
每次访问一个新的网页时,我们可以将当前网页的信息入栈;当点击后退按钮时,我们可以出栈以获取上一个访问过的网页信息。
另一个例子是编辑器中的撤销操作,我们可以使用顺序栈来存储每次操作的历史记录,当需要进行撤销操作时,可以通过出栈操作来获取前一个状态。
在编程中使用顺序栈时,我们要注意栈溢出和栈下溢的情况。
为了避免栈溢出,我们应该在进行入栈操作之前判断栈是否已满;为了避免栈下溢,我们应该在进行出栈操作之前判断栈是否为空。
总结而言,顺序栈是一种简单而有效的数据结构,可以帮助我们解决许多实际问题。
通过掌握顺序栈的基本运算,我们可以更好地理解数据结构和算法的原理,为软件开发和问题解决提供有力支持。
数据结构顺序栈验证实验报告数据结构顺序栈验证实验报告一、实验目的本实验旨在验证数据结构中顺序栈的基本操作和特性,包括入栈、出栈、判空、判满等操作。
二、实验原理顺序栈是一种采用数组来实现的线性数据结构。
它具有先进后出(Last In First Out,LIFO)的特性,即最后入栈的元素最先出栈。
顺序栈的主要操作包括入栈和出栈。
1.入栈操作:将元素添加到栈的末尾,同时更新栈顶指针。
2.出栈操作:从栈的末尾删除元素,同时更新栈顶指针。
3.判空操作:判断栈是否为空,即栈顶指针是否为-1.4.判满操作:判断栈是否已满,即栈顶指针是否达到栈的最大容量。
三、实验过程1.设计顺序栈的数据结构,包括定义栈的最大容量和栈顶指针。
2.实现入栈操作,将元素添加到栈中,并更新栈顶指针。
3.实现出栈操作,从栈中删除元素,并更新栈顶指针。
4.实现判空操作,判断栈是否为空。
5.实现判满操作,判断栈是否已满。
6.编写测试用例,对上述操作进行测试。
四、实验结果经过测试,顺序栈的各项操作均运行正常,符合预期的结果。
五、实验分析1.顺序栈的入栈操作的时间复杂度为O(1),出栈操作的时间复杂度为O(1)。
2.顺序栈的空间复杂度为O(n),其中n为栈的最大容量。
3.顺序栈的优点是结构简单,操作方便快捷。
缺点是无法动态调整栈的大小。
六、实验总结通过本次实验,充分理解了顺序栈的基本操作和特性。
顺序栈在实际应用中具有一定的局限性,但在某些场景下仍然是一种有效的数据结构。
附件:无法律名词及注释:1.数据结构:一种组织和存储数据的方式,旨在提高数据操作的效率和空间利用率。
2.顺序栈:使用数组实现的线性数据结构,具有先进后出的特性。
3.入栈:将元素添加到栈的末尾。
4.出栈:从栈的末尾删除元素。
5.判空:判断栈是否为空。
6.判满:判断栈是否已满。
栈的基本操作栈是一种重要的数据结构,它在计算机科学中有着广泛的应用。
对于栈的基本操作,包括入栈(push)、出栈(pop)、获取栈顶元素,以及查看栈的大小(size)等操作。
1.入栈(push)入栈的操作就是往栈里压栈,把元素压入栈顶,以实现入栈操作。
在把元素压入栈时,栈的元素数量会增加1,压入元素的位置就是栈顶。
2.出栈(pop)出栈的操作是从栈顶弹出元素,以实现出栈操作。
当一个元素从栈顶弹出时,栈的大小就会减少1,弹出元素的位置就是栈顶。
3.获取栈顶元素要获取栈顶元素,我们需要从栈中取出元素,但是这并不会改变栈的大小。
由于栈的特性,我们可以通过取出栈顶的元素来获取它,而不需要从栈的其他位置获取。
4.查看栈的大小(size)查看栈的大小也就是查看栈中有多少元素。
要查看栈的大小,我们只要通过查看栈的长度即可,从而知道栈中有多少元素,从而了解栈的大小。
到此,我们对栈的基本操作基本有了一个概念,包括入栈(push)、出栈(pop)、获取栈顶元素以及查看栈的大小(size)。
栈的操作可以用入栈出栈的方式来表示,也可以用推入和弹出的方式来表示,它们都是栈的基本操作。
栈的操作跟其他的数据结构的操作有所不同,比如要存储数据的时候,需要先进行入栈操作,而当要取出数据的时候,需要先进行出栈操作,而不是像队列里面先进行出队操作,再进行入队操作。
栈也可以用来实现字符串操作、算数表达式求值、函数调用以及实现括号的匹配等等,这些都是栈的基本操作的应用。
总而言之,栈是一种重要的数据结构,其基本操作可以说是它的核心。
因此,学习栈的基本操作非常重要,只有掌握了它的基本操作,才可以正确的使用栈这种数据结构。
一、实验目的本次实验旨在通过编程实现栈的顺序存储结构和链式存储结构,并熟练掌握栈的基本操作,包括栈的建立、入栈、出栈、取栈顶元素、判栈空等。
通过实验,加深对栈这一数据结构的理解,提高数据结构在实际问题中的应用能力。
二、实验内容1. 顺序栈的建立与基本操作(1)顺序栈的建立顺序栈使用一维数组来实现,其大小为栈的最大容量。
在建立顺序栈时,需要初始化栈顶指针top为-1,表示栈为空。
(2)顺序栈的基本操作① 入栈操作(Push)当栈未满时,将新元素插入到栈顶,同时栈顶指针top加1。
② 出栈操作(Pop)当栈非空时,将栈顶元素出栈,同时栈顶指针top减1。
③ 取栈顶元素操作(GetTop)当栈非空时,返回栈顶元素。
④ 判栈空操作(IsEmpty)当栈顶指针top为-1时,表示栈为空。
2. 链式栈的建立与基本操作(1)链式栈的建立链式栈使用链表来实现,每个节点包含数据域和指针域。
在建立链式栈时,需要创建一个头节点,其指针域为空。
(2)链式栈的基本操作① 入栈操作(Push)当栈为空时,创建新节点作为栈顶节点;当栈非空时,将新节点插入到头节点的下一个节点,同时修改头节点的指针域。
② 出栈操作(Pop)当栈非空时,删除头节点的下一个节点,同时修改头节点的指针域。
③ 取栈顶元素操作(GetTop)当栈非空时,返回头节点的下一个节点的数据域。
④ 判栈空操作(IsEmpty)当头节点的指针域为空时,表示栈为空。
三、实验步骤1. 编写顺序栈和链式栈的建立函数。
2. 编写顺序栈和链式栈的基本操作函数。
3. 编写测试程序,验证顺序栈和链式栈的基本操作。
四、实验结果与分析1. 顺序栈实验结果通过编写顺序栈的建立和基本操作函数,成功实现了顺序栈的入栈、出栈、取栈顶元素、判栈空等操作。
在测试程序中,依次进行入栈、出栈、取栈顶元素等操作,均能正确执行。
2. 链式栈实验结果通过编写链式栈的建立和基本操作函数,成功实现了链式栈的入栈、出栈、取栈顶元素、判栈空等操作。
pta7-1数据结构栈的基本操作下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!数据结构栈的基本操作数据结构中的栈(Stack)是一种常见且重要的数据结构,它遵循先进后出(LIFO)的原则,类似于我们日常生活中的栈书本的方式。
第1篇第一部分:基本概念与操作1. 什么是栈?- 栈是一种线性数据结构,遵循后进先出(LIFO)的原则。
它只允许在栈顶进行插入(push)和删除(pop)操作。
2. 栈的基本操作有哪些?- 入栈(push):在栈顶添加一个新元素。
- 出栈(pop):移除栈顶元素。
- 查看栈顶元素(peek 或 top):获取栈顶元素但不移除它。
- 判断栈是否为空(isEmpty):检查栈中是否没有元素。
- 获取栈的大小(size):返回栈中元素的数量。
3. 请用Python实现一个栈的数据结构。
```pythonclass Stack:def __init__(self):self.items = []def is_empty(self):return len(self.items) == 0def push(self, item):self.items.append(item)def pop(self):if not self.is_empty():return self.items.pop()return Nonedef peek(self):if not self.is_empty():return self.items[-1]return Nonedef size(self):return len(self.items)```4. 如何实现一个固定大小的栈?- 在栈类中添加一个计数器来跟踪栈的大小,并在push操作中检查是否已达到最大容量。
5. 请解释栈的两种遍历方法。
- 递归遍历:使用递归方法遍历栈的所有元素。
- 迭代遍历:使用栈的辅助结构(如队列)来实现迭代遍历。
第二部分:栈的应用6. 栈在计算机科学中的应用有哪些?- 函数调用:局部变量和返回地址存储在栈中。
- 表达式求值:逆波兰表达式(RPN)计算。
- 字符串匹配:括号匹配验证。
- 汉诺塔问题:移动塔的步骤可以通过栈来模拟。
7. 请解释如何使用栈实现括号匹配验证。
举例说明堆栈的操作堆栈(Stack)是一种线性数据结构,其中元素的加入和删除都在同一端进行,这个端被称为栈顶。
堆栈遵循LIFO(Last In First Out)的原则,即最后加入的元素最先被删除。
下面举例说明堆栈的常见操作:1. 入栈(Push):将一个元素加入到栈顶。
比如,我们有一个空栈,然后按照顺序依次入栈5、8和3,栈的状态会变为[5, 8, 3]。
入栈操作可以用以下伪代码表示:```push(stack, element):top = top + 1 // 增加栈顶指针stack[top] = element // 将元素放入栈顶位置```2. 出栈(Pop):将栈顶元素删除,并返回其值。
从上面的例子继续,如果我们执行一次出栈操作,那么元素3会被删除,栈的状态变为[5, 8]。
出栈操作可以用以下伪代码表示:```pop(stack):if top < 0:error "栈为空"else:element = stack[top] // 获取栈顶元素的值top = top - 1 // 减少栈顶指针return element // 返回栈顶元素的值```3. 获取栈顶元素(Top):返回栈顶元素的值,但不删除栈顶元素。
在上述的例子中,栈顶元素是8、获取栈顶元素操作可以用以下伪代码表示:```top(stack):if top < 0:error "栈为空"else:return stack[top] // 返回栈顶元素的值```4. 判空(isEmpty):检查栈是否为空。
在入栈和出栈操作之后,我们可以使用isEmpty操作来判断栈是否为空。
如果栈为空,返回True;否则,返回False。
判空操作可以用以下伪代码表示:```isEmpty(stack):if top < 0:return Trueelse:return False```5. 获取栈的大小(Size):返回栈中元素的个数。
青岛理工大学课程实验报告及实验步骤只要X不为0重复做下列动作将X%R入栈X=X/R只要栈不为空重复做下列动作栈顶出栈输出栈顶元素调试过程及实验结果根据输入的十进制数通过桟的基本操作可以转换成二进制、八进制、十六进制的数。
在上机过程中程序的调用没有太大的问题,按照课本的基本算法就可以将程序正确的运行。
总结程序可以完成基本的功能,可以将十进制数转换为其他进制的数,基本掌握了桟的几种常用的操作;但程序存在缺陷,就是不能持续进行操作,输入了一个十进制数只能进行一次数制转换,程序就会退出,有待改进。
附录#include <stdio.h>#include <stdlib.h>#include <malloc.h>#define stack_init_size 100#define stackincrement 10typedef struct sqstack{int *base;int *top;int stacksize;} sqstack;int StackInit(sqstack *s){s->base=(int *)malloc(stack_init_size *sizeof(int));if(!s->base)return 0;{return 0;}}int conversion(sqstack *s){int n,e=0,flag=0;printf("输入要转化的十进制数:\n");scanf("%d",&n);printf("要转化为多少进制:2进制、8进制、16进制填数字!\n");scanf("%d",&flag);printf("将十进制数%d转化为%d进制是:\n",n,flag);while(n){s->top=s->base;s->stacksize=stack_init_size;return 1;}int Push(sqstack *s,int e){if(s->top-s->base>=s->stacksize){s->base=(int*)realloc(s->base,(s->stacksize+stackincrement)*sizeof(int)); if(!s->base)return 0;s->top=s->base+s->stacksize;s->stacksize+=stackincrement;}*(s->top++)=e;return e;}int Pop(sqstack *s,int e){if(s->top==s->base)return 0;e=*--s->top;return e;}int stackempty(sqstack *s){if(s->top==s->base){return 1;}elsePush(s,n%flag);n=n/flag;}while(!stackempty(s)) {e=Pop(s,e);switch(e){case 10: printf("A");break;case 11: printf("B");break;case 12: printf("C");break;case 13: printf("D");break;case 14: printf("E");break;case 15: printf("F");break;default: printf("%d",e); }}printf("\n");return 0;}int main(){sqstack s;StackInit(&s); conversion(&s);return 0;}。
数据结构实验报告:栈摘要:本实验报告旨在介绍栈这一重要的数据结构,以及在实际应用中的使用。
栈是一种先进后出(LIFO)的数据结构,在计算机科学中有着广泛的应用。
本报告将详细介绍栈的定义、基本操作以及应用实例,并根据实验结果进行分析和总结。
1. 引言栈是一种基于线性表的数据结构,具有后进先出(LIFO)的特性。
它可以通过两个基本操作来实现:push(入栈)将元素添加到栈顶,pop(出栈)将栈顶元素移除。
栈在计算机科学中被广泛应用,如函数调用、表达式求值、括号匹配等。
2. 栈的实现栈可以通过数组或链表来实现。
数组实现的栈称为顺序栈,链表实现的栈称为链式栈。
无论是哪种实现方式,都需要实现以下基本操作:- push(element): 将元素添加到栈顶。
- pop(): 移除栈顶元素并返回。
- top(): 返回栈顶元素的值。
- isEmpty(): 判断栈是否为空。
- isFull(): 判断栈是否已满(仅顺序栈需要实现)。
3. 栈的应用3.1 函数调用栈在函数调用中起着关键作用。
每当一个函数被调用时,当前函数的局部变量、返回地址等信息都会被压入栈中。
当函数执行完毕时,这些信息会从栈中弹出,继续执行上一级函数。
3.2 表达式求值栈常用于表达式求值,特别是中缀表达式的转换和计算。
通过将中缀表达式转换为后缀表达式,可以方便地进行计算。
栈可以临时存储运算符,并根据运算符的优先级进行弹出和计算。
3.3 括号匹配栈的一个重要应用是括号匹配。
通过遍历字符串,将左括号压入栈中。
每当遇到右括号时,如果栈顶元素是匹配的左括号,则弹出栈顶元素;否则,表示括号不匹配。
4. 实验结果与分析根据我们对栈的实现和应用进行的实验,以下是我们得到的结论:- 通过数组实现的顺序栈在空间上存在一定的限制,可能会出现栈溢出的情况。
- 通过链表实现的链式栈没有空间限制,可以动态地添加和删除元素。
- 栈在函数调用和表达式求值中展现出了高效的性能,并能够简化程序的设计。