2014年高考一轮复习数学教案:9.2 直线与平面平行
- 格式:doc
- 大小:956.78 KB
- 文档页数:10
高三数学教案:直线与平面平行一、教学目标1. 了解直线与平面平行的概念、性质及特点。
2. 熟练掌握平面与平面、直线与平面平行的判定方法。
3. 分析并解决与直线与平面平行相关的问题。
二、教学重点四、教学过程1. 直线与平面平行的定义:如果一条直线和一个平面没有公共点,且这条直线在这个平面上的任意两点和平面上的另一点连成的线段的长度相等,则该直线与该平面平行。
(1)直线与平面平行,任意一条在这条直线上的直线都与该平面平行。
(1)直线与平面平行的关系是一种特殊的关系,是指直线与平面之间没有交点。
(2)一条直线只能与一个平面平行。
(3)两个平面可以互相平行。
(1)两个平面互相平行当且仅当它们法向量的夹角为零。
(1)如果一条直线与一个平面平行,则它的方向向量与该平面的法向量相同。
(3)如果两个向量的乘积为零,则这两个向量垂直。
(1)通过平面与平面的平行性质及定义可以证明。
2. 直线与平面平行问题的综合运用:(1)例如在画草图时需要用直线与平面平行的知识来确定平行线的位置,或者判断两个平面是否平行,或者求解平面内某点到直线的距离等问题。
(2)实际应用中,直线与平面平行的知识常常用来求解几何问题,例如物体成像、建筑设计中的房屋结构等。
五、教学反思直线与平面平行是在高中数学中较为基础的知识之一,也是很多后续学习中需要用到的知识点。
在教学中,要重点讲解直线与平面平行的概念、性质及特点,并通过概念和原理的推导来巩固学生的理解和记忆。
同时,也要讲解平面与平面、直线与平面平行的判定方法,并引导学生进行相关问题的解决,从而帮助学生更好地理解和掌握直线与平面平行的知识。
直线与平面平行判定定理说课教案第一章:直线与平面平行的概念引入教学目标:1. 让学生理解直线与平面平行的基本概念。
2. 培养学生运用几何图形进行直观思考的能力。
教学内容:1. 直线与平面平行的定义。
2. 直线与平面平行的判定条件。
教学步骤:1. 引入直线与平面平行的概念,通过实物模型或图形进行展示,让学生感受直线与平面平行的直观形象。
3. 讲解直线与平面平行的判定条件,引导学生理解并掌握判定方法。
巩固练习:2. 利用直线与平面平行的判定条件,证明一条直线与一个平面平行。
第二章:直线与平面平行判定定理的证明教学目标:1. 使学生理解直线与平面平行判定定理的内容。
2. 培养学生运用逻辑推理和几何证明的能力。
教学内容:1. 直线与平面平行判定定理的表述。
2. 直线与平面平行判定定理的证明过程。
教学步骤:1. 引入直线与平面平行判定定理,让学生理解定理的含义。
2. 讲解直线与平面平行判定定理的证明过程,引导学生理解并掌握证明方法。
3. 通过图形示例,让学生运用直线与平面平行判定定理进行判断。
巩固练习:1. 证明一条直线与一个平面平行。
第三章:直线与平面平行判定定理的应用教学目标:1. 使学生掌握直线与平面平行判定定理的应用方法。
2. 培养学生运用定理解决实际问题的能力。
教学内容:1. 直线与平面平行判定定理在实际问题中的应用。
2. 直线与平面平行判定定理在其他几何问题中的应用。
教学步骤:1. 讲解直线与平面平行判定定理在实际问题中的应用,引导学生运用定理解决问题。
2. 引导学生思考直线与平面平行判定定理在其他几何问题中的应用,如证明定理、求解几何问题等。
巩固练习:第四章:直线与平面平行判定定理的综合训练教学目标:1. 使学生熟练掌握直线与平面平行判定定理。
2. 培养学生运用定理解决综合问题的能力。
教学内容:1. 直线与平面平行判定定理的综合应用。
2. 直线与平面平行判定定理与其他几何定理的关联。
教学步骤:1. 给出直线与平面平行判定定理的综合应用问题,引导学生运用定理解决问题。
直线与平面平行的判定定理教学设计(教案)一、教学目标1. 让学生理解直线与平面平行的概念。
2. 引导学生掌握直线与平面平行的判定定理。
3. 培养学生的空间想象能力和逻辑思维能力。
二、教学内容1. 直线与平面平行的定义。
2. 直线与平面平行的判定定理。
三、教学重点与难点1. 教学重点:直线与平面平行的判定定理及其证明。
2. 教学难点:直线与平面平行的判定定理的证明和应用。
四、教学方法1. 采用问题驱动法,引导学生探究直线与平面平行的判定定理。
2. 利用几何模型和动画,直观展示直线与平面平行的判定过程。
3. 设计典型例题,培养学生运用判定定理解决问题的能力。
五、教学过程1. 导入新课:通过生活中的实例,引导学生思考直线与平面之间的关系。
2. 讲解直线与平面平行的定义,让学生明确直线与平面平行的概念。
3. 引导学生探究直线与平面平行的判定定理,讲解定理的证明过程。
4. 利用几何模型和动画,直观展示直线与平面平行的判定过程,加深学生理解。
5. 设计典型例题,引导学生运用判定定理解决问题,巩固所学知识。
6. 课堂小结:总结本节课的主要内容和知识点。
7. 布置作业:布置一些有关直线与平面平行的判定定理的练习题,巩固所学知识。
这五个章节的内容是教案的核心部分,后续的章节可以根据这五个章节的内容进行扩展和延伸。
希望这个教案能对你有所帮助!六、教学评估1. 课堂提问:通过提问了解学生对直线与平面平行判定定理的理解程度。
2. 作业批改:检查学生作业,了解学生对直线与平面平行判定定理的掌握情况。
3. 课堂练习:设计一些有关直线与平面平行的判定定理的练习题,让学生当堂练习,及时了解学生学习效果。
七、教学策略的调整1. 根据学生掌握情况,对直线与平面平行判定定理的讲解进行调整,使之更易于学生理解。
2. 对于学习有困难的学生,提供个别辅导,帮助他们理解直线与平面平行的判定定理。
3. 对于理解较深刻的学生,提供一些拓展性的问题,激发他们的思维。
直线与平面平行的判定教案一、教学目标通过本教案的学习,学生将能够:1.理解直线与平面平行的概念;2.掌握判断直线与平面平行的方法;3.运用所学知识解决相关问题。
二、教学内容1.直线与平面的概念回顾;2.直线与平面平行的定义;3.判断直线与平面平行的几何方法。
三、教学过程步骤一:直线与平面的概念回顾(15分钟)1.复习直线的定义:直线是由无数个点连成的,延伸方向两个方向无限延伸的线段。
2.复习平面的定义:平面是由无数个点组成的,延伸方向无限延伸的二维空间。
3.引导学生回忆直线和平面的特性,如直线上的两点确定一条直线,平面上的三点不共线,等。
步骤二:直线与平面平行的定义(10分钟)1.定义:直线与平面平行是指直线与平面上的所有点之间没有交点。
2.解读定义:当直线在平面上移动时,不与平面相交。
3.引导学生理解平行的概念,即两者间没有交点,彼此永不相交。
步骤三:判断直线与平面平行的几何方法(30分钟)1.法一:垂直关系判断法。
a.若直线与平面的任意一条线段垂直,则直线与平面平行。
b.示意图:垂直关系判断示意图2.法二:法向量判断法。
a.若直线的方向向量与平面的法向量垂直,则直线与平面平行。
b.示意图:法向量判断示意图3.法三:点判断法。
a.若直线上的一点在平面上,则直线与平面平行。
b.示意图:点判断示意图步骤四:练习与解答(25分钟)1.给出几个直线和平面的示例,要求学生通过判断法判断其是否平行,并解释判断思路。
2.给出一些实际生活中的问题,要求学生用直线与平面平行的判断方法解决,并说明解决思路。
四、教学通过本节课的学习,我们了解了直线与平面的平行关系,并学会了几种判断直线与平面平行的方法。
这些方法能够帮助我们在几何问题中准确判断直线与平面是否平行,并给出合理解释。
通过练习与实际问题的解决,我们不仅加深了对知识的理解,还培养了我们分析和解决问题的能力。
希望同学们能够通过不断练习和应用,掌握判断直线与平面平行的技巧,并将其应用到实际学习和生活中。
直线与平面平行的判定优秀教案一、教学目标1. 知识与技能:使学生能够准确理解直线与平面平行的定义,掌握直线与平面平行的判定定理,并能灵活运用这些定理进行空间平行关系的判定。
2. 过程与方法:通过实例分析、动手实践、逻辑推理等方式,培养学生的空间想象能力和几何推理能力。
3. 情感态度与价值观:激发学生对空间几何的兴趣,培养学生严谨的科学态度和探索精神。
二、教学重难点重点:直线与平面平行的判定定理的理解和应用。
难点:对判定定理的深入理解和灵活运用。
三、教学准备教具:黑板、粉笔、直尺、模型(如门、书本等)四、教学过程(一)导入新课1. 复习提问:空间中直线与平面有几种位置关系?分别是什么?2. 引入课题:今天我们要来学习的是直线与平面平行的判定。
(二)新课展开1. 直线与平面的位置关系(1)通过实物模型(如门、书本等)展示直线与平面的三种位置关系:直线在平面内、直线与平面相交、直线与平面平行。
(2)引导学生理解直线与平面平行的定义:如果一条直线与一个平面没有公共点,那么这条直线与这个平面平行。
2. 直线与平面平行的判定定理(1)引导学生观察实物模型,发现直线与平面平行的判定条件:如果一条直线与一个平面内的两条相交直线都平行,那么这条直线与这个平面平行。
(2)通过实例分析,让学生理解判定定理的应用。
例如,门转动到离开门框的任何位置时,门的边缘线始终与门框所在的平面平行。
3. 判定定理的证明(1)引导学生根据判定定理的条件,利用反证法进行证明。
(2)通过证明过程,让学生理解判定定理的严谨性和正确性。
4. 判定定理的应用(1)通过例题讲解,让学生掌握利用判定定理证明直线与平面平行的方法。
(2)引导学生自主思考,尝试运用判定定理解决空间平行关系问题。
(三)课堂练习1. 判断题:判断下列说法是否正确,并说明理由。
(1)如果一条直线与一个平面内的无数条直线平行,那么这条直线与这个平面平行。
(2)如果一条直线与一个平面内的两条平行直线平行,那么这条直线与这个平面平行。
直线与平面平行的判定定理教学设计(教案)第一章:直线与平面平行的概念引入1.1 教学目标让学生了解直线与平面平行的概念。
学生能够通过实例判断直线与平面是否平行。
1.2 教学内容直线与平面平行的定义。
直线与平面平行的判定方法。
1.3 教学步骤1. 引入直线与平面平行的概念,展示实例图片,引导学生观察并描述直线与平面的关系。
2. 给出直线与平面平行的定义,解释其含义。
3. 引导学生通过实例判断直线与平面是否平行,引导学生运用定义进行判断。
1.4 教学评估通过课堂提问,检查学生对直线与平面平行概念的理解。
通过实例判断练习,检查学生能否运用定义判断直线与平面是否平行。
第二章:直线与平面平行的判定定理2.1 教学目标让学生了解直线与平面平行的判定定理。
学生能够运用判定定理判断直线与平面是否平行。
2.2 教学内容直线与平面平行的判定定理。
判定定理的证明。
2.3 教学步骤1. 引入直线与平面平行的判定定理,展示实例图片,引导学生观察并描述直线与平面的关系。
2. 给出判定定理,解释其含义。
3. 进行判定定理的证明,解释证明过程。
4. 引导学生通过实例判断直线与平面是否平行,引导学生运用判定定理进行判断。
2.4 教学评估通过课堂提问,检查学生对直线与平面平行判定定理的理解。
通过实例判断练习,检查学生能否运用判定定理判断直线与平面是否平行。
第三章:直线与平面平行的判定定理的应用3.1 教学目标让学生能够运用直线与平面平行的判定定理解决实际问题。
3.2 教学内容直线与平面平行的判定定理在实际问题中的应用。
3.3 教学步骤1. 引入实际问题,展示实例图片,引导学生观察并描述直线与平面的关系。
2. 引导学生运用判定定理解决实际问题,解释解题过程。
3. 提供练习题,让学生独立解决实际问题,并提供解答。
3.4 教学评估通过课堂提问,检查学生对直线与平面平行判定定理在实际问题中的应用的理解。
通过练习题,检查学生能否独立解决实际问题。
直线与平面平行
【教学目标】
1. 掌握空间直线和平面的位置关系.
2. 掌握直线和平面平行的判定定理,性质定理;并能利用定理进行简单的证明.
3. 通过动手,培养学生勇于实践、合理推理的能力,并使学生树立将空间问题向平面问题转化的思想,体会数学来源于生活,并服务于生活.
【教学重点】
直线与平面平行的判定定理,性质定理.
【教学难点】
直线与平面平行的判定定理,性质定理的理解和应用.
【教学方法】
主要采用讲练结合法.通过动手实践,引导学生“实践—观察—猜想—归纳”,得出直线与平面的位置关系,判断定理和性质定理.利用文字语言,符号语言和图形语言的相互转化,深化对定理的理解,通过例题,使学生明确定理应用的关键,培养学生将立体问题转化为平面问题的解题思想.。
直线、平面平行的判定与性质2014高考会这样考 1.考查空间平行关系的判定及性质有关命题的判定;2.解答题中证明或探索空间的平行关系.复习备考要这样做 1.熟练掌握线面平行、面面平行的判定定理和性质,会把空间问题转化为平面问题,解答过程的叙述步骤要完整,避免因条件书写不全而失分;2.学会应用“化归思想”进行“线线问题、线面问题、面面问题”的互相转化,牢记解决问题的根源在“定理”.知识点梳理1.直线与平面平行的判定与性质2.[1.证明线面平行是高考中常见的问题,常用的方法就是证明这条线与平面内的某条直线平行.但一定要说明一条直线在平面外,一条直线在平面内.2.在判定和证明直线与平面的位置关系时,除熟练运用判定定理和性质定理外,切不可丢弃定义,因为定义既可作判定定理使用,亦可作性质定理使用.3.辅助线(面)是解(证)线面平行的关键.为了能利用线面平行的判定定理及性质定理,往往需要作辅助线(面).基础自测1.已知不重合的直线a,b和平面α,①若a∥α,b⊂α,则a∥b;②若a∥α,b∥α,则a∥b;③若a∥b,b⊂α,则a∥α;④若a∥b,a∥α,则b∥α或b⊂α.上面命题中正确的是________(填序号).2.已知α、β是不同的两个平面,直线a⊂α,直线b⊂β,命题p:a与b没有公共点;命题q:α∥β,则p是q的____________条件.3.已知平面α∥平面β,直线a⊂α,有下列命题:①a与β内的所有直线平行;②a与β内无数条直线平行;③a与β内的任意一条直线都不垂直.其中真命题的序号是________.4.(2011·浙江)若直线l不平行于平面α,且l⊄α,则() A.α内的所有直线与l异面B.α内不存在与l平行的直线C.α内存在唯一的直线与l平行D.α内的直线与l都相交5.(2012·四川)下列命题正确的是() A.若两条直线和同一个平面所成的角相等,则这两条直线平行B.若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C.若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D.若两个平面都垂直于第三个平面,则这两个平面平行题型分类题型一直线与平面平行的判定与性质例1正方形ABCD与正方形ABEF所在平面相交于AB,在AE、BD上各有一点P、Q,且AP=DQ.求证:PQ∥平面BCE.思维启迪:证明直线与平面平行可以利用直线与平面平行的判定定理,也可利用面面平行的性质.如图,在四棱锥P—ABCD中,底面ABCD是菱形,∠BAD =60°,AB=2,P A=1,P A⊥平面ABCD,E是PC的中点,F是AB的中点.求证:BE∥平面PDF.证明取PD中点为M,连接ME,MF,题型二平面与平面平行的判定与性质例2如图,在三棱柱ABC—A1B1C1中,E,F,G,H分别是AB,AC,A1B1,A1C1的中点,求证:(1)B,C,H,G四点共面;(2)平面EF A1∥平面BCHG.思维启迪:要证四点共面,只需证GH∥BC;要证面面平行,可证一个平面内的两条相交直线和另一个平面平行.探究提高证明面面平行的方法:(1)面面平行的定义;(2)面面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行;(3)利用垂直于同一条直线的两个平面平行;(4)两个平面同时平行于第三个平面,那么这两个平面平行;(5)利用“线线平行”、“线面平行”、“面面平行”的相互转化.题型三平行关系的综合应用例3如图所示,在四面体ABCD中,截面EFGH平行于对棱AB和CD,试问截面在什么位置时其截面面积最大?思维启迪:利用线面平行的性质可以得到线线平行,可以先确定截面形状,再建立目标函数求最值.探究提高利用线面平行的性质,可以实现与线线平行的转化,尤其在截面图的画法中,常用来确定交线的位置,对于最值问题,常用函数思想来解决.如图,在正方体ABCD—A1B1C1D1中,O为底面ABCD的中心,P是DD1的中点,设Q是CC1上的点,问:当点Q在什么位置时,平面D1BQ∥平面P AO?立体几何中的探索性问题B1C1D1中,E是棱DD1的典例:(12分)如图所示,在正方体ABCD—A中点.(1)求直线BE和平面ABB1A1所成的角的正弦值;(2)在棱C1D1上是否存在一点F,使B1F∥平面A1BE?证明你的结论.审题视角(1)可过E作平面ABB1A1的垂线、作线面角;(2)先探求出点F,再进行证明B1F∥平面A1BE.注意解题的方向性.规范解答方法与技巧1.平行问题的转化关系2.直线与平面平行的主要判定方法(1)定义法;(2)判定定理;(3)面与面平行的性质.3.平面与平面平行的主要判定方法(1)定义法;(2)判定定理;(3)推论;(4)a⊥α,a⊥β⇒α∥β.失误与防范1.在推证线面平行时,一定要强调直线不在平面内,否则,会出现错误.2.在解决线面、面面平行的判定时,一般遵循从“低维”到“高维”的转化,即从“线线平行”到“线面平行”,再到“面面平行”;而在应用性质定理时,其顺序恰好相反,但也要注意,转化的方向总是由题目的具体条件而定,决不可过于“模式化”.3.解题中注意符号语言的规范应用.随堂练A组专项基础训练(时间:35分钟,满分:57分)一、选择题(每小题5分,共20分)1.若直线m⊂平面α,则条件甲:“直线l∥α”是条件乙:“l∥m”的() A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件2.已知直线a,b,c及平面α,β,下列条件中,能使a∥b成立的是()A .a ∥α,b ⊂αB .a ∥α,b ∥αC .a ∥c ,b ∥cD .a ∥α,α∩β=b3. 在梯形ABCD 中,AB ∥CD ,AB ⊂平面α,CD ⊄平面α,则直线CD 与平面α内的直线的位置关系只能是( )A .平行B .平行和异面C .平行和相交D .异面和相交4. 设m 、n 表示不同直线,α、β表示不同平面,则下列结论中正确的是( )A .若m ∥α,m ∥n ,则n ∥αB .若m ⊂α,n ⊂β,m ∥β,n ∥α,则α∥βC .若α∥β,m ∥α,m ∥n ,则n ∥βD .若α∥β,m ∥α,n ∥m ,n ⊄β,则n ∥β 二、填空题(每小题5分,共15分)5. 过三棱柱ABC —A 1B 1C 1的任意两条棱的中点作直线,其中与平面ABB 1A 1平行的直线共有________条.6. 如图所示,ABCD —A 1B 1C 1D 1是棱长为a 的正方体,M 、N 分别是下底面的棱A 1B 1、B 1C 1的中点,P 是上底面的棱AD 上的一点,AP =a3,过P 、M 、N 的平面交上底面于PQ ,Q 在CD 上,则PQ =________.7. 如图所示,在正四棱柱ABCD —A 1B 1C 1D 1中,E 、F 、G 、H 分别是棱CC 1、C 1D 1、D 1D 、DC 的中点,N 是BC 的中点,点M 在四边 形EFGH 及其内部运动,则M 满足条件______________时,有 MN ∥平面B 1BDD 1.三、解答题(共22分)8. (10分)如图,四边形ABCD 是平行四边形,点P 是平面ABCD 外一点,M 是PC 的中点,在DM 上取一点G ,过G 和AP 作平面,交平面BDM 于GH . 求证:P A ∥GH .9. (12分)如图,已知平行四边形ABCD中,BC=6,正方形ADEF所在平面与平面ABCD垂直,G,H分别是DF,BE的中点.(1)求证:GH∥平面CDE;(2)若CD=2,DB=42,求四棱锥F—ABCD的体积.B组专项能力提升(时间:25分钟,满分:43分)一、选择题(每小题5分,共15分)1.设m,n是平面α内的两条不同直线;l1,l2是平面β内的两条相交直线,则α∥β的一个充分而不必要条件是() A.m∥β且l1∥αB.m∥l1且n∥l2C.m∥β且n∥βD.m∥β且n∥l22.下面四个正方体图形中,A,B为正方体的两个顶点,M,N,P分别为其所在棱的中点,能得出AB∥平面MNP的图形是()A.①②B.①④C.②③D.③④3.给出下列关于互不相同的直线l、m、n和平面α、β、γ的三个命题:①若l与m为异面直线,l⊂α,m⊂β,则α∥β;②若α∥β,l⊂α,m⊂β,则l∥m;③若α∩β=l,β∩γ=m,γ∩α=n,l∥γ,则m∥n.其中真命题的个数为() A.3 B.2 C.1 D.0m∥n,正确.二、填空题(每小题5分,共15分)4.已知平面α∥平面β,P是α、β外一点,过点P的直线m与α、β分别交于A、C,过点P的直线n与α、β分别交于B、D且P A=6,AC=9,PD=8,则BD的长为________.5. 一个正方体的展开图如图所示,B、C、D为原正方体的顶点,A为原正方体一条棱的中点.在原来的正方体中,CD与AB所成角的余弦值为________.6.已知正方体ABCD-A1B1C1D1,下列结论中,正确的结论是________(只填序号).①AD1∥BC1;②平面AB1D1∥平面BDC1;③AD1∥DC1;④AD1∥平面BDC1.三、解答题7.(13分)如图,四棱锥P—ABCD中,PD⊥平面ABCD,底面ABCD为矩形,PD=DC=4,AD=2,E为PC的中点.(1)求三棱锥A—PDE的体积;(2)AC边上是否存在一点M,使得P A∥平面EDM?若存在,求出AM的长;若不存在,请说明理由.。
9.2直线与平面平行●知识梳理1.直线与平面的地点关系有且只有三种,即直线与平面平行、直线与平面订交、直线在平面内 .2.直线与平面平行的判断:假如平面外的一条直线与平面内的一条直线平行,那么这条直线与这个平面平行.3.直线与平面平行的性质:假如一条直线与一个平面平行,经过这条直线的平面与已知.平面订交,那么这条直线与交线平行●点击双基1.设有平面α、β和直线 m、 n,则 m∥α的一个充足条件是A. α⊥β且 m⊥βB.α∩β=n 且 m∥ nC.m∥ n 且 n∥αD. α∥β且mβ答案: D.给出2.( 2004 年北京,3)设m、n 是两条不一样的直线,α、β 、γ是三个不一样的平面以下四个命题,此中正确命题的序号是①若m⊥α,n∥α,则m⊥ n②若α∥β,β∥γ,m⊥α,则m⊥γ③若m∥α,n∥α,则m∥ n④若α⊥γ,β ⊥γ,则α∥βA. ①②B.②③C.③④D.①④分析:①②明显正确 .③中 m 与 n 可能订交或异面 .④考虑长方体的极点,α与β能够订交.答案: A3.一条直线若同时平行于两个订交平面,那么这条直线与这两个平面的交线的地点关系是A. 异面B.订交C.平行D.不可以确立分析:设α∩β=l,a∥α ,a∥β ,过直线 a 作与α、β都订交的平面γ,记α∩γ=b,β∩γ=c,则a∥b 且 a∥ c,∴ b∥ c.又 bα,α∩β=l,∴b∥l.∴a∥l.cal b答案: C4.(文)设平面α∥平面β,A、C∈α,B、D∈β,直线 AB 与 CD 交于点 S,且 AS=8,BS=9,CD =34,①当 S 在α、β之间时, SC=_____________ ,②当 S 不在α、β之间时,SC=_____________.分析:∵ AC∥ BD,∴△ SAC∽△ SBD,① SC=16,② SC=272.答案:① 16②272(理)设 D 是线段 BC 上的点, BC∥平面α,从平面α外必定点A(A 与 BC 分居平面双侧)作 AB 、 AD 、 AC 分别交平面 α 于 E 、 F 、 G 三点, BC=a , AD =b , DF=c ,则EG=_____________.分析:解法类同于上题.答案:ab acb5.在四周体 ABCD 中, M 、N 分别是面△ ACD 、△ BCD 的重心,则四周体的四个面中与MN 平行的是 ________.A.MB.N DC分析:连接 AM 并延伸, 交 CD 于 E ,连接 BN 并延伸交 CD 于 F ,由重心性质可知, E 、F 重合为一点,且该点为CD 的中点 E ,由EM =EN=1得 MN ∥AB ,MANB2所以, MN ∥平面 ABC 且 MN ∥平面 ABD .答案:平面 ABC 、平面 ABD●典例分析【例 1】 以以下图,两个全等的正方形ABCD 和 ABEF 所在平面订交于AB ,M ∈ AC , N∈FB 且 AM=FN ,求证: MN ∥平面 BCE .AFDN MBQEPC为垂足(如上图) ,连接 PQ. 证法一:过 M 作 MP ⊥ BC , NQ ⊥ BE ,P 、 Q ∵ MP ∥ AB ,NQ ∥ AB ,∴ MP ∥NQ.又 NQ=2 2 BN =CM =MP ,∴ MPQN 是平行四边形 .22∴ MN ∥ PQ , PQ 平面 BCE.而 MN 平面 BCE , ∴MN ∥平面 BCE.证法二:过 M 作 MG ∥ BC ,交 AB 于点 G (以以下图),连接 NG.A FGDNMBE∵ MG ∥ BC , BC 平面 BCE , CMG 平面 BCE ,∴ MG ∥平面 BCE.又BG =CM =BN , GA MA NF∴ GN ∥AF ∥BE ,相同可证明 GN ∥平面 BCE. 又面 MG ∩ NG=G ,∴平面 MNG ∥平面 BCE.又 MN平面 MNG .∴ MN ∥平面 BCE .特别提示证明直线和平面的平行往常采纳以下两种方法:①利用直线和平面平行的判断定理,过“线线”平行,证得“线面”平行;②利用两平面平行的性质定理,经过“面面”平行,证得“线面”平行 .【例 2】 以以下图, 正方体 ABCD — A 1B 1C 1D 1 中,侧面对角线 AB 1、BC 1 上分别有两点F ,且 B 1E=C 1F .求证: EF ∥平面 ABCD .通E 、D 1C 1A 1B 1 FEGDCN证法一:分别过MBE 、F 作 EM ⊥AB 于点 M ,FN ⊥BC 于点 N ,连接 MN. ∵ BB 1⊥平面 ABCD , ∴ BB 1⊥ AB , BB 1⊥BC .∴ EM ∥ BB 1, FN ∥ BB 1.∴ EM ∥ FN . 又 B 1E=C 1F ,∴ EM=FN. 故四边形 MNFE 是平行四边形 .∴ EF ∥ MN .又 MN 在平面 ABCD 中,∴ EF ∥平面 ABCD .证法二:过B 1 E B 1G E 作 EG ∥ AB 交 BB 1 于点 G ,连接 GF ,则=.B 1 A B 1 B∵ B 1E=C 1F ,B 1A=C 1 B ,∴C 1F =B 1G.C 1BB 1 B∴ FG ∥ B 1 C 1∥ BC.又∵ EG ∩ FG=G ,AB ∩BC=B ,∴平面 EFG ∥平面 ABCD .而 EF 在平面 EFG 中, ∴ EF ∥平面 ABCD .评论:证明线面平行的常用方法是:证明直线平行于平面内的一条直线;证明直线所在的平面与已知平面平行.【例 3】 已知正四棱锥P — ABCD的底面边长及侧棱长均为13,M 、N分别是PA 、 BD上的点,且 PM ∶ MA =BN ∶ND =5∶ 8.PMCD OE( 1)求证:直线 MN ∥平面 PBC ;NB(2)求直线 MN 与平面 ABCD 所成的角 .(1)证明:∵ P— ABCD 是正四棱锥,∴ABCD 是正方形 .连接 AN 并延伸交 BC 于点 E,连接 PE.∵AD∥ BC,∴ EN∶ AN=BN∶ ND.又∵ BN∶ ND=PM∶ MA,∴EN∶ AN=PM ∶MA .∴MN∥ PE.又∵ PE 在平面 PBC 内,∴ MN ∥平面 PBC.(2)解:由( 1)知 MN ∥ PE,∴ MN 与平面 ABCD 所成的角就是 PE 与平面 ABCD 所成的角 .设点 P 在底面 ABCD 上的射影为O,连接 OE,则∠ PEO 为 PE 与平面 ABCD 所成的角 .由正棱锥的性质知 PO= PB2OB2=13 2.2由( 1)知, BE∶ AD =BN∶ ND=5∶ 8,∴BE= 65.865在△ PEB 中,∠ PBE=60 °, PB=13 ,BE=,依据余弦定理,得PE= 91. 8在 Rt△POE 中, PO = 13 2, PE=91,28∴sin∠ PEO= PO=4 2. PE7故 MN 与平面 ABCD 所成的角为 arcsin 4 2.7思虑议论证线面平行,一般是转变为证线线平行.求直线与平面所成的角一般用结构法,作出线与面所成的角 .此题若直接求MN 与平面 ABCD 所成的角,计算困难,而平移转变为PE平面 ABCD 所成的角则计算简单.可见平移是求线线角、线面角的重要方法.与●闯关训练夯实基础1.两条直线a、b 知足a∥b, bα,则 a 与平面α的关系是A. a∥αB. a与α订交C.a 与α不订交D.aα答案: C2.a、 b 是两条异面直线, A 是不在 a、 b 上的点,则以下结论建立的是A. 过 A 有且只有一个平面平行于a、 bB. 过 A 起码有一个平面平行于a、 bC.过 A 有无数个平面平行于a、 bD.过 A 且平行 a、 b 的平面可能不存在分析:过点 A 可作直线 a′∥ a, b′∥ b,则 a′∩ b′ =A.∴ a′、 b′可确立一个平面,记为α.假如 aα,bα,则a∥α,b∥α.因为平面α可能过直线a、 b 之一,所以,过 A 且平行于a、b 的平面可能不存在.答案: D3.( 2004 年全国Ⅰ, 16)已知 a、b 为不垂直的异面直线,α 是一个平面,则a、b 在α上的射影有可能是①两条平行直线;②两条相互垂直的直线;③同一条直线;④一条直线及其外一点 .在上边结论中,正确结论的编号是__________.(写出全部正确结论的编号)分析: A1D 与 BC1在平面 ABCD 上的射影相互平行;AB1与 BC1在平面 ABCD 上的射影相互垂直;DD 1与 BC 1在平面 ABCD 上的射影是一条直线及其外一点 .D1C1A1B1DC答案:①②④B4.已知 Rt△ ABC 的直角极点 C 在平面α内,斜边 AB∥α, AB=2 6 ,AC、BC分别和平面α成45°和30°角,则AB到平面α的距离为__________.分析:分别过A、 B 向平面α引垂线 AA′、 BB′,垂足分别为 A′、 B′ .A BA' B 'C设 AA′ =BB′ =x,则 AC2=(x)2=2x2,sin 45x)2 =4x2.BC2=(sin 30又 AC2+BC2=AB2,∴ 6x2=( 2 6 )2,x=2.答案: 25.以以下图,四棱锥 P— ABCD 的底面是边长为a 的正方形,侧棱PA⊥底面 ABCD ,侧面PBC 内有 BE⊥ PC 于 E,且 BE=6a,试在 AB 上找一点 F,使 EF ∥平面 PAD . 3PGA E DFB C解:在面 PCD 内作 EG⊥ PD 于 G,连接 AG.∵PA⊥平面 ABCD ,CD⊥ AD,∴CD⊥PD .∴CD ∥ EG.又 AB∥ CD,∴ EG∥ AB.如有 EF ∥平面 PAD,则 EF∥ AG,∴四边形 AFEG 为平行四边形,得EG=AF .∵ CE=a2( 6a) 2 = 3 a ,△ PBC 为直角三角形,∴ BC 2=CE · CPCP= 3 a ,3 3AF EG PE 3a3 a23=== 3a= .ABCDPC3故得 AF ∶ FB=2∶1 时, EF ∥平面 PAD .6.以以下图,设 P 为长方形 ABCD 所在平面外一点,M 、 N 分别为 AB 、 PD 上的点,且AM =DN,求证:直线 MN ∥平面 PBC.MB NPPRNQDCA MBMN 所在的分析:要证直线 MN ∥平面 PBC ,只要证明 MN ∥平面 PBC 内的一条直线或某个平面∥平面 PBC.证法一:过 N 作 NR ∥ DC 交 PC 于点 R ,连接 RB ,依题意得DCNR =DN =AM =NRNP MBAB MB DC MB=NR=MB .∵ NR ∥ DC ∥AB ,∴四边形 MNRB 是平行四边形 .∴ MN ∥MBMBRB.又∵ RB 平面 PBC ,∴直线 MN ∥平面 PBC.证法二:过 N 作 NQ ∥AD 交 PA 于点 Q ,连接 QM ,∵AM =DN =AQ,∴ QM ∥PB.MB NPQP又 NQ ∥ AD ∥ BC ,∴平面 MQN ∥平面 PBC.∴直线 MN ∥平面 PBC.证法三:过N 作NR ∥DC交PC于点R ,连接RB ,依题意有BMAB=PN PD=NR DC,∴NR =MB ,BR = BM+ MN+ NR =MN.∴ MN ∥RB.又∵ RB平面PBC ,∴直线 MN ∥平面PBC.培育能力7.已知 l 是过正方体 ABCD — A 1B 1C 1D 1 的极点的平面 AB 1D 1 与下底面 ABCD 所在平面的交线,( 1)求证: D 1B 1∥ l ;( 2)若 AB=a ,求 l 与 D 1 间的距离 .D 1C 1A1B 1CDAB( 1)证明:lD1C1A1B1D CGB∵ D1B1∥ BD ,l∴D1B1∥平面 ABCD .又平面 ABCD ∩平面 AD 1B1=l,∴D1B1∥ l .( 2)解:∵ D1D ⊥平面 ABCD ,在平面 ABCD 内,由 D 作 DG ⊥ l 于 G,连接 D1G,则 D1G⊥ l , D1G 的长即等于点D1与 l 间的距离 .∵l ∥ D1B1∥ BD ,∴∠ DAG =45° .∴DG=2221a2a26 a,1DG D1 D== a.D G=222研究创新8.以以下图,在正四棱柱1AB,点 E、M 分别为 A1B、C1C 的ABCD — A1B1C1D 1中, AA 1=2中点,过点 A1、 B、 M 三点的平面 A1BMN 交 C1D1于点 N.D1NC 1A 1B1MDECA B(1)求证: EM∥平面 A1B1C1D1;(2)求二面角 B— A1N— B1的正切值;( 3)设截面A1BMN 把该正四棱柱截成的两个几何体的体积分别为V1、V2( V1< V2),求 V1∶V2的值 .( 1)证明:设A1B1的中点为F,连接 EF、 FC1.∵ E 为 A1B 的中点,∴ EF 1B1B.2P D1NC 1HA 1MF B1D CE又 C1M1A B B1B,∴ EF MC 1.2∴四边形 EMC 1F 为平行四边形.∴EM∥ FC 1.∵EM 平面 A1B1C1D 1,FC1平面A1B1C1D1,∴ EM∥平面 A1B1C1D 1.( 2)解:作 B 1H ⊥ A 1N 于 H ,连接 BH .∵ BB 1⊥平面 A 1B 1C 1D 1,∴ BH ⊥ A 1N.∴∠ BHB 1 为二面角 B —A 1N —B 1 的平面角 .∵ EM ∥平面 A 1B 1C 1D 1, EM 平面 A 1BMN ,平面 A 1BMN ∩平面 A 1B 1C 1D 1=A 1N , ∴ EM ∥ A 1N.又∵ EM ∥ FC 1,∴ A 1N ∥ FC 1 .又∵ A 1F ∥ NC 1,∴四边形 A 1FC 1N 是平行四边形 .∴ NC 1=A 1F.设 AA 1=a ,则 A 1B 1=2a , D 1N=a. 在 Rt △A 1D 1N 中,A 1N= A D2 D N 2 = 5 a ,1 11A 1 D 1 2∴ sin ∠ A 1ND 1==.A 1 N52 4 在 Rt △A 1B 1H 中, B 1H=A 1B 1sin ∠ HA 1B 1=2a ·=a.55在 Rt △BB 1H 中,tan ∠ BHB 1=BB 1= a= 5 .B 1 H4 a 45( 3)解:延伸 A 1N 与 B 1C 1 交于 P ,则 P ∈平面 A 1BMN ,且 P ∈平面 BB 1C 1C.又∵平面 A 1BMN ∩平面 BB 1C 1 C=BM ,∴ P ∈ BM ,即直线 A 1N 、 B 1C 1、 BM 交于一点 P. 又∵平面 MNC 1∥平面 BA 1B 1,∴几何体 MNC 1— BA 1B 1 为棱台 .(没有以上这段证明,不扣分)∵ S A 1 BB 1 = 1·2a · a=a 2,2 S MNC 1 = 1 · a ·1a=1 a 2,2 24棱台 MNC 1— BA 1B 1 的高为 B 1C 1=2a ,1 · 2a 21 a2 +1 2 ) = 73=2a · 2a · a -7 317 3V 1=2a ·( a +4 4a 6 a ,∴ V 26 a =6 a .3∴V 1=7.V 2 17●思悟小结1.直线与平面的地点关系有三种:直线在平面内、直线与平面订交、直线与平面平行,后者又统称为直线在平面外.2.协助线 (面)是解证线面平行的要点.为了能利用线面平行的判断定理及性质定理,往往需要作协助线(面)●教师下载中心.教课点睛1.一定使学生理解并掌握直线与平面的地点关系,以及直线与平面平行的判断定理及性质定理;联合本课时题目,使学生掌握解证线面平行的基本方法.2.证明线面平行是高考取常有的问题,常用的方法就是证明这条线与平面内的某条直线平行.拓展题例【例 1】以以下图,设 a、 b 是异面直线, AB 是 a、 b 的公垂线,过 AB 的中点 O 作平面α与a、b分别平行,M、N分别是a、b上的随意两点,MN与α 交于点P,求证:P是MN的中点 .A MaOPQB证明:连接AN,交平面α于点 Q,连接 PQ. Nb∵b∥α, b 平面 ABN,平面 ABN∩α =OQ ,∴ b∥OQ .又 O 为 AB 的中点,∴ Q 为 AN 的中点 .∵a∥ α,a平面AMN且平面AMN∩ α=PQ,∴a∥PQ .∴ P 为 MN 的中点 .评论:此题要点考察直线与平面平行的性质.【例 2】在直三棱柱ABC—A1B1C1中, AB1⊥ BC1, AB=CC1=a,BC=b.A1C1B1GE FA C(1)设 E、F 分别为 AB 1、 BC1的中点,求证B: EF ∥平面 ABC;(2)求证: A1C1⊥ AB;(3)求点 B1到平面 ABC1的距离 .(1)证明:∵ E、 F 分别为 AB1、 BC1的中点,∴EF∥ A1C1 .∵ A1C1∥ AC,∴ EF∥ AC.∴EF∥平面 ABC.( 2)证明:∵ AB=CC1,∴ AB =BB 1.又三棱柱为直三棱柱,∴四边形ABB1A1为正方形 .连接 A1B,则 A1B⊥ AB 1.又∵ AB1⊥ BC1,∴ AB1⊥平面 A1BC1.∴AB1⊥ A1C1.又 A1C1⊥ AA 1,∴ A1C1⊥平面 A1ABB1.∴A1C1⊥ AB .(3)解:∵ A1B1∥ AB,∴ A1B1∥平面 ABC1.∴ A1到平面 ABC1的距离等于B1到平面 ABC1的距离 .过 A1作 A1G⊥ AC1于点 G,∵AB⊥平面 ACC1A1,∴ AB⊥ A1G.进而 A1G⊥平面 ABC1,故 A1G 即为所求的距离,即 A1G= ab 2 a 2.b评论:此题(3)也可用等体积变换法求解 .。
直线与平面平行判定教学设计直线与平面平行的判定一、教材分析直线和平面平行额判定是高中数学必修课第二册第一章第三节的内容,本章的前两节的内容是分别介绍了平面的基本的性质和空间的平行直线与异面直线,因此我们在学习了这些基本的知识之后,从而来进一步的研究直线与平面之间的关系。
直线与平面的问题是高考考查的重点之一,求解的关键是根据线与面之间的互化关系,借助创设辅助线与面,找出符号语言与图形语言之间的关系把问题解决。
通过对有关概念和定理的概括、证明和应用,是学生体会“转化”的观点,提高学生的空间想象能力和逻辑推理的能力。
二、学情分析由于学生在初中已学习了平面上两直线平行的各种判定办法,但由于时间长了,也需要再作一些必要的复习。
通过对两条直线的平行的判定的复习,让学生从中获得一些关于直线与平面平行的知识。
线面平行来转换成线线平行这样的转换思想也是学生首次接触的,应该加以必要的强化与引导。
让学生的对抽象概括的能力以及推理论证的能力得以提高。
三、教学目标1.知识能力的目标(1)直观感知、操作确认,归纳概括出判定定理,对判定定理的构成要素及其关系有较清晰的认识,能用三种语言对判定定理进行表述。
初步掌握利用线面平行判定定理证明线面平行的一般步骤。
(2)使学生进一步了解平行的判定方法,学会准确地使用数学语言表述集合对象的位置关系,并运用判定定理解决一些简单的直线和平面平行的推理论证。
2.过程方法目标(1)通过观察、思考、探究等提出问题,以问题引导学生思维活动,经历从实际背景中抽象出数学模型、从现实的生活空间抽象出几何图形和几何问题的过程,发展学生的空间观念、几何直觉(即把握图形的能力)与一定的归纳概括能力;(2)学习和证明问题的过程在想想、猜猜、证证的过程中完成.培养学生先猜后证,运用合情推理去猜想,再运用逻辑推理去证明的推理论证能力.进一步理解掌握化归与转化思想。
懂得将立体问题平面化、线面问题线线化)3.情感态度价值观目标(1)通过数学思辨和推理过程培养学生说理、批判、质疑的严谨风格和理性精神;(2)领会数学科学的应用价值,激发学生的数学学习兴趣.四、教学重点、教学难点教学重点:判定定理的引入与理解。
9.2 直线与平面平行●知识梳理1.直线与平面的位置关系有且只有三种,即直线与平面平行、直线与平面相交、直线在平面内.2.直线与平面平行的判定:如果平面外的一条直线与平面内的一条直线平行,那么这条直线与这个平面平行.3.直线与平面平行的性质:如果一条直线与一个平面平行,经过这条直线的平面与已知平面相交,那么这条直线与交线平行.●点击双基1.设有平面α、β和直线m、n,则m∥α的一个充分条件是mA.α⊥β且m⊥βB.α∩β=n且m∥nC.m∥n且n∥αD.α∥β且答案:D2.(2004年北京,3)设m、n是两条不同的直线,α、β、γ是三个不同的平面.给出下列四个命题,其中正确命题的序号是①若m⊥α,n∥α,则m⊥n②若α∥β,β∥γ,m⊥α,则m⊥γ③若m∥α,n∥α,则m∥n ④若α⊥γ,β⊥γ,则α∥βA.①②B.②③C.③④D.①④解析:①②显然正确.③中m与n可能相交或异面.④考虑长方体的顶点,α与β可以相交.答案:A3.一条直线若同时平行于两个相交平面,那么这条直线与这两个平面的交线的位置关系是A.异面B.相交C.平行D.不能确定解析:设α∩β=l,a∥α,a∥β,过直线a作与α、β都相交的平面γ,记α∩γ=b,β∩γ=c,则a∥b且a∥c,∴b∥c.又b⊂α,α∩β=l,∴b∥l.∴a∥l.答案:C4.(文)设平面α∥平面β,A、C∈α,B、D∈β,直线AB与CD交于点S,且AS=8,BS=9,CD=34,①当S在α、β之间时,SC=_____________,②当S不在α、β之间时,SC =_____________.解析:∵AC ∥BD ,∴△SAC ∽△SBD ,①SC =16,②SC =272. 答案:①16 ②272(理)设D 是线段BC 上的点,BC ∥平面α,从平面α外一定点A (A 与BC 分居平面两侧)作AB 、AD 、AC 分别交平面α于E 、F 、G 三点,BC =a ,AD =b ,DF =c ,则EG =_____________.解析:解法类同于上题.答案:bacab - 5.在四面体ABCD 中,M 、N 分别是面△ACD 、△BCD 的重心,则四面体的四个面中与MN 平行的是________.B解析:连结AM 并延长,交CD 于E ,连结BN 并延长交CD 于F ,由重心性质可知,E 、F 重合为一点,且该点为CD 的中点E ,由MA EM =NB EN =21得MN ∥AB , 因此,MN ∥平面ABC 且MN ∥平面ABD . 答案:平面ABC 、平面ABD ●典例剖析【例1】 如下图,两个全等的正方形ABCD 和ABEF 所在平面相交于AB ,M ∈AC ,N ∈FB 且AM =FN ,求证:MN ∥平面BCE .证法一:过M 作MP ⊥BC ,NQ ⊥BE ,P 、Q 为垂足(如上图),连结PQ . ∵MP ∥AB ,NQ ∥AB ,∴MP ∥NQ .又NQ =22 BN =22CM =MP ,∴MPQN 是平行四边形. ∴MN ∥PQ ,PQ ⊂平面BCE . 而MN ⊄平面BCE, ∴MN ∥平面BCE .证法二:过M 作MG ∥BC ,交AB 于点G (如下图),连结NG .∵MG ∥BC ,BC ⊂平面BCE ,MG ⊄平面BCE , ∴MG ∥平面BCE . 又GA BG =MA CM =NFBN, ∴GN ∥AF ∥BE ,同样可证明GN ∥平面BCE . 又面MG ∩NG =G ,∴平面MNG ∥平面BCE .又MN ⊂平面MNG .∴MN ∥平面BCE . 特别提示证明直线和平面的平行通常采用如下两种方法:①利用直线和平面平行的判定定理,通过“线线”平行,证得“线面”平行;②利用两平面平行的性质定理,通过“面面”平行,证得“线面”平行.【例2】 如下图,正方体ABCD —A 1B 1C 1D 1中,侧面对角线AB 1、BC 1上分别有两点E 、F ,且B 1E =C 1F .求证:EF ∥平面ABCD .AA DB BCD1111EFGMN证法一:分别过E 、F 作EM ⊥AB 于点M ,FN ⊥BC 于点N ,连结MN . ∵BB 1⊥平面ABCD , ∴BB 1⊥AB ,BB 1⊥BC .∴EM ∥BB 1,FN ∥BB 1.∴EM ∥FN . 又B 1E =C 1F ,∴EM =FN .故四边形MNFE 是平行四边形.∴EF ∥MN .又MN 在平面ABCD 中, ∴EF ∥平面ABCD .证法二:过E 作EG ∥AB 交BB 1于点G ,连结GF ,则A B E B 11=BB GB 11. ∵B 1E =C 1F ,B 1A =C 1B ,∴B C F C 11=BB GB 11. ∴FG ∥B 1C 1∥BC .又∵EG ∩FG =G ,AB ∩BC =B ,∴平面EFG ∥平面ABCD .而EF 在平面EFG 中, ∴EF ∥平面ABCD .评述:证明线面平行的常用方法是:证明直线平行于平面内的一条直线;证明直线所在的平面与已知平面平行.【例3】 已知正四棱锥P —ABCD 的底面边长及侧棱长均为13,M 、N 分别是P A 、BD 上的点,且PM ∶MA =BN ∶ND =5∶8.ABCD E O MNP(1)求证:直线MN ∥平面PBC ;(2)求直线MN 与平面ABCD 所成的角.(1)证明:∵P —ABCD 是正四棱锥,∴ABCD 是正方形.连结AN 并延长交BC 于点E ,连结PE .∵AD ∥BC ,∴EN ∶AN =BN ∶ND . 又∵BN ∶ND =PM ∶MA , ∴EN ∶AN =PM ∶MA . ∴MN ∥PE .又∵PE 在平面PBC 内,∴MN ∥平面PBC .(2)解:由(1)知MN ∥PE ,∴MN 与平面ABCD 所成的角就是PE 与平面ABCD 所成的角.设点P 在底面ABCD 上的射影为O ,连结OE ,则∠PEO 为PE 与平面ABCD 所成的角.由正棱锥的性质知PO =22OB PB =2213. 由(1)知,BE ∶AD =BN ∶ND =5∶8,∴BE =865.在△PEB 中,∠PBE =60°,PB =13,BE =865,根据余弦定理,得PE =891.在Rt △POE 中,PO =2213,PE =891,∴sin ∠PEO =PEPO =724.故MN 与平面ABCD 所成的角为arcsin 724.思考讨论证线面平行,一般是转化为证线线平行.求直线与平面所成的角一般用构造法,作出线与面所成的角.本题若直接求MN 与平面ABCD 所成的角,计算困难,而平移转化为PE 与平面ABCD 所成的角则计算容易.可见平移是求线线角、线面角的重要方法.●闯关训练 夯实基础1.两条直线a 、b 满足a ∥b ,b α,则a 与平面α的关系是 A.a ∥α B.a 与α相交 C.a 与α不相交 D.a α 答案:C2.a 、b 是两条异面直线,A 是不在a 、b 上的点,则下列结论成立的是 A.过A 有且只有一个平面平行于a 、b B.过A 至少有一个平面平行于a 、bC.过A 有无数个平面平行于a 、bD.过A 且平行a 、b 的平面可能不存在 解析:过点A 可作直线a ′∥a ,b ′∥b , 则a ′∩b ′=A .∴a ′、b ′可确定一个平面,记为α. 如果a ⊄α,b ⊄α,则a ∥α,b ∥α.由于平面α可能过直线a 、b 之一,因此,过A 且平行于a 、b 的平面可能不存在. 答案:D3.(2004年全国Ⅰ,16)已知a 、b 为不垂直的异面直线,α是一个平面,则a 、b 在α上的射影有可能是①两条平行直线;②两条互相垂直的直线;③同一条直线;④一条直线及其外一点.在上面结论中,正确结论的编号是__________.(写出所有正确结论的编号) 解析:A 1D 与BC 1在平面ABCD 上的射影互相平行; AB 1与BC 1在平面ABCD 上的射影互相垂直;DD 1与BC 1在平面ABCD 上的射影是一条直线及其外一点.A 1答案:①②④4.已知Rt △ABC 的直角顶点C 在平面α内,斜边AB ∥α,AB =26,AC 、BC 分别和平面α成45°和30°角,则AB 到平面α的距离为__________.解析:分别过A 、B 向平面α引垂线AA ′、BB ′,垂足分别为A ′、B ′.设AA ′=BB ′=x ,则AC 2=(45sin x)2=2x 2,BC 2=(30sin x)2=4x 2.又AC 2+BC 2=AB 2,∴6x 2=(26)2,x =2.答案:25.如下图,四棱锥P —ABCD 的底面是边长为a 的正方形,侧棱P A ⊥底面ABCD ,侧面PBC 内有BE ⊥PC 于E ,且BE =36a ,试在AB 上找一点F,使EF ∥平面P AD .解:在面PCD 内作EG ⊥PD 于G ,连结AG . ∵P A ⊥平面ABCD ,CD ⊥AD , ∴CD ⊥PD .∴CD ∥EG . 又AB ∥CD ,∴EG ∥AB .若有EF ∥平面P AD ,则EF ∥AG ,∴四边形AFEG 为平行四边形,得EG =AF . ∵CE =22)36(a a -=33a ,△PBC 为直角三角形,∴BC 2=CE ·CP ⇒CP =3a ,AB AF =CD EG =PCPE=aaa 3333-=32.故得AF ∶FB =2∶1时,EF ∥平面P AD .6.如下图,设P 为长方形ABCD 所在平面外一点,M 、N 分别为AB 、PD 上的点,且MB AM =NPDN,求证:直线MN ∥平面PBC.分析:要证直线MN ∥平面PBC ,只需证明MN ∥平面PBC 内的一条直线或MN 所在的某个平面∥平面PBC .证法一:过N 作NR ∥DC 交PC 于点R ,连结RB ,依题意得NR NR DC -=NP DN =MBAM= MB MB AB -=MBMBDC -⇒NR =MB .∵NR ∥DC ∥AB ,∴四边形MNRB 是平行四边形.∴MN ∥RB .又∵RB平面PBC ,∴直线MN ∥平面PBC .证法二:过N 作NQ ∥AD 交P A 于点Q ,连结QM ,∵MB AM =NP DN =QPAQ,∴QM ∥PB .又NQ ∥AD ∥BC ,∴平面MQN ∥平面PBC .∴直线MN ∥平面PBC .证法三:过N 作NR ∥DC 交PC 于点R ,连结RB ,依题意有AB BM =PD PN =DCNR,∴=MB ,BR =BM + + =.∴MN ∥RB .又∵RB 平面PBC ,∴直线MN ∥平面PBC .培养能力7.已知l 是过正方体ABCD —A 1B 1C 1D 1的顶点的平面AB 1D 1与下底面ABCD 所在平面的交线,(1)求证:D 1B 1∥l ;(2)若AB =a ,求l 与D 1间的距离.1(1)证明:1∵D 1B 1∥BD ,∴D 1B 1∥平面ABCD .又平面ABCD ∩平面AD 1B 1=l , ∴D 1B 1∥l .(2)解:∵D 1D ⊥平面ABCD ,在平面ABCD 内,由D 作DG ⊥l 于G ,连结D 1G ,则D 1G ⊥l ,D 1G 的长即等于点D 1与l 间的距离.∵l ∥D 1B 1∥BD ,∴∠DAG =45°.∴DG =22a ,D 1G =212D D DG +=2221a a +=26a .探究创新8.如下图,在正四棱柱ABCD —A 1B 1C 1D 1中,AA 1=21AB ,点E 、M 分别为A1B 、C 1C 的中点,过点A 1、B 、M 三点的平面A 1BMN 交C 1D 1于点N .A 1(1)求证:EM ∥平面A 1B 1C 1D 1; (2)求二面角B —A 1N —B 1的正切值;(3)设截面A 1BMN 把该正四棱柱截成的两个几何体的体积分别为V 1、V 2(V 1<V 2),求V 1∶V 2的值.(1)证明:设A 1B 1的中点为F ,连结EF 、FC 1.∵E 为A 1B 的中点,∴EF21B 1B .A又C 1M21B 1B ,∴EF MC 1.∴四边形EMC 1F 为平行四边形.∴EM ∥FC 1.∵EM ⊄平面A 1B 1C 1D 1, FC 1⊂平面A 1B 1C 1D 1, ∴EM ∥平面A 1B 1C 1D 1.(2)解:作B 1H ⊥A 1N 于H ,连结BH . ∵BB 1⊥平面A 1B 1C 1D 1,∴BH ⊥A 1N .∴∠BHB 1为二面角B —A 1N —B 1的平面角.∵EM ∥平面A 1B 1C 1D 1,EM ⊂平面A 1BMN ,平面A 1BMN ∩平面A 1B 1C 1D 1=A 1N , ∴EM ∥A 1N .又∵EM ∥FC 1,∴A 1N ∥FC 1.又∵A 1F ∥NC 1,∴四边形A 1FC 1N 是平行四边形.∴NC 1=A 1F . 设AA 1=a ,则A 1B 1=2a ,D 1N =a . 在Rt △A 1D 1N 中,A 1N =21211N D D A +=5 a , ∴sin ∠A 1ND 1=N A D A 111=52. 在Rt △A 1B 1H 中,B 1H =A 1B 1sin ∠HA 1B 1=2a ·52=54 a .在Rt △BB 1H 中, tan ∠BHB 1=HB BB 11=aa 54=45. (3)解:延长A 1N 与B 1C 1交于P ,则P ∈平面A 1BMN ,且P ∈平面BB 1C 1C . 又∵平面A 1BMN ∩平面BB 1C 1C =BM ,∴P ∈BM ,即直线A 1N 、B 1C 1、BM 交于一点P . 又∵平面MNC 1∥平面BA 1B 1,∴几何体MNC 1—BA 1B 1为棱台.(没有以上这段证明,不扣分)∵S 11BB A ∆=21·2a ·a =a 2, S 1MNC ∆=21·a ·21a =41a 2,棱台MNC 1—BA 1B 1的高为B 1C 1=2a ,V 1=31·2a ·(a 2+2241a a ⋅+41a 2)=67 a 3,∴V 2=2a ·2a ·a -67a 3=617 a 3.∴21V V =177. ●思悟小结1.直线与平面的位置关系有三种:直线在平面内、直线与平面相交、直线与平面平行,后者又统称为直线在平面外.2.辅助线(面)是解证线面平行的关键.为了能利用线面平行的判定定理及性质定理,往往需要作辅助线(面).●教师下载中心 教学点睛1.必须使学生理解并掌握直线与平面的位置关系,以及直线与平面平行的判定定理及性质定理;结合本课时题目,使学生掌握解证线面平行的基本方法.2.证明线面平行是高考中常见的问题,常用的方法就是证明这条线与平面内的某条直线平行.拓展题例【例1】 如下图,设a 、b 是异面直线,AB 是a 、b 的公垂线,过AB 的中点O 作平面α与a 、b 分别平行,M 、N 分别是a 、b 上的任意两点,MN 与α交于点P ,求证:P 是MN 的中点.证明:连结AN ,交平面α于点Q ,连结PQ . ∵b ∥α,b ⊂平面ABN ,平面ABN ∩α=OQ , ∴b ∥OQ .又O 为AB 的中点,∴Q 为AN 的中点. ∵a ∥α,a ⊂平面AMN 且平面AMN ∩α=PQ , ∴a ∥PQ .∴P 为MN 的中点.评述:本题重点考查直线与平面平行的性质.【例2】 在直三棱柱ABC —A 1B 1C 1中,AB 1⊥BC 1,AB =CC 1=a ,BC =b.A 1(1)设E 、F 分别为AB 1、BC 1的中点,求证:EF ∥平面ABC ; (2)求证:A 1C 1⊥AB ;(3)求点B 1到平面ABC 1的距离.(1)证明:∵E 、F 分别为AB 1、BC 1的中点, ∴EF ∥A 1C 1.∵A 1C 1∥AC ,∴EF ∥AC . ∴EF ∥平面ABC .(2)证明:∵AB =CC 1,∴AB =BB 1.又三棱柱为直三棱柱,∴四边形ABB 1A 1为正方形.连结A 1B ,则A 1B ⊥AB 1.又∵AB 1⊥BC 1,∴AB 1⊥平面A 1BC 1. ∴AB 1⊥A 1C 1.又A 1C 1⊥AA 1,∴A 1C 1⊥平面A 1ABB 1. ∴A 1C 1⊥AB .(3)解:∵A 1B 1∥AB ,∴A 1B 1∥平面ABC 1.∴A 1到平面ABC 1的距离等于B 1到平面ABC 1的距离. 过A 1作A 1G ⊥AC 1于点G , ∵AB ⊥平面ACC 1A 1,∴AB ⊥A 1G .从而A 1G ⊥平面ABC 1,故A 1G 即为所求的距离,即A 1G =ba 22ab .评述:本题(3)也可用等体积变换法求解.。