第2章--非线性方程求根与二分法
- 格式:pdf
- 大小:4.12 MB
- 文档页数:66
第2章 非线性方程的求根方法2.1 二分法设()0f x =在区间[,]a b 中只有一个根*x ,且满足()()0f a f b <,则二分法求根过程为: 记0[,]I a b =,取0I 的中点00.5()x a b =+,若0()0f x =,则*0x x =; 若0()()0f x f a <,则*0[,]x a x ∈,取10[,]I a x =; 若0()()0f x f a >,则*0[,]x x b ∈,取10[,]I x b=. 记111[,]I a b =,取1I 的中点1110.5()x a b =+,若1()0f x =,则*1x x =;若11()()0f x f a <,则*11[,]x a x ∈,取211[,]I a x =;若11()()0f x f a >,则*11[,]x x b ∈,取211[,]I x b =. 记222[,]I a b =⋅⋅⋅这样获得近似根序列01,,,,,k x x x ⋅⋅⋅⋅⋅⋅满足于是当k →∞时,由11()02k b a +-→得到*k x x →.二分法算法简单,收敛,但收敛速度较慢.2.2 简单迭代法将方程()0f x =等价变形为()x x ϕ=,获得 迭代计算公式1()k k x x ϕ+=取定一个初值0x ,由迭代公式算出数列()() ,,1201x x x x ϕϕ==,若*lim k k x x →∞=,则足够靠后的k x 可作为根的近似值.由上述得出{}k x 称为迭代数列,函数()x ϕ为迭代函数,如上求根方法称为简单迭代法.对根*x ,有**()x x ϕ=,点*x 称为()x ϕ的不动点,称方程()x x ϕ=为不动点方程.例1 求方程01)(3=--=x x x f 在5.10=x 附近的根.定理1 设迭代函数()[,]x C a b ϕ∈满足条件 1.当[,]x a b ∈时,有()[,]x a b ϕ∈;2.存在正常数1L <,使对任意 12,[,]x x a b ∈都有1212()()x x L x x ϕϕ∣-∣≤∣-∣则()x ϕ在[,]a b 中有唯一的不动点*x ,迭代公式1()k k x x ϕ+=对任取0[,]x a b ∈,产生的数列{}k x 都收敛于*x .证明 作辅助函数()()x x x ψϕ=-显然()[,]x C a b ψ∈.由条件1知()()0a b ψψ≤由中值定理,至少存在一个[,]a b ξ∈,使()0ψξ=,即()ξϕξ=,这说明()x ϕ在[,]a b 上有不动点ξ. 如果()x ϕ在[,]a b 上还有一个不动点η,有()ηϕη=,利用条件2,有()()L ξηϕξϕηξηξη∣-∣=∣-∣≤∣-∣<∣-∣矛盾,这就证明了满足定理条件的()x ϕ在[,]a b 中有唯一的不动点,记为*x .由*x 是不动点、迭代格式及条件2,有***112**20()()k k k k k x x x x L x x L x x L x x ϕϕ---∣-∣=∣-∣≤∣-∣≤∣-∣≤≤∣-∣注意到01L <<,在上式中令k→∞,可得0kL →,有 *lim 0kk x x →∞∣-∣=,因而有 *lim k k x x →∞=定理得证.定理2 设定理1的条件成立,则有如下误差估计式证明 只证1.由迭代公式和定理2.1的条件,有()1k k k k x x x x ϕ+∣-∣=-**()()()k k x x x x ϕϕϕ=∣-+-∣ ****()()()()k k k k x x x x x x x x ϕϕϕϕ=-+-≥---***L L)k k k x x x x x x ≥∣-∣-∣-∣=(1-∣-∣因为01L <<,所以有*111k k k x x x x L+-≤--另一方面111()()k k k k k k x x x x L x x ϕϕ+--∣-∣=∣-∣≤∣-∣代入上式得结论1.定理2.1的条件2对任意12,[,]x x a b ∈,存在正常数1L <满足1212()()x x L x x ϕϕ∣-∣≤∣-∣不易使用。
非线性方程求解在数学中,非线性方程是一种函数关系,其表达式不能通过一次函数处理得到。
与线性方程不同,非线性方程的解决方案往往更具挑战性,因为它涉及到更复杂的计算过程。
尤其在实际应用中,非线性方程的求解是一个非常重要的问题。
本文将讨论几种常用的非线性方程求解方法。
二分法二分法,也称为折半法,是一种基本的求解非线性方程的方法之一。
它的核心思想是将区间一分为二并判断方程在哪一半具有根。
不断这样做直到最终解得精度足够高为止。
下面是利用二分法求解非线性方程的流程:1. 设定精度值和区间范围2. 取区间的中点并计算函数值3. 如果函数值为0或函数值在给定精度范围内,返回中点值作为精确解4. 如果函数值不为0,则判断函数值的正负性并缩小区间范围5. 重复步骤2-4直到满足给定精度为止当然,这种方法并不总是能够找到方程的解。
在方程存在多个解或者区间范围不合适的情况下,二分法可能会导致求解失败。
但它是一种很好的起点,同时也是更复杂的求解方法中的一个重要组成部分。
牛顿迭代法牛顿迭代法是一种更复杂的求解非线性方程的方法。
它利用泰勒级数和牛顿迭代公式,通过不断迭代来逼近根的位置。
下面是利用牛顿迭代法求解非线性方程的流程:1. 先取一个近似值并计算函数值2. 求出函数的导数3. 利用牛顿迭代公式,计算下一个近似根4. 检查下一个近似根的精度是否满足条件,如果满足,返回当前近似根5. 如果精度不满足,则将新的近似根带入公式,重复步骤2-5当然,牛顿迭代法的收敛性并不总是保证的。
如果迭代过程太过温和,它可能无法收敛到精确解。
如果迭代过程过于暴力,则会出现发散现象,使得求解变得不可能。
其他方法此外,还有一些其他的求解非线性方程的方法,例如黄金分割法、逆二次插值法、牛顿切线法等等。
其中每一种方法都有其优缺点,不同的情况下,不同的方法都可能比其他方法更加适合。
结论总体来说,求解非线性方程的方法非常复杂。
无论是哪种方法,都需要一定的数学基础和计算机知识。
非线性方程的求解方法非线性方程是数学中的基本概念,对于许多科学领域而言,非线性方程的求解具有重要的意义。
然而,与线性方程相比,非线性方程的求解方法较为复杂,因此需要掌握一些有效的解法。
本文将介绍几种非线性方程的求解方法。
一、牛顿迭代法牛顿迭代法也叫牛顿-拉夫逊迭代法,是一种求解非线性方程的有效方法。
该方法的基本思路是,选择一个初始值,通过迭代计算不断逼近非线性方程的根。
牛顿迭代法的公式为:$$x_{n+1}=x_n-\frac{f(x_n)}{f'(x_n)}$$其中,$f(x)$表示非线性方程,$f'(x)$表示$ f(x) $的一阶导数。
牛顿迭代法的优点在于速度快,迭代次数少,但其局限性在于收敛性受初始点选取的影响较大。
二、割线法割线法(Secant method)也是一种求解非线性方程的有效方法。
与牛顿迭代法不同,割线法使用的是两个初始值,并根据两点间的连线与$ x $轴的交点来作为新的近似根。
割线法的公式为:$$x_{n+1}=x_n-\frac{f(x_n)(x_n-x_{n-1})}{f(x_n)-f(x_{n-1})}$$割线法的优势是不需要求解导数,但其缺点在于需要两次迭代才能得到下一个近似根,因此计算量较大。
三、二分法二分法(Bisection method)是求解非线性方程的另一种有效方法。
该方法的基本思路是找到非线性方程的一个区间,使函数值在该区间内的符号相反,然后通过逐步缩小区间,在区间内不断逼近非线性方程的根。
二分法的公式为:$$x_{n+1}=\frac{x_n+x_{n-1}}{2}$$其中,$x_n$和$x_{n-1}$是区间的端点。
二分法的优点在于收敛性稳定,但其缺点在于迭代次数较多,因此计算量也较大。
四、弦截法弦截法(Regula Falsi method)也是一种求解非线性方程的有效方法。
它和二分法类似,都是通过缩小根所在的区间来逼近根。
不同之处在于,弦截法不是以区间中点为迭代点,而是以区间两个端点之间的连线与$ x $轴的交点为迭代点。