而在贝叶斯网络中,由于存在前述性质,任意随 机变量组合的联合条件概率分布被化简成
其中Parents表示xi的直接前驱节点的联合,概率 值可以从相应条件概率表中查到。
.
6
例子
P(C, S,R,W) = P(C)P(S|C)P(R|S,C)P(W|S,R,C) chain rule
= P(C)P(S|C)P(R|C)P(W|S,R,C) since
= P(C)P(S|C)P(R|C)P.(W|S,R) since
7
贝叶斯网络的构造及训练
1、确定随机变量间的拓扑关系,形成DAG 。这一步通常需要领域专家完成,而想要 建立一个好的拓扑结构,通常需要不断迭 代和改进才可以。
2、训练贝叶斯网络。这一步也就是要完成 条件概率表的构造,如果每个随机变量的 值都是可以直接观察的,方法类似于朴素 贝叶斯分类。但是通常贝叶斯网络的中存 在隐藏变量节点,那么训练方法就是比较 复杂。
4、将收敛结果作为推. 断值。
9
贝叶斯网络应用
医疗诊断,
工业,
金融分析,
计算机(微软Windows,Office),
模式识别:分类,语义理解
军事(目标识别,多目标跟踪,战争身份识别
等),
生态学,
生物信息学(贝叶斯网络在基因连锁分析中应
用),
编码学,
分类聚类,
时序数据和动态模型 .
• 用概率论处理不确定性的主要优点是保 证推理结果的正确性。
.
2
几个重要原理
• 链规则(chain rule)
P ( X 1 , X 2 ,X . n ) . P ( . X 1 ) , P ( X 2 |X 1 ) P ( X .n | . X 1 , . X 2 ,X . n ) ..,