《高分子物理实验讲义》
- 格式:doc
- 大小:1.56 MB
- 文档页数:25
高分子物理实验报告高分子物理实验报告引言:高分子物理是研究高分子材料的结构、性质和行为的学科。
本实验旨在通过实验方法,对高分子材料的一些基本性质进行探究,以加深对高分子物理的理解。
实验一:高分子材料的熔融流动性材料:聚乙烯(PE)、聚丙烯(PP)方法:将PE和PP分别切成小块,放入两个不同的容器中,通过加热使其熔化,观察其流动性。
结果:PE在加热后迅速熔化,并呈现出较大的流动性,而PP则需要较高的温度才能熔化,且流动性较小。
结论:高分子材料的熔融流动性与其分子结构有关,分子链间的相互作用力越强,熔融温度越高,流动性越小。
实验二:高分子材料的拉伸性能材料:聚酯(PET)、聚氯乙烯(PVC)方法:将PET和PVC分别切成薄片状,用拉力试验机进行拉伸测试,记录其拉伸强度和断裂伸长率。
结果:PET具有较高的拉伸强度和断裂伸长率,而PVC的拉伸强度较低,断裂伸长率也较小。
结论:高分子材料的拉伸性能与其分子链的排列方式、分子量以及交联程度等因素有关,分子链越有序,交联程度越高,拉伸强度越大,断裂伸长率越小。
实验三:高分子材料的热稳定性材料:聚苯乙烯(PS)、聚碳酸酯(PC)方法:将PS和PC分别切成小块,放入热风箱中进行热稳定性测试,记录其质量损失。
结果:PS在高温下易分解,质量损失较大,而PC在相同条件下质量损失较小。
结论:高分子材料的热稳定性与其分子链的稳定性有关,分子链越稳定,热稳定性越好,质量损失越小。
实验四:高分子材料的玻璃化转变温度材料:聚甲基丙烯酸甲酯(PMMA)、聚乙烯醇(PVA)方法:将PMMA和PVA分别切成小块,通过差示扫描量热法(DSC)测试其玻璃化转变温度。
结果:PMMA的玻璃化转变温度较高,而PVA的玻璃化转变温度较低。
结论:高分子材料的玻璃化转变温度与其分子链的自由度有关,分子链越自由,玻璃化转变温度越低。
结论:通过以上实验,我们可以看到不同高分子材料在熔融流动性、拉伸性能、热稳定性和玻璃化转变温度等方面表现出不同的特性。
高分子物理实验目录实验一粘度法测定聚合物的分子量 (1)实验二聚合物熔融指数的测定 (6)实验三偏光显微镜法观察聚合物结晶形态 (10)实验四密度法测定聚乙烯的结晶度 (14)实验五膨胀计法测定聚合物的玻璃化温度 (16)实验六聚合物的差热分析及应用 (19)前言高分子科学既是基础科学也是实验科学。
实际上高分子科学就是在大量的实验基础上发展起来。
尤其是聚合物加工成型作为高分子科学中重要的分支,我校又以其作为高分子材料与工程专业的专业方向,实验技术在高分子材料的研究和教学中尤为重要。
高分子物理实验是一门综合性极强的实验课,涉及多种学科领域和相应测试方法及仪器,其实验目的一方面是学生掌握高分子物理理论知识,另一方面进一步扩大学生的知识面,帮助学生了解实验方法和仪器结构及性能,分析实验操作过程中具体影响因素,提高解决实际问题的能力。
本实验讲义主要根据教学大纲和对学生实验要求进行编写。
在实验水平上,即介绍高分子科学的传统实验方法,也尽可能介绍一些有关的新技术。
对近年来高分子科学、特别是高分子物理领域涌现的许多新方法、新技术,由于实验条件和教学时数的限制,只好舍弃。
实验一粘度法测定聚合物的分子量粘度法是测定聚合物分子量的相对方法。
高聚物分子量对高聚物的力学性能、溶解性、流动性均有极大影响。
由于粘度法具有设备简单、操作方便、分子量适用范围广、实验精度高等优点,在聚合物的生产及科研中得到十分广泛的应用。
本实验是采用乌氏粘度计测定甲苯溶液中聚苯乙烯粘度,进而测定求出PS试样分子量。
一、实验目的要求1、掌握粘度法测定聚合物分子量的实验基本方法。
2、了解粘度法测定聚合物分子量的基本原理。
3、通过测定特性粘度,能够计算PS的分子量。
二、实验原理1、粘性液体的牛顿型流动粘性流体在流动过程中,由于分子间的相互作用,产生了阻碍运动的内摩擦力,粘度就是这种内摩擦力的表现。
即粘度可以表征粘性液体在流动过程中所受阻力的大小。
按照牛顿的粘性流动定律,当两层流动液体间由于粘性液体分子间的内摩擦力在其相邻各流层之间产生流动速度梯度是(),液体对流动dv/drF/A,,,dv/dr的粘性阻力是: (1-1) 该式即为牛顿流体定律。
《高分子物理》实验指导实验一粘度法测定聚合物的分子量粘度法是测定聚合物分子量的相对方法,此法设备简单,操作方便,且具有较好的精确度,因而在聚合物的生产和研究中得到十分广泛的应用。
本实验是采用乌氏粘度计,用一点法测定苯酚—四氯乙烷溶液中涤纶树脂的分子量。
一.目的要求:通过本实验要求掌握粘度法测定高聚物分子量的基本原理、操作技术和数据处理方法。
二.基本原理根据马克—哈温克经验公式:[η]=K Mηα(1)若特性粘度[η],常数K及α值已知,便可利用上式求出聚合物的粘均分子量M η。
K、α是与聚合物、溶剂及溶液温度等有关的常数,它们可以从手册中查到。
[η]值即用本实验方法求得。
由经验公式:ηSP/C =[η] +kˊ[η]2C (2)和 lnηr/ C =[η] -β[η]2 C (3)Array可知:溶液的浓度C与溶液的比浓粘度η/C或与溶液的比浓对数粘度lnηr/C成直线SP关系(如图1),在给定体系中Kˊ和β均为常数,这样以ηSP/C对C或以lnηr /C对C作图并将其直线外推至C=0处,其截距均为[η]。
所以[η]被定义为溶液浓度趋近于零时的比浓粘度或比浓对数粘度。
式(3)中ηr称为相对粘度,即为在同温度下溶液的绝对粘度η与溶剂的绝对粘度η0之比:ηr = η /η0(4)分别为t和t0;且t0大于100秒时,则ηr= t / t0 (5)式(2)中ηsp称为增比粘度,它被定义为加入高聚物溶质后引起溶剂粘度增加的百分数,即:ηsp =(η—η0)/η0 =ηr— 1 (6)这样,只需测定不同浓度的溶液流经同一毛细管的同一高度时所需的时间t及纯溶剂的流经时间t0,便可求得各浓度所对应的ηr值进而求得各ηsp,ηsp/C及lnηr/C 值,最后通过作图得到[η]值,这种方法称为外推法。
在许多情况下,由于试样量少或要测定大量同品种的试样,为了简化操作,对于多数线型柔性高分子溶液均符合Kˊ≈1/3;Kˊ+β=1/2,则再将(2)、(3)两式联图2 乌式粘度计 立可得式:[η] = [2(ηsp —ln ηr )]1/2 / C (7)由方程(2)又可简单推导出:[η] =[(1+4K ˊηsp )1/2-1] /2 K ˊC (8)所以只要知道一个浓度下的ηr 值,便可通过(7)式求出[η];若还知道溶液的K ˊ值,便可通过(8)式求得[η]。
高分子物理实验指导书合肥工业大学高分子科学与工程系2011年6月目录实验一偏光显微镜观察聚合物结晶形态⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯1 实验二膨胀计法测定聚合物玻璃化温度⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯4 实验三粘度法测定高聚物分子量⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯7 实验四聚合物熔融指数的测定⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯13 实验五聚合物应力应变曲线的测定⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯17实验一偏光显微镜观察聚合物结晶形态一、实验目的了解偏光显微镜的结构及使用方法;观察聚合物的结晶形态,以加深对聚合物结晶形态的理解。
二、实验原理聚合物的结晶受外界条件影响很大,而结晶聚合物的性能与其结晶形态等有密切的关系,所以对聚合物的结晶形态研究有着很重要的意义。
聚合物在不同条件下形成不同的结晶,比如单晶、球晶、纤维状晶等等,面其中球晶是聚合物结晶时最常见的一种形式。
球晶可以长得比较大,直径甚至可以达到厘米数量级。
球晶是从一个晶核在三维方向上一齐向外生长而形成的径向对称的结构,由于是各向异性的,就会产生双折射的性质。
因此,普通的偏光显微镜就可以对球晶进行观察,因为聚合物球晶在偏光显微镜的正交偏振片之间呈现出特有的黑十字消光图形。
偏光显微镜的最佳分辨率为200nm,有效放大倍数超过500-1000倍,与电子显微镜、X射线衍射法结合可提供较全面的晶体结构信息。
球晶的基本结构单元是具有折叠链结构的片晶,球晶是从一个中心(晶核)在三维方向上一齐向外生长晶体而形成的径向对称的结构,即一个球状聚集体。
光是电磁波,也就是横波,它的传播方向与振动方向垂直。
但对于自然光来说,它的振动方向均匀分布,没有任何方向占优势。
但是自然光通过反射、折射或选择吸收后,可以转变为只在一个方向上振动的光波,即偏振光(如图1-1,箭头代表振动方向,传播方向垂直于纸面)。
a) b)图1-1 自然光和线偏振光的振动现象a) 自然光b) 线偏振光一束自然光经过两片偏振片,如果两个偏振轴相互垂直,光线就无法通过了。
实验一、脲醛树脂的缩聚一、实验目的1. 加深理解加成缩聚的反应机理2. 了解脲醛树脂的合成方法及一般层压板的加工工艺。
二、实验原理脲醛树脂是由尿素与甲醛经加成聚合反应制得的热固性树脂。
产物的结构比较复杂,直接受尿素与甲醛的克分子比、反应体系的pH值、反应温度、时间等条件的影响。
例如:当在酸性条件下反应时,产物是不溶于水和有机溶剂的聚次甲基脲;在碱性条件下发生反应时,则生成水溶性的一羟甲基脲或二羟甲基脲等等。
羟甲基的数目由尿素与甲醛的克分子比决定。
三、仪器及试剂1. 仪器:搅拌电机、调压器、三口瓶、冷凝器、温度计、水浴、电吹风机。
2. 试剂:尿素、甲醛(36%水溶液)、10%NaOH、10%草酸水溶液、NH4C1(固化剂)。
四、实验步骤1.合成树脂:(1)在250ml三口瓶上装置搅拌器、温度计、迥流冷凝器。
(2)称取甲醛水溶液60g,用10%NaOH调节甲醛pH=8.5~9。
称取尿素三份,分别是11.2g;5.6g;5.6g。
(3)三口瓶中先加入11.2g尿素和60g甲醛水溶液。
搅拌至溶解(由于吸热而隆温,可缓慢升温至室温,以利溶解),升温至60℃再加入5.6g尿素,继续升温到80℃加入最后5.6g尿素,在80℃,反应30分钟。
(4)用少量10%草酸溶液小心调节反应体系的pH值,使PH=4.8左右(注意观察自升温现象)。
继续维持温度在80℃进行缩合反应,并随时取脲醛胶滴入冷水中,观察在冷水中的溶解情况。
当在冷水中出现乳化现象,随时测在40℃水中的乳化情况。
(5)温水中出现乳化后,立即降温终止反应,并用浓氨水调节脲醛胶的PH=7,再用少量10%NaOH 调节Ph=8.5~9。
正常情况下得到澄清透明的脲醛胶。
2.层压板制备:(1)在表皿中称取脲醛胶液40g,加入0.200gNH4Cl,搅拌至全溶解。
注意观察胶液pH值的变化。
(2)滤纸条分段浸渍胶液,为保证浸渍饮和而均匀,每段浸渍一分钟左右,滤纸上余量胶液任其自然流下。
实验20 粘度法测定聚合物的分子量一、试验目的1.了解粘度法测定聚合物平均分子量的原理。
2.掌握粘度法测定的实验技术和数据处理方法。
3.掌握一点法测定聚乙烯醇分子量的方法。
二、实验原理本实验采用乌氏粘度计测定聚乙烯醇稀水溶液的粘度, 进而求出聚乙烯醇试样的分子量, 对于浓溶液与聚合物的熔体粘度行为, 因为很难找出准确的分子量, 在此不作讨论。
某一溶剂在一定的温度下溶入聚合物, 其粘度大大增加, 而粘度的增加与聚合物的分子量有密切关系, 从而利用这个性质在适当的条件下测定聚合物的分子量。
试验证明, 许多聚合物溶液不是理想溶液, 称为非牛顿流体, 其流动规律不服从牛顿流体规律, 但对于一般柔性链聚合物在切变速度较低且分子量适中时, 其稀溶液可按牛顿流体处理。
聚合物稀溶液的粘度主要反应了三种内摩擦:○1 溶剂间流动时产生的内摩擦 ○2 高分子间的内摩擦 ○3 高分子与溶剂间的内摩擦 这三者的总和表现为聚合物稀溶液的粘度, 记为η1, 而由溶剂表现的粘度即纯溶剂粘度为η0。
特性粘数[η]是几种粘度中最重要的一种粘度, 其数学式为:ln lim lim []00sp rC C C Cηηη==→→ (20-1)它为无限稀释的高分子溶液的比浓粘度, 这时溶液所呈现的粘度行为主要反映了高分子与溶剂间的内摩擦。
特性粘度已不再与溶液的浓度有关, 它表示单个分子对溶液粘度的贡献。
外推法求特性粘度 是较常用的方法, 即在各种不同的浓度下求得 或 , 然后作—C 图或 —C 图再外推到 时其截距即为 。
测得特性粘度之后, 即可用下式求得分子量:[]KM αη= (20-2) 式中: M 为聚合物的平均分子量; 为特性粘度, 其单位是浓度的倒数; 为与溶液中聚合物分子形态有关的指数项。
K 和 是两个常数, 其数值可以从有关手册查到, 查找时要注意这两个常数的测定条件, 如使用的温度、溶剂、适用的分子量范围、单位以及校正方法。
实验 1 均衡溶胀法测定交联聚合物的溶度参数与交联度溶度参数是与物质的内聚能密度有关的热力学参数,实质上也是表征分子间作使劲的物理量。
在高分子溶液性质的研究中以及生产实质中,常常依靠溶度参数来判断非极性系统的互溶性。
比如,溶度参数对聚合物的溶解、油漆和涂料的稀释、胶黏剂的配制、塑料的增塑、聚合物的相容性、纤维的溶液纺丝等等,都有必定的参照价值。
对于交联聚合物,与交联度直接有关的有效链均匀分子量M C是一个重要的构造参数, M C的大小对交联聚合物的物理机械性能拥有很大的影响。
所以,测定和研究聚合物的溶度参数与交联度十分重要,均衡溶胀法是间接测定交联聚合物的溶度参数与有效链均匀分子量M C的一种简单易行的方法。
此外还可间接测得高分子-溶剂的互相作用参数x1。
一、实验目的:(1)认识溶胀法测聚合物溶度参数及M C的基来源理。
(2)掌握重量法测交联聚合物溶胀度的实验技术。
(3)大略地测出交联聚合物的溶度参数、M C及x1。
二、实验原理:聚合物的溶度参数不像低分子化合物可直接从汽化热测出,因为聚合物分子间的互相作用能很大,欲使其汽化,必然裂解为小分子,所以只好用间接的方法测定,均衡溶胀法是此中的一种方法。
交联构造的聚合物不可以为溶剂所溶解,但能汲取大批的溶剂而溶胀。
溶胀过程中,溶剂分子渗透聚合物内使体积膨胀,致使惹起三维分子网的伸展,而分子网遇到应力产生了弹性缩短力,阻挡溶剂进入网状链。
当这两种相反的偏向互相抵消时,即溶剂分子进入交联网的速度与被排出的速度相等,就达到了溶胀均衡态。
溶胀的凝胶其实是聚合物的溶解液,能溶胀的条件与线性聚合物形成溶液相同。
依据热力学原理,聚合物能够在液体中溶胀的必需调理是混杂自由能F m<0,而F m H m T S m (1)式中H m和S m分别为混杂过程中焓和熵的变化,T 为系统的温度。
因混杂过程的 S m为正当,故T S m必为正当。
明显,要知足F m,一定使H T S m。
高分子物理(共90张PPT)高分子物理是研究高分子的性质、结构和行为的物理学科。
高分子物理是在20世纪初形成的,它涉及的领域非常广泛,包括高分子合成、高分子材料制备、高分子加工与成型等。
本文将结合90张PPT,对高分子物理的基本概念、研究方法、高分子结构与性质、高分子的加工与成型等方面进行介绍。
第一部分:高分子物理的基本概念1、高分子的定义高分子是由无数个重复单元组成的巨大分子,其分子量通常大于10^3,由于其特殊的结构和物理化学性质,广泛应用于生活、工业等众多领域。
2、高分子物理的研究对象高分子物理的研究对象是大分子化合物。
这些化合物的分子量很大,通常大于10^3,有时甚至可达到10^7。
这就意味着高分子物理不仅涉及到分子级性质的研究,还要考虑宏观级别的物理特性。
3、高分子物理的主要内容高分子物理的主要内容包括高分子的结构、性质、动力学、形态、相变、流变、加工与成型等方面。
4、高分子物理的研究方法高分子物理的研究方法包括实验研究和计算模拟两种,其中实验研究主要包括材料合成与制备、结构表征、物理性质测试等,计算模拟主要包括分子动力学模拟、量子力学计算、有限元分析等。
第二部分:高分子结构与性质1、高分子的结构分类高分子可分为线性高分子、支化高分子、交联高分子、网络高分子等四种结构。
其中,线性高分子的分子结构最为简单,具有线性分子链结构;支化高分子分子链呈树枝状结构;交联高分子中分子链相互交联形成三维网格状结构;网络高分子则形成分子链与交联点间互相交联的巨分子结构。
2、高分子的物理性质由于高分子材料具有特殊的分子结构,因此具有一系列独特的物理性质,例如:高强度、高耐磨性、高耐热性、高透明度、高电绝缘性等。
在高分子加工中,可以通过改变处理条件和添加剂等方式来控制高分子的物理性质。
第三部分:高分子的加工与成型1、高分子的加工方法高分子的加工方法包括:挤出成型、注塑成型、压缩成型、吹塑成型、热模压成型、注液成型等多种方式,其中以挤出成型和注塑成型应用最为广泛。
高分子科学实验讲义(内部教材)高分子教研室目录实验一常见塑料和纤维的简易鉴别 (1)实验二甲基丙烯酸甲酯的本体聚合 (4)实验三丙烯酰胺的溶液聚合 (6)实验四苯乙烯的悬浮聚合 (9)实验五熔融缩聚反应制备尼龙-66 (12)实验六聚氨酯泡沫塑料的制备 (16)实验七热固性脲醛树脂的制备 (19)实验八膨胀计法测定高聚物的玻璃化转变温度 (22)实验九用偏光显微镜研究聚合物结晶形态 (25)实验十粘度法测定聚合物的分子量 (28)实验十一差示扫描量热法(DSC)测定聚合物热性能 (33)实验十二、热失重法(TGA)测定聚合物的热稳定性 (41)实验十三DMA测定高聚物的动态力学性能 (44)实验十四用扫描电子显微镜观察聚合物形态 (48)实验十五高聚物熔融指数的测定 (51)实验十六高聚物熔体流变特性的测定 (54)综合性、设计性实验 (61)实验十七改性苯丙乳液的合成与性能分析 (63)实验十八丙烯酸脂类压敏胶的制备与性能测试 (68)实验一常见塑料和纤维的简易鉴别一、实验目的1.了解聚合物燃烧试验和气味试验的特殊现象,借以初步辨认各种聚合物。
2.利用聚合物溶解的规律及溶剂选择的原则,了解并掌握溶解法对常见聚合物的定性分析。
二、基本原理聚合物的鉴别,特别对未知聚合物试样的鉴别颇为复杂,即使经纯化处理的聚合物也很难用单一的方法进行鉴别。
常见聚合物通常可用红外、质谱、X 光衍射、气相色谱等仪器进行不同程度的定性和定量分析。
而基于聚合物的特性简单地通过外观、在水中的浮沉、燃烧、溶解性和元素分析的方法进行实验室的鉴别则方便易行。
1.根据试样的表观鉴别HDPE、PP、PA 66、PA 6、PA1010质硬,表面光滑。
LDPE、PVF、PA11质较软,表面光滑,有蜡状感觉。
硬PVC、PMMA表面光滑,无蜡状感觉。
PS质硬,敲打会发出清脆的“打铃声”。
2.根据试样的透明程度鉴别透明的聚合物:聚丙烯酸酯类,聚甲基丙烯酸酯类,再生纤维素,纤维素酯类和醚类,聚甲基戊烯类,PC、PS,PVC及其共聚物。
高分子物理(详尽讲义)第一章 高分子链的结构1.1.1 高分子科学的诞生与发展高分子物理是一门新兴的学科,是人们长期的生产实践和科学实验的基础上逐渐发展起来的.高分子学说是一个难产儿,它经历了50年的争论才艰难的诞生,而高分子物理学就是在这个过程中产生的,同时,它也为高分子学说的诞生立下了汗马功劳.直至20世纪30年代末期,高分子学说终于战胜了胶体缔合论,这一时期是高分子学说的争鸣期,是一个重要的里程碑.1.1.2 高分子结构的特点1.高分子由很大数目的结构单元组成2.一般高分子链都有一定的内旋自由度,可以使主链弯曲而具有柔性.3.结构的不均一性4.由于一个高分子包含很多结构单元,因此结构单元见的互相作用对其聚集态结构和物理性能有着十分重要的影响.5.高分子的聚集态有晶态和非晶态之分,高聚物的晶态比小分子晶态的有序度差很多,存在很多缺陷.6.要使高聚物加工成有用的材料,往往需要在其中加入填料,各种助剂,色料等.1.1.3 高分子结构的内容高分子结构的内容可分为链结构与聚集态结构两个组成部分.链结构又分为近程结构与远程结构第二节 高分子链的近程结构1.2.1 结构单元的化学组成高分子链中的重复结构单元的数目称为聚合度端基对聚合物性能的影响不容忽视在适当条件下可用端基分析法测定分子量和支化度1.2.2 链结结构链结结构是指结构单元在高分子链中的连接方式,它也是应县性能的重要因素之一1.2.3 支化与交联支化高分子的化学性质与线型分子相似,但支化对物理机械性能的影响有时相当显著支化高分子又有星型,梳型和无规支化之分,它们的性能也有差别高分子的交联度不同,性能也不同,交联度小的橡胶弹性较好,交联度大的橡胶弹性就差1.2..4 共聚物的结构由两种以上单元所组成的聚合物称为共聚物.二元共聚物可分为统计型、交替型、接枝型和嵌段型四种。
ABS树脂:由 丙烯腈、丁二烯、苯乙烯组成的三元接枝共聚物。
丙烯腈组分有腈基、能使聚合物耐化学腐蚀,提高制品的拉伸强度和硬度;丁二烯组分使聚合物呈现橡胶状韧性,这是制品冲击强度提高的主要因素;苯乙烯组分的高温流动性好,便于成型加工。
高分子物理部分1、什么是嵌段共聚物?试举一个嵌段共聚物的实例,并说明其合成方法及共聚物性能?2、什么是接枝共聚物?试举一个接枝共聚物的实例,并说明其合成方法及共聚物性能?3、指出高分子溶剂是良溶剂、θ溶剂和劣溶剂的条件?4、简述取代基对高分子链柔顺性的影响?5、简述分子间作用力对聚合物凝聚态结构和性能的影响?6、简述高分子运动的特点?简述影响高分子结晶能力的因素?7、什么是结晶速度?简述温度对结晶速度的影响?用什么方法可以得到透明的聚合物材料?8、简述高聚物的熔化和低分子熔化的相似点和区别?9、怎样能够制取强度和韧性均较好的纤维材料?10、以HIPS为例说明共混高聚物对热性能和力学性能的影响?11、什么是理想溶液?简述高分子溶液与理想溶液的区别?12、结合非晶态高聚物的温度-形变曲线分析高聚物的两种转变和三种力学状态?为什么非晶态高聚物随温度变化出现三种力学状态和两种转变?13、用自由体积理论解释玻璃化转变现象?14、简述玻璃化温度的影响因素?三、图表类高分子化学部分1、分子量与转化率关系:2、自由基聚合速率:转化率—时间曲线:中期:自动加速现象3、聚合过程中速率变化类型4、分子量分布:歧化终止数量分布函数和质量分布函数:偶合终止数量分布函数(曲线1)和质量分布函数(曲线2):5、理想共聚和交替共聚共聚物瞬时组成与单体组成的关系:6、非理想非恒比共聚(左图)与有恒比点的非理想共聚(右图):7、共聚物组成与转化率的关系:8、四种聚合方法的比较9、乳液聚合动力学曲线示意图:10、常用烯类单体对聚合类型的选择11、自由基聚合和离子聚合的特点比较12、自由基聚合和缩聚机理特征的比较13、分子量分布曲线不同反应程度下线形缩聚物分子量的数量分布曲线(左图)和质量分布曲线(右图)高分子物理部分1、聚合物的结晶速度与温度的关系:2、结晶聚合物和小分子晶体在加热熔融过程中比热容随温度的变化曲线:3、4、在同一坐标系中画出牛顿流体、假塑性流体、膨胀性流体粘度随剪切速率的关系图(左图):聚合物零切粘度与分子量的关系曲线(右图)5、聚合物的比容随温度的变化曲线(左图)非晶态聚合物模量随温度的变化曲线(右图):6、玻璃化温度与相对分子质量之间的关系(左图):两种交联天然橡胶,样品1的交联度大于样品2的交联度,在同一坐标系中画出温度--形变曲线(右图):7、非晶态聚合物的应力应变曲线(左图):应力—应变曲线(右图):8、对如下四种聚合物施加一恒定应力,然后除去应力,形变--温度曲线(发展和恢复过程)9、交联和线性聚合物的应力松弛曲线(左图):结晶聚合物的应力应变曲线(右图):10、储能模量、损耗模量及损耗角的正切值随温度的变化曲线:储能模量、损耗模量及损耗角的正切值随作用频率的变化曲线:(教材P150)补充:1、聚合物--溶剂体系的相图2、特性粘度的求法:3、非晶态聚合物的温度—形变曲线4、线性非晶态聚合物的蠕变及回复曲线:5、蠕变与温度和外力的关系(左图):硫化橡胶拉伸和回缩的应力--应变曲线(中图):聚合物的形变—温度曲线和内耗温度曲线(右图):6、聚合物5种类型应力—应变曲线:7、聚合物应力—温度、应力—应变曲线:8、聚合物熔体和溶液的普适流动曲线:(教材P203)9、切变速率—分子量—粘度的关系(左图):分子量对聚合物流动曲线的影响(中图):分子量分布对聚合物流变曲线的影响(右图):四、计算类高分子化学部分1、聚合物分子量与聚合度的关系M=DP•M0 或M=X n•M0例:M=n•M0;M=2n•M0;(注意M0的计算方法)2、自由基聚合速率方程:动力学链长:无链转移时聚合度:或链转移下的聚合度:例:在100毫升无阻聚物存在的甲基丙烯酸甲酯中,加入0.0242克过氧化二苯甲酰,并在60℃下聚合。
实验三差示扫描量热法(DSC)测定聚合物的热力学转变2011011743 分1 黄浩实验日期:2014-2-26一、实验目的1. 掌握差示扫描量热法(DSC)的基本原理和差示扫描量热仪的使用方法;2. 测定聚合物的玻璃化温度Tg、熔点Tm和结晶温度Tc;二、实验原理差热分析是测量在同一加热炉中由于温度变化在测量样品和参比材料(α-Al2O3)之间的温差,简称DTA。
差示扫描量热法(DSC)是测量在同一加热炉中为保持样品和参比材料之间相同温度所需的d(∆H)/dT,简称DSC。
所以DTA的测量是不定量的,而DSC可用于转变焓的定量测定。
聚合物中一些重要物理变化可以用DSC或DTA来测定,如玻璃化温度Tg,结晶温度Tc,结晶熔化温度Tm及解聚温度T D等,用DSC还可测得这些变化的焓值。
一些含有热效应的化学变化也可用DTA或DSC来测定。
DSC是在程序控制温度下,测量输给试样和参比物的功率差与温度关系的一种技术。
经典DTA常用一金属块作为试样保持器以确保试样和参比物处于相同的加热条件下。
而DSC的主要特点是试样和参比物分别各有独立的加热元件和测温元件,并由两个系统进行监控。
其中一个用于控制升温速率,另一个用于补偿试样和惰性参比物之间的温差。
图1显示了DTA和DSC加热部分的不同,图2 为常见DSC的原理示意图。
(1) DTA (2)DSC 图2 功率补偿式DSC原理图图1 DTA和DSC加热元件示意图1-温差热电偶;2-补偿电热丝;3-坩埚;4-电炉;5-控温热电偶试样在加热过程中由于热效应与参比物之间出现温差ΔT时,通过差热放大电路和差动热量补偿放大器,使流入补偿电热丝的电流发生变化:当试样吸热时,补偿放大器使试样一边的电流立即增大;反之,当试样放热时则使参比物一边的电流增大,直到两边热量平衡,温差ΔT消失为止。
换句话说,试样在热反应时发生的热量变化,由于及时输入电功率而得到补偿,所以实际记录的是试样和参比物下面两只电热补偿的热功率之差随时间t 的变化d H/d t-t关系。
实验1 平衡溶胀法测定交联聚合物的溶度参数与交联度溶度参数是与物质的内聚能密度有关的热力学参数,实际上也是表征分子间作用力的物理量。
在高分子溶液性质的研究中以及生产实际中,常常凭借溶度参数来判断非极性体系的互溶性。
例如,溶度参数对聚合物的溶解、油漆和涂料的稀释、胶黏剂的配制、塑料的增塑、聚合物的相容性、纤维的溶液纺丝等等,都有一定的参考价值。
对于交联聚合物,与交联度直接相关的有效链平均分子量 C M 是一个重要的结构参数,C M 的大小对交联聚合物的物理机械性能具有很大的影响。
因此,测定和研究聚合物的溶度参数与交联度十分重要,平衡溶胀法是间接测定交联聚合物的溶度参数与有效链平均分子量 C M 的一种简单易行的方法。
另外还可间接测得高分子-溶剂的相互作用参数1x 。
一、实验目的:(1)了解溶胀法测聚合物溶度参数及 C M 的基本原理。
(2)掌握重量法测交联聚合物溶胀度的实验技术。
(3)粗略地测出交联聚合物的溶度参数、C M 及1x 。
二、实验原理:聚合物的溶度参数不像低分子化合物可直接从汽化热测出,因为聚合物分子间的相互作用能很大,欲使其汽化,势必裂解为小分子,所以只能用间接的方法测定,平衡溶胀法是其中的一种方法。
交联结构的聚合物不能为溶剂所溶解,但能吸收大量的溶剂而溶胀。
溶胀过程中,溶剂分子渗入聚合物内使体积膨胀,以致引起三维分子网的伸展,而分子网受到应力产生了弹性收缩力,阻止溶剂进入网状链。
当这两种相反的倾向相互抵消时,即溶剂分子进入交联网的速度与被排出的速度相等,就达到了溶胀平衡态。
溶胀的凝胶实际上是聚合物的溶解液,能溶胀的条件与线性聚合物形成溶液相同。
根据热力学原理,聚合物能够在液体中溶胀的必要调节是混合自由能m F <0 ,而m m m S T H F ∆-∆=∆ (1)式中m H ∆和 m S ∆分别为混合过程中焓和熵的变化,T 为体系的温度。
因混合过程的m S ∆为正值,故T m S ∆必为正值。
显然,要满足m F ∆,必须使m S T H ∆<∆ 。
对于非极性聚合物与非极性溶剂的混合,若不存在氢键,则m H ∆ 总是正值。
假定在混合过程中没有体积变化,m H ∆ 服从以下关系()V H m 22121δδφφ-=∆ (2)式中1φ 和 2φ 分别为溶胀体中溶剂和聚合物的体积分数;1δ 和2δ 分别为溶剂和聚合物的溶胀参数;V 是溶胀体积的总体积。
由式(2)可见,1δ 与 2δ 愈接近,m H ∆ 值愈小,愈能满足m F ∆<0 。
当 1δ和 2δ相等时,0=∆H ,此时交联网的溶胀度可达到极大值。
平衡溶胀法就是根据上述原理,把称量后的交联聚合物放到一系列溶度参数不同的溶剂中去,让它在恒定温度下充分溶胀。
当达到溶胀平衡态时,对溶胀体称重,求出聚合物交联网在各种溶剂中的溶胀度Q ,222211ρρρW W W Q ⎪⎪⎭⎫⎝⎛+= (3)式中 1W 和 2W 分别为溶胀体内溶剂和聚合物的重量;1ρ 和 2ρ 分别为溶剂和聚合物溶胀前的密度。
显然,能够使聚合物溶胀度达到最大值的那种溶剂,其溶度参数必定与聚合物的溶度参数最接近。
若将聚合物在一系列不同溶剂中的平衡溶胀度Q 对相应溶剂的溶度参数 δ 作图,Q 必出现极大值,用 m ax Q 表示,那么m ax Q 所对应的δ 值即可视为聚合物的溶度参数,用 2δ表示。
图 2-1 交联聚合物Q 与溶剂δ 关系在交联聚合物的溶胀过程中,自有能的变化由两部分组成:一部分是聚合物与溶剂的混合自由能m F ∆,另一部分是分子网的弹性自由能 el F ∆el m F F F ∆+∆=∆ (4) 溶胀平衡时,0=∆+∆=∆el m F F F (5) 根据液体的晶格模型理论和橡胶交联网的高弹性统计理论,可导出溶胀度Q 与有效链平均分子量C M 之间的关系()[]22122312121ln /φφφφρx V M C ++--= (6)式中 2φ 是聚合物在溶胀体中所占得的体积分数,即溶胀度的导数(Q12=φ);2φ 是聚合物溶胀前的密度;1V 是溶剂的摩尔体积;1x 是表征高分子-溶剂之间相互作用的参数。
如果1x 、2ρ 和 3V (或1ρ )是已知的,从测得的Q ,由式(6)计算出c M 。
有了c M 值后,又可以由式(6)求出交联高分子与其他溶剂的相互作用参数 1x 。
1ρ和2ρ可以从有关手册中查出,也可用比重瓶法测定。
三、仪器与试剂分析天平 称重瓶 镊子 溶胀管 恒温槽交联天然橡胶 正庚烷 环己烷 四氯化碳 苯 正丁醇四、实验步骤(1)先在分析天平上将洁净的五只空称量瓶称重,然后分别放入一颗交联天然橡胶式样,再称重一次,求得各试样的重量。
(2)将称重后的试样分别置于五支溶胀管内,每管加入一种溶剂15~30毫升,盖紧管塞后,放入25±0.1 恒温槽内让其恒温溶胀。
(3)七至十天后,溶胀基本上接近平衡,取出溶胀体,迅速用滤纸吸干表面吸附的多余溶剂,立即放入称量瓶内使之继续溶胀。
(4)每隔3小时,用同样方法再称一次溶胀体的重量,直至溶胀体两次称重结果之差不超过0.01克时为止,此时可以认为已达溶胀平衡。
五、数据处理: (1) 称重记录(2) 从有关手册上查出天然橡胶的密度2ρ和各种溶剂的密度1ρ及溶度参数1δ,由式(3)计算交联天然橡胶在各溶剂中的溶胀度Q 。
(3) 作Q -δ图,粗略求出交联天然橡胶max Q 所对应的溶度参数 。
(4) 已知天然橡胶—苯之间的相互作用参数44.01=x ,根据式(6 )计算交联天然橡胶的c M 值。
(5) 假设所用的天然橡胶试样的c M 都相同,由式(6)计算出天然橡胶与另外几种溶剂之间的相互作用参数。
六、问题与讨论(1)溶度参数的意义?(2)如何控制交联度?交联度对聚合物性能的影响?[附] 比重法测固体和液体的密度比重瓶是一种平底球形玻璃瓶,磨口瓶塞中有一毛细管。
先在分析天平上称的空瓶的重量0W ,然后取下瓶塞,灌满被测液体,放入恒温槽内,当温度达到平衡后盖上瓶塞,多余液体从毛细管溢出,用滤纸擦去毛细管外的液滴,从恒温槽中取出并拭净瓶外的液体,秤得加液体后的重量1W 。
倒出瓶中的液体,用蒸馏水洗涤数次后再予装满,同样方法秤得加水后的重量水W ,则液体的密度1ρ即可求得水水ρρ011W W W W --=(7) 利用比重瓶侧固体密度,一般用水作为参比,但固体必须与水不发生化学作用,不溶解也不溶胀。
也可采用其他化学性质稳定、易于纯化、挥发度较小、密度已知的液体作为参比。
同上方法,秤得空瓶的重量0W 、瓶内填装固体(约占瓶体积得1/5至1/3左右)后的重量2W ,再在填装固体瓶内加满水后称重/2W ,最后称得满瓶水的水W 重量 ,则被测固体的密度2ρ为 水’水水’水()ρρρ20202220022/)][(W W W W W W W W W W W W --+-=----= (8)测定时应注意:(1)毛细管口的液滴必须在比重瓶离开恒温槽之前擦去。
这样,当比重瓶从恒温槽取出后,由于室温较低使毛细管液面下降,就不影响测定结果。
(2)恒温前,必须用真空泵抽去瓶中的液体和固体所溶解的、吸附的气体及气泡,否则使测定结果偏低。
(3)为了消除偶然误差,对装液和称重操作必须重复进行三次以上,取其平均值作为正式数据。
实验2 膨胀计法测定玻璃化温度聚合物的玻璃化转变,是玻璃态和高弹态之间的转变。
在发生转变的时候,聚合物的许多物理性质发生急剧的变化。
一、实验目的与要求(1)掌握膨胀计法测定聚合物玻璃化温度的方法;(2)了解升温速度对玻璃化温度的影响。
二、实验原理聚合物的比容是一个和高分子链段运动有关的物理量,它在玻璃化温度(T g)范围内有不连续的变化,即利用膨胀计测定聚合物的体积随温度的变化时,在T g处有一个转折。
图 3-1聚苯乙烯的比容-温度曲线图 3-2降温速度对T g影响众所周知,玻璃化转变不是热力学平衡过程,而是一个松弛过程,因此T g 值的大小和测试条件有关:在降温测量中,降温速度加快,T g向高温方向移动。
根据自由体积理论,在降温过程中,分子通过链段运动进行位置调整,多余的自由体积腾出并逐渐扩散出去,因此在聚合物冷却、体积收缩是,自由体积也在减少。
但是由于粘度因降温而增大,这种位置调整不能及时进行,所以聚合物的实际体积总比该温度下的平衡体积大,表现为比容-温度曲线上在T g处发生转折。
降温速度越快,转折得越早,T g就偏高。
反之,降温速度太慢,则所得偏低以至测不到T g。
一般控制在每分钟1—2℃为宜。
升温速度对T g的影响,也是如此。
的大小还和外力有关:单向的外力能促使链段运动,外力越大,T g降低越多;外力的频率变化引起玻璃化转变点的移动,频率增加则T g升高,所以膨胀计法比动态法所得的T g要低一些。
除了外界条件以外,显然T g值还受到聚合物本身的化学结构影响,同时也受到其它结构因素的影响,例如共聚、交联、增塑以及分子量等。
三、仪器和试剂膨胀计水浴及加热器温度计(0—250℃)颗粒状聚苯乙烯乙二醇尼龙6颗粒四、实验步骤(1)洗净膨胀计,烘干。
装入聚苯乙烯(尼龙6)颗粒至膨胀管的4/5体积。
(2)在膨胀管内加入乙二醇作为介质,用玻璃棒搅动(或抽气)使膨胀管内没有气泡。
(3)再加入乙二醇至膨胀管口,插入毛细管,使乙二醇的液面在毛细管下部,磨口接头用弹簧固定,如果发现管内留有气泡必须重装。
(为什么?)(4)将装好的膨胀计浸入水浴中,控制水浴升温速度为1℃/分。
(5)读取水浴温度和毛细管内乙二醇液面的高度(每升高5℃读一次,在55—80℃之间每升高2℃或1℃读一次),直到90℃为止。
(6)将已装好样品的膨胀计经充分冷却后,再在升温速度为2℃/分钟的加热水浴中读取温度和毛细管内液面高度。
(7)作毛细管内液面高度对温度的图。
从直线外延交点求得两种不同升温速度的聚苯乙烯(尼龙6)的T g值。
如图3-3所示。
图 3-3 h-T 图五、思考题(1)T g的主要影响因素有哪些?是怎么影响的?(2)在测定T g的过程中要注意那些问题?实验3 聚合物拉伸强度和断裂伸长率的测定一、 实验目的通过实验了解聚合物拉伸强度及断裂伸长率的意义,熟悉它们的测定方法;并通过测试应力-应变曲线来判断不同聚合物材料的力学性能。
二、 实验原理拉伸试验是在规定的试验温度、试验速度和湿度条件下,对标准试样沿其纵轴方向施加拉伸载荷,直到试样被拉断为止。
基本公式:L L L -=ε (4-1) 0A F=σ (4-2) )(000L L A FL E -==εσ (4-3) 式中,ε伸长率即应变;σ为应力;L 为样品某时刻的伸长;0L 为初始长度;0A 为初始横截面积;F 为拉伸力;E 为拉伸模量。